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Pre1face 

This book aims to give a development and exposition of the quaternionic 
generalization of standard complex quantum mechanics. The original impetus 
for my writing it came from Richard Slansky who, at the Aspen Winter Physics 
Conference in January 1988, suggested that I expand my talk there into a 
Physics Reports number giving a full-scale review of quaternionic quantum 
mechanics. As work on the intended article progressed, however, it became 
apparent that what I was writing was actually a research monograph. Therefore 
I decided, with encouragement from my colleague John Bah call, to convert the 
project into a book. I am convinced that quaternionic quantum mechanics 
represents largely uncharted, and potentially very interesting, terrain in theore
tical physics and hope that this work will encourage its further exploration by 
others. 

In the pursuit of my interest in quaternionic quantum mechanics over the last 
14 years, I have benefited from conversations or correspondence with a large 
number of people. Specifically, let me mention I. Adler, W. A. Bardeen, I. Bars, 
J. S. Bell, L. C. Biedenharn, G. V. Bhanot, J. D. Bjorken, L. S. Brown, C. P. 
Burgess, Y. M. Cho, S. Coleman, S. Cotanch, A. Davies, G. Domokos, F. J. 
Dyson, D. Finkelstein, B. Grossman, M. Giinaydin, J. B. Hartle, G. Hegerfeldt, 
T. J. Higgins, L. P. Horwitz, R. Jackiw, T. Kicu, G. Kilcup, J. R. Klauder, 
A. Klein, R. Langlands, S.-C. Lee, T. D. Lee, A. J. Leggett, G. W. Mackey, 
A. Mcintosh, B. H. J. McKellar, A. Millard, R. L. Mills, C. Moreira, 
M. Mueller, H. C. Myung, Y. Nambu, R. Narayanan, C. Nash, Y. J. Ng, 
V. Novikov, S. Okubo, G. I. Opat, B. Ovrut, A. Pais, E. A. Paschos, S. G. 
Rajeev, P. Ramond, H. Rees. M. Sachs, J. Sandweiss, N. Seiberg, A. Shapere, 
P. Shaw, R. Slansky, A. Soffer, D. Speiser, A. Strominger, C. Teitelboim, S. B. 
Trciman, R. Wald, J. D. Weckel, S. Weinberg, K. Westerberg, E. P. Wigner, 
D. J. Wineland, B. Winstein, E. Witten, C. Wolf, Y.-S. Wu, C. N. Yang, A. 
Zee, and B. Zumino. In particular, my decision to embark on a detailed inves
tigation of quaternionic quantum mechanics arose both from a question posed 
to me by Frank Yang and from my study of a preliminary version of the 1984 
paper by Larry Biedenharn and Larry Horwitz sent to me by the authors. The 
demonstration in Chapter 6 that the S-matrix in quaternionic scattering is 
<C( I. i) was motivated by questions posed by Geoffrey Opat and Anthony Klein; 
the analysis of second quantization in Sees. 7.4 and I 0.1 was strongly influenced 
by remarks made by Larry Horwitz and John Klauder; and the field theory 
discussion of Sees. 13.4-13.7 owes much to pertinent questions posed by Lowell 
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Brown and Edward Witten. I am grateful to Murat Giinaydin, Robert Lang
lands, and Susumu Okubo for their critical comments on Chapter I, to James 
Hartle and Anthony Leggett for a critical reading of the initial draft of Sec. 
14.2, to Steven Weinberg for comments on the discussion of nonlinear quantum 
mechanics, and to Larry Biedenharn for his useful remarks on several issues. I 
especially wish to thank Larry Horwitz and John Klauder for their many 
perceptive comments on large portions of the manuscript. Larry Horwitz's 
thorough and insightful critical rereading of the revised draft led to many 
improvements in the manuscript, as did John Klauder's critique of the first draft 
of Chapters 1--9 and the final two chapters. I am deeply indebted to Karl 
Westerberg, who faithfully attended my 1991 -1992 Princeton University 
lectures based on Chapters 1-12 of this book and whose many probing ques
tions led to significant improvements in the manuscript. 

I also want to thank Joseph Birman for directing me toward Oxford 
University Press as publisher, and my editor there, Jeffrey Robbins, for his 
patience and assistance. I am deeply grateful to Sarah Brett-Smith for her 
encouragement during the final stages of research and writing. I have appre
ciated the hospit~lity of the Aspen Center for Physics during several summers 
when portions of this work were done, and of course for the past 14 years (and 
more) have enjoyed the marvelous environment for theoretical physics provided 
by the Institute for Advanced Study. I am grateful to the State of New Jersey, 
and in the 1992-1993 academic year, the Robert E. Brennan Foundation, for 
funding the Albert Einstein chair at the Institute, which I have held since 1979, 
and to the Department of Energy for its continuing support of my research 
under Grant No. DE-FG02-90ER40542. The School of Natural Sciences 
computing staff, and in particular Judith Nuskey, provided valuable technical 
assistance, and Margaret Best and Paula Bozzay assisted with the TEX 
composition. Proofreading was facilitated by attentive help from Gise!e Murphy 
and Michelle Sage. Finally, I wish to thank my long-time secretary, Valerie 
Nowak, for her patience and her beautiful work in the overall TEX composition 
of the manuscript. 

Princeton 
March 1994 

S. L.A. 
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Introduction 

Quantum mechanics as developed in the standard textbooks, and as applied to 
elementary particle physics in the standard model, is understood to be comp/ex 1 

quantum mechanics: The wave functions and probability amplitudes are repre
sented by complex numbers. However, it has been known since the 1930s that 
more general quantum mechanical systems, and in particular a quaternionic 
quantum mechanics, can in principlle be constructed (Birkhoff and von 
Neumann, 1936). One can immediately ask the question, ''Why try to make a 
new kind of quantum mechanics'?"-to which two answers can be given, one 
mathematical and one physical. The mathematical motivation is that, in general. 
we expect to get a better understanding of a system of postulates if we have 
more than one concrete realization. Specifically, we can expect to gain a deeper 
understanding of standard, complex quantum mechanics if we understand 
which features of the usual formalism are more general than others. The phy~i
cal motivation is that, although the low-energy effective theories governing the 
strong, electroweak, and gravitational interactions of elementary particles are 
believed to be described by local complex quantum field theories, attempts to 
construct an underlying unifying theory within the same framework have run 
into difficulties. Perhaps a successful unification of the fundamental forces will 
require one or more new ingredients at the conceptual level. One possibility, 
which has been widely studied recently (Green, Schwarz, and Witten, 1987), is 
to sacrifice the assumption of locality or of "point" particles, as is done in string 
theories. A second possibility, which motivates the present work, is that a 
successful unification of the fundamental forces will require a generalization 
beyond complex quantum mechanics, 

There is already a substantial literature2 analyzing the underpinnings of 
quantum mechanics from an axiomatic mathematical point of view, We will not, 
in the present treatment, attempt a detailed review of this literature, or make 
any pretense at mathematical rigor, Rather, our aim, motivated by possible 
physical applications, is to give a systematic development of quaternionic 
quantum mechanics paralleling the standard textbook treatments of complex 

1 Complex, as used in thls book. will ahrays mean '·c.:omplex number,'' and never "a system with many 
part>." Thmughout the book. as in some treatments of complex quantum mechanics and most texts on 
high-energy physccs and quantum field theory. we use so-called microscopcc units with f1 =' = I. 

2 See, for example. lleltrametti and Crssir1clli (\9HI), Jauch (\96Ha). Ludwig (19H5). Mackey (196H). Piron 
( 1976), Ptak and Pulmannovir ( 1991 ), and VcrradaraJan ( 19H5). 

3 
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quantum mechanics. With the possible exception of some more advanced 
material in the final chapters, most of this book should be accessible to a reader 
who has mastered a traditional first-year graduate-level quantum mechanics 
course. 

A number of interesting and characteristic features of quaternionic 
quantum mechanics will be seen to emerge. For example, a considerable 
emphasis is placed on the development of scattering and decay theory in 
nonrelativistic quaternionic quantum mechanics, where we find that for a 
Galilcan-invariant single-particle or multiparticle system, the asymptotic 
scattering states lie in a complex subspace of quaternionic Hilbert space. As 
a consequence, the S-matrix for nonrclativistic quatcrnionic potential scat
tering is complex (rather than quatcrnionic), but we will find that in general 
it is time reversal violating. The complexity of the S-matrix will also be 
derived by general formal scattering theory methods, the validity of which 
extends beyond the nonrelativistic case. After giving a detailed development 
of nonrelativistic quaternionic quantum mechanics, including second quanti
zation and quaternionic quasiparticles, we proceed to an analysis of relati
vistic quatcrnionic wave equations. This is followed by a discussion of 
quaternionic field theory. in which we introduce an operator gauge invariant, 
total trace Lagrangian formulation of quantum dynamics. We conclude with 
a discussion of the possible role in physics of quaternionic quantum 
mechanics, and of a number of open issues. Readers wishing to proceed 
expeditiously to Chapters 13 and 14 can do so by first reading Sees. 1.4, 2.1-
2.6, 3.1, 3.3, 3.5, 3.6, 4.2, 5.2, 6.3, 8.3, 8.4, 9.3, 10.1, 10.2, 11.2, 11.4, 11.5, 
and 12.1-12.3. It is hoped that the material presented here, in addition to its 
own intrinsic interest, will provide a jumping-off point for the further devel
opment of quaternionic quantum field theories, and ultimately for establish
ing whether quaternionic quantum mechanics is relevant to elementary 
particle phenomena. 

1.1 CLASSICAL VERSUS QUANTUM MECHANICS 

We begin by reviewing, following Feynman (1948), what it is that distinguishes 
a quantum system from a classical one. Consider first a classical system. Let 
A, B. C be attributes of the system, and let B specify a unique classical state. 
(For example, a measurement of B could restrict the position and momentum to 
lie within a specified infinitesimal cell in phase space.) From a unique classical 
state, by integrating the Hamiltonian equations forward or backward in time, 
we can determine both the future and past evolution of a classical system, and 
so there is a well-defined probability for the system to evolve from (to) a unique 
classical state to (from) any other group of states. Hence if we let 

P"" probability that a measurement of B gives b. given that a measurement of 
A gave a 

P," probability that a measurement of C gives c, given that a measurement of 
B gave h 

P," probability that a measurement of C gives c, given that a measurement of 
A gave a (!. I) 

we expect the probability Pea to be related in a classical system to the prob-
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abilities Pch and P 1){1 by a Markovian3 law of probability composition, 

Pea = '\-' Pch Pha /_, 
h 

5 

( 1.2) 

where the sum on b extends over a complete set of classical states. We can 
characterize Eq. ( 1.2) by saying that in a classical system, probabilities super
Impose. 

In a quantum system, however, Eq ( 1.2) is not in general valid. Let us now 
let A, B. C be attributes that give specifications of the quantum mechanical state 
of the system. Then in quantum mechanics we arc guaranteed the existence of 
probability amplitudes <Pha: <Pch· <I>ca [in Dirac bra ket notation, <Ptw = (hja)] 
and an absolute value or modulus functwn N(<P) such that 

(1. 3a) 

and 

( Ub) 

where the sum over b extends over a complete set of quantum mechanical states. 
In other words, in quantum mechanics, probability amplitudes, rather than prob
abilities, superimpose. We shall adopt this statement as our fundamental defini
tion of a quantum mechanical system. When comparing the quantum 
mechanical law of Eqs. (1.3a,b) with the classical law of Eq. (1.2), it is conve
nient to take the quantum attributes A. B. C to correspond to a coherent state 
representation (Klauder and Sudarshan, 1968). in which case the sum over b 
corresponds to an ovcrcomplcte set of quantum states (which can be chosen to 
correspond to a classical phase space representation), with Eq. (1.3b) still 
remaining valid. 

1.2 NUMBER SYSTEMS USED FOR PROBABILITY 
AMPLITUDES 

Let us now determine what kinds of number systems can be used for the prob
ability amplitudes <P. Since physical measurements must ultimately reduce to 
measurements of real number quantities, we postulate that the <I>s are elcmi:nts 
of a general finite dimensional algebra over the real numbers with unit clement, 
of the form 

1 Markov chains apply to any system in which the probabilities for the outcome of a trial can depend only 
on the outcome of the directly preceding trial. f'or a J"cvicw, sec Feller (1957). and foJ" a discussion of 
cla"ical mechanics as a Markm·Jah system. see Lan7 ( 1977). The rcmai"k that classical systems obey a 
Markot•ian law of probability composition is nece"ary to deal with the objection to f'eynman"s discussion 
raised by Koopman (1957) and by Ballentine (19H6). who point out that an1· system. classrcal or quantum. 
always obeys the law of conditional probability 

Pra =}=Pi/' u P;m 
h 

where /J ·a is to be read "hand a"' and P,~o" is the conditional probability for the measurement of C to give 
<.given that the measurement of B gave hand the measurement of A gave a. This equation is more general 
than Lq. (1.2) and reduces to Lq. (1.2) only when P,;,., = P,;,. which we argued in the text should hold for 
classical systems. since in these a knowledge of the current system phase space state determines the entitc 
future and past evolution or the system. 
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<I> = L r AeA (1.4a) 
A 

Here the rA are real numbers and the c> A are basis elements of the algebra, 
obeying the multiplication law 

eAeB = L !ABC ec 
c 

(1.4b) 

with real-number structure constants !ABC· We take the unit element always to 
be e0 , and so have 

eo = 

fiwc = 6Bc, (1.4c) 

The modulus function N(<I>) will now be a real number function of the 
numbers {rA }. To determine the allowed structure of the algebra A, we shall 
introduce a number of assumptions concerning the form of the modulus func
tion. The first four assumptions are basically technical in nature; they are the 
ones usually postulated for a modulus function: 

N(O) = 0 

N( <P) > 0 if <P f. 0 

N(r<P) = jrjN(<P).r real 

(!.Sa) 

(I. 5b) 

(I. 5c) 

(1.5d) 

A final, and highly nontrivial, assumption about N( <I>) is physically motivated 
by imposing the correspondence principle in the following form: We require that 
in the absence or quantum interference effects, probability amplitude super
position [Eq. ( 1.3b )] should reduce to probability superposition [Eq. ( 1.2)]. In 
particular. when the state sum over h in Eq. (1.3b) contains only a single term, 
the probability amplitude relation 

( 1.3b') 

should imply the probability relation 

(1.2') 

Taking the square root of Eq. (1.21
) and substituting Eqs. (1.3a) and (1.3b') then 

gives4 us the additional condition on N(<P), 

(I. 5e) 

for any two elements <1> 1 = <Pch· <P2 = <l>tw of the algebra A. 

4 This argument is still valid rf lq. (I.3a) rs replaced by P1"' ~ X(<!>hal"- P,h = N(<l>,;,)". and so on. with 
a> 0 a general real exponent. In this generalized version, raising Eq. (1.2') to the !fa power and substi
tuting Eq. (1.3b1

) again gives Eq. (1.5e). and hence the algebra A must still be an absolute valued algebra. 
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We can now invoke a remarkable theorem of Albert (1947), who shows 
that the only algebras over the reals w11th unit element, admitting a modulus 
function N(<P) with properties (1.5a)- (1.5e), are the reals IR, the complex 
numbers <C, the quaternions or Hamilton5 numbers IH and the octonions or 
Cayley numbers 0 6 These so-called absolute valued algebras and their corre
sponding modulus functions N( <P) are defined as follows. For the rea is IR we 
have 

IR: <P = r, r =real, N(<P) = jrj ( 1.6) 

with lrl the usual absolute value. For the complex numbers ([we have 

<C: <P = ro + ir1, ro. 1 real, P = -I 

N(<P) = (<l:><P)'/2 = (r~ + rf)I/2 (1.7a) 

where we have introduced the conjugate <I> defined by 

( 1.7b) 

The algebra of quaternions IH is defined by 

(I. Sa) 

where eA are imaginary elements obeying the associative but noncommutative 
algebra 

3 

eAeB = -[JAB+ L CABC ec 
C=I 

( 1. Sb) 

Here cABC is totally antisymmetric and equal to unity for the index combination 
(123), and the norm for the quaternions is defined by 

( 

3 )' /2 
N(<P) = (<I:><P)'/2 = (<P<i>)'/2 = kor~ ( 1. Sc) 

with the quaternion conjugate <I> given by 

'The quaternions were discovered by Hamilton in 1843. For a historical account, including an analysts of 
where Hamilton's subsequent work on quaternions gol into trouble. see Altmann (1986, 1989). For a 
historical review of the role of quaternions in physics. see Anderson and Joshi (1993). A comprehensive 
bibliography of physics papers using quaternions. from 1974 on, can be obtained from the SPIRES data 
base at the Stanford Linear Accelerator Center library, by using the title keywords quaternion, quaternions. 
and quaternionic. 

" Albert's theorem generalizes a famous nineteenth-century result of Hurwllz, who first reached the same 
conclusion but with the additional assumption that N(<I>) 2 is a quadratic form, as in Eqs. (I .7a), (I.8c). and 
(I.9c). See Hurwitz (I 898). reprinted in Hurwitz (1933). For a very nice review of aspects of the quaternion 
and octonion algebras, sec Okubo (1990). 

The restriction to algebras over the rea/s. which is used in the assumption of Eq.(I.5c), is essential for 
Albert's theorem. Over the field of rational numbers <D = m/n, with m.n integers. one can introduce a 
p-adic norm ,Vp(<l>) that obeys Eqs.(I.5a.b.d.e) but not Eq.(I.5c). as follows: Write <I>= (r/s)p'. with p' an 
integer power of the prime fl. and with the integers r and s relatively prime to each other and top. and 
.I> 0: then :Yp(<I>) = p-•·. The completion of the rational numbers with respect to the p-adtc norm defines 
the tield ofp a die numbers. For a discussion of various forms of quantum mechanics based on the p-adic 
numbers, >Lnd further references. sec Vladimirov and Volovich (1989). 
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(I. Sd) 

Finally, the algebra 0 of the octonions is defined by 

7 

0: <I>= r0 + L e11r11, ro ... 7 reaL (1.9a) 
11=1 

where eA are elements obeying the noncommutative and nonassociative 
algebra 

7 

e11es = ·-6AR + L /Ascec 
l=l 

(I. 9b) 

with fABC totally antisymmetric and equal to unity for the seven index combi
nations (123), (246), (435), (367). (651), (572). and(714). The norm for the octo
nions N( <I>) is then defined by 

( 
7 )1/2 

N(<P) = (<f><I>)l/2 = (ci><f>)'/2 = L r~ 
11=0 

(I. 9c) 

with the octonion conjugate <I> given by 

7 

<I> = ro - L e 11 r A ( I. 9d) 
A=l 

For all the preceding algebras we evidently have N( <I>) = (<I> <I>) 1/2, and from 
this and Eq. (1.5e), we can verify that the general amplitude superposition of 
Eq. (1.3b) implies the probability superposition of Eq. (1.2) when quantum 
interferences are neglected. Thus we have 

' 2 -Pea = [!v ( <P w)] = <Pea <Pea 

= L (<P,h<Pha)(<P,.h<Pha) 
h 

+ L ( <P ch' <I>tJ'a )(<I> ch<Pha) (I. I Oa) 
h 'cjh 

which on dropping the quantum interference terms with b' f. h becomes 

Pea~ L[N(<Pch<Pha)]2 
= L[N(<P,.!J)]2

[N(<I>ba)]
2 

h h 

= L Pcb Pha (l.IOb) 

" In addition to Albert's theorem on algebras admitting a modulus function 
N( <P), two other characterizations of the algebras IR, <C, IH, and ID are of inter
est. The first of these is based on the concept of a division algebra, which is a 
finite dimensional algebra for which a f. 0, b f 0 implies ah f. 0, in other words, 
which has no nonzero divisors of zero. [Clearly, the norm properties of Eq. (1 .5) 
imply the division algebra proRerty, since a f. 0, h f 0 implies N(ab) = N(a) 
N(b) f. 0, which implies ab f. 0. 7

] A classical theorem (Batt and Milnor, 1958; 
Kervaire, 1958) states that the only division algebras over the reals are algebras 

7 The reasoning here clearly mllkcs csscnticli usc of the norm property of Eq. ( 1.5b). An elementary 
example (pointed out to me bv R. Langlands), of a nondivision algebra with a norm obeying Eqs. ( 1.5a,c,e) 
but not Eqs. (I. 5b.d) is the argcbra of 2 X 2 real matrices <!>, with the norm taken as N( <!>) - I clet <1>1

1 
j2_ 
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of dimension I, 2, 4, and 8; the only associative division algebras over the rcals 
arc IR, <C, and IH (Frobenius, 1878); and the nonassociative division algebras 
include the octonions 0 (but there are others as well; see Okubo, 1990). A simple 
example of a nondivision algebra is provided by the algebra of complexified 
quaternions with clements 

I, i. eu,3, ieuJ (1.11) 

where i and e A arc assumed to commute:. This is not a division algebra since 

(I+ ie3)(!- ie1) =I- (-1) 2 
= 0 (1.12) 

and so there are nonzero divisors of zero. Hence for the algebra of 
complexified quaternions it is not possible to construct a modulus function 
with the properties of Eq. (1.5). A number of papers in the literature (e.g., 
Morita, 1983) discuss quantum mechanical equations based on complcxificd 
quatcrnions, but as shown by the preceding discussion, if the probability 
amplitudes arc assumed to be complexified quaternions, one cannot give a 
satisfactory probability interpretation. We will not employ complexificd 
quaternions in this book. 

The second additional characterization of IR, <C, and IH (but not 0) is based 
on the concept of a number field. A number field is a number system with two 
operations, an addition and a multipllication. The addition and multiplication 

. . H 
arc assocmt1vc, so 

a+(b+c)=(a+h)+c 

a(hc) = (ah)c 

and the multiplication is distributive over the addition, 

a(h +c) =:= ab + ac 

The addition is commutative, 

a+b==b+a 

but the multiplication is not necessarily commutative, and generally 

ab ;l ba 

(1.13a) 

(l.l3b) 

(1.14) 

( l.ll Sa) 

( I . 15b) 

Finally, in a number field there are additive and multiplicative inverses: For 
every a, there is a -a such that 

a+(-a)=O (1.116a) 

and for every nonzero a, there is an inverse a- 1 such that 

(1.16b) 

" The condition of Eq. ( 1.13 b) excludes the octoniom.; the nonexistence in general of octonionic qutmtum 
mechanics will be elaborated on in Sees. 1.3 and 2.7. 
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For physical purposes, we are interested in number fields over the reals; since by 
Eqs. (1.13b) and (1.16b) these must be associative division algebras over the 
rcals, they can only be the reaL complex. and quatcrnion numbers IR, C, and !H. 
It is easily verified that IR, C, and II-I do in fact satisfy all the postulates of Eqs. 
(1.13) ( 1.16) and so constitute the complete class of number fields over the 
reals. 9 

1.3 ALTERNATIVE FORMULATIONS OF QUANTUM 
MECHANICS 

In this section we will very briefly describe three alternative formulations of 
quantum mechanics that appear in the literature. The first is the Dirac ( 1930) 
formulation of quantum mechanics in terms of state (ket) vectors that obey a 
superposition principle with complex coefficients: This is standard quantum 
mechanics in a complex Hilbert space. When the allowed superpositions are 
restricted to real coefficients or extended to quatcrnionic coefficients one gets. 
respectively, ~uantum mechanics as formulated in a real or in a quatcrnionic 
Hilbert space. 0 Although the analysis of the probability interpretation given in 
Sec. 1.2 only required that the probability amplitudes (i.e., the superposition 
coefficients) belong to one of the four classical division algebras, in fact the 
Hilbert space formulation of quantum mechanics further requires the associa
tive law of multiplication, and so admits no extension to quantum mechanics in 
an octonionic Hilbert space. Specific features of the Hilbert space formulation 
of quantum mechanics which fail in an attempted octonionic extension arc 
described in detail in Sec. 2.7. The presentation of quatcrnionic quantum 
mechanics given in this book is based in its entirety on the Dirac, or quaterni
onic Hilbert space, formulation. 

To establish an axiomatic foundation for complex quantum mechanics, 
Birkhoff and von Neumann (1936) abstracted a set of axioms obeyed by the 
true-false propositions of quantum theory. This "propositional calculus" leads 
to a ''lattice of propositions" obeying the laws of projective geometry, which 
can be analyzed as a mathematical system in its own right. and is the basis for 
much of the litcrature2 on the foundations of quantum mechanics. Concrete 
realizations of the lattice of propositions are provided by quantum mechanics 
over a real, complex, or quaternionic Hilbert space. and so for practical purpo
ses the propositional lattice is equivalent to the Hilbert space approach. 
Historically, the possibility of a quaternionic quantum mechanics was first 
pointed out in the paper of Birkhoff and von Neumann ( 1936), and the subject 
was further explored in an important article by Finkelstein, Jauch. and Speiser 
(1959). 

Yet a third formulation of quantum mechanics was given by Jordan (1932, 
1933a, b), based on an algebra abstracted from the properties of the projection 
operators on pure states. Pa = la)(al, of the Dirac formulation. In the Jordan 
formulation of quantum mechanics these projection operators are the funda-

'' J·or a topo.Jogrcal characterization of the number fields IR, G:. lH sec Pontryagin (1946). Yet another 
characteri?ation of JR. Q' and (less trivially) IH rs that they form Clifford algebras; for a clctailcd discussion 
see Brackx. Dclanghc. and Sommcn (19H2). As an example of the application of the Clifford algebra 
tepn:scntation. iC one wishc:) to classify the finite dimcn:.,ional real matrix representations of the quaternion 
algebr·a. one can usc the fact that the real representations or finite Clilford algebras have been classified 
and explicitly constructed; sec Okubo (199Ja,b). and references cited therein. 
10 Strictly speaking. a llilbert space is by definition a complex vector space. and its quaterniomc gcncral
inrtion is called a Hrlbcrt module. but we will not follmv this terminology. 
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mental entities, and the probability amplitudes introduced in Sec. 1.1 play no 
role. The representation theory of the finite dimensional Jordan algebras was 
studied by Jordan, von Neumann, and Wigner (1934), who concluded that the 
representations are of two basic types. The first type, known as special Jordan 
algebras, can be constructed with the product operation in the Jordan algebra 
defined as symmetrized multiplication, ~ (ab + ba), in an associative algebra of 
real, complex, or quaternion Hermitian matrices. The special Jordan algebras are 
equivalent (sec Gursey, 1977, and Niederle, 1980, for an exposition) to the Dirac 
formulation of quantum mechanics in, respectively, a real, complex, or quater
nionic Hilbert space. The second type consists of one case, the so-called excep
tional Jordan algebra, consisting of the 27-dimensional 11 nonassociativc algebra 
of 3 x 3 octonionic Hermitian matrices. The independence of the exceptional 
algebra (i.e., the fact that it cannot be obtained by symmetrized multiplication of 
the elements of any associative algebra) has been proved by Albert (1933), while 
Gunaydin, Pi ron, and Ruegg ( 1978) have shown that the Birkhoff -von Neumann 
axioms arc satisfied over the exceptional algebra, corresponding to a quantum 
mechanical system over a two- (and no higher) dimensional projective geometry 
that cannot be given a Hilbert space formulation. and constitutes the only known 
example of an octonionic quantum mechanics. 

In any quantum mechanical system with continuum variables, the algebra of 
observables is in fact infinite dimensional, and so the classification theorem of 
Jordan, Wigner, and von Neumann is not directly relevant. An investigation of 
infinite-dimensional Jordan algebras was initiated by von Neumann (1936), but 
it was not until recently that decisive results were obtained by Zel'manov (1983) 
(for a pedagogical review, see McCrimmon, 1984), who proved that in the infi
nite-dimensional case one finds no new simple 12 exceptional Jordan algebras! 
Hence an infinite simple Jordan algebra of observables must be of the first or 
special type and is realizable as a Hilbert space quantum mechanics. We 
conclude that the Jordan formulation of quantum mechanics does not suggest 
any physically relevant extension of standard quantum mechanics, other than 
the replacement of complex Hilbert space by quaternionic Hilbert space in the 
Dirac formulation. 

1.4 NOTATION AND INTRODUCTIOIN TO QUATERNIONIC 
ARITHMETIC 

To conclude the Introduction, we summarize our notation for the quaternion 
algebra and introduce some elementary properties of quaternion arithmetic. As 
stated in Sec. 1.2, a quaternion ¢ has the form 

( 1.17) 

with ¢o.u.3 real and with the quaternion units eA obeying the associative but 
noncommutative algebra 

3 

eAeB = -6AB + L £ABC ec, 

C=l 

A,B= 1,2,3 ( 1.18) 

11 The exceptional algebra is 27-dimensional because a 3 x 3 octonionic Hermitian matrix has 3 real 
numbers along the principal diagonal, and three independent octonions as upper-right off-diagonal matrix 
clements, giving 3 + 3 x 8 = 27 real parameters in all. 
12 A simple algebra is not decomposable into independent subalgebras. 
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where £ABC is the usual completely antisymmetric three-index tensor with 
£123 = I. To verify associativity of the quaternion algebra, we find by direct 
calculation from Eq. ( 1.18) that 

3 

(eAes)eD- eA(eseD) =-bAseD+ L t:Asc£cD£C£ 
C.E=i 

3 

+ 6sD eA - L ssDc £ACE e£ 
C.£=1 

( 1.19) 

which vanishes when use is made of the identity satisfied by CABC (but not by 
any more general three-index antisymmetric tensor) 

3 

L t:Asc £CDE = 6 AD[JBE- 6AE r5sD 
c~I 

( 1.20) 

Since, as emphasized in Sec. 1.2, we will never employ complexified quaternions, 
no confusion arises from use of the notation 

(1.21) 

for the three quaternion units, in terms of which the general quaternion of 
Eq. (1.17) and the quaternion algebra ofEq. (1.18) take the form 

¢ = ¢o + i¢, + Jcf>2 + k¢3 

i2 = )2 = k2 = -I 
ij = -ji = k 

jk = -kj = i 

ki = -ik =j ( 1.22a) 

The sum i¢ 1 + j¢2 + k¢ 1 is called the imaginary part of the quaternion ¢, 
while ¢ 0 is called the real part, and correspondingly, the quaternion ¢ will be 
termed real if ¢ = ¢ 0, with ¢ 1 = ¢ 2 = ¢ 3 = 0, and imaginary if 
¢ = i¢ 1 + j¢2 + k¢3, with ¢ 0 = 0. The operation of extracting the real part of 
¢ is denoted by tr, 

( 1.22b) 

From Eq. (1.18) we see that 

tr(eAes) = -6AB = tr(eseA) (1.22c) 

which implies that for any two quaternions p and ¢we have 

tr(p¢) = tr(¢p) (1.22d) 

which immediately generalizes to cyclic invariance of the trace of a product of 
any number of quaternionic factors, 

( 1.22e) 
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Equations (1.22d) and (1.22e) have a number of useful applications. For 
example, letting [¢, p] denote, as usual, the commutator 

[¢,p] == ¢p- p¢ ( 1.22f) 

we have 

tr([¢, p]) = 0 

tr([¢,p]rJ) = tr(¢pT)- p¢1J) = tr(prJ¢- P¢T7) 

= tr([r), ¢]p) =~ lr(pT)¢- TJP¢) = tr([p, rJ]¢) ( 1.22g) 

Instead of writing a quaternion in terms of its four real components, as in 
Eq. (1.17), it will often be convenient to write it in terms of two components 
lying in a complex subspace of the quaternion algebra. Taking this subspace to 
be the one spanned by I and i, denoted by <C( I, i), we get the so-called symplectic 

. Ll representatwn · 

(1.23a) 

with the symplectic components ¢,_ 11 E <C( I, i) defined by 

(1.23b) 

Note that the use of -i in ¢r1 in Eq. (1.23b) is a direct consequence of the fact 
that j in Eq. ( 1.23a) is ordered to the left; that is, j( -i) = U = k. When dealing 
with symplectic components, we will use the notation* to denote the complex 
conjugation operation 

I* = I 
' 

'* . z = -z (1.24a) 

which acts as an antiautomorphism within the complex <C( I, i) subalgebra; since 
i and j anticommute, we have 

,;.. . ·,;.. * 
'Vry, .J = .l'VCJ.l ct•r1 J = J¢~ 

·,;.. ,;.. * . 
J<vfi = 'Vfl.l 

(1.24b) 

Following the discussion of Sec. 1.2, we introduce the quaternion conjuga
tion operation denoted by ·· and defined by 

T = -·i, J = -J, !( = -k (1.25a) 

so that 

(1.25b) 

and the conjugate of (/J is ¢, 

11 For a discussion of the relationship between the symplectic representation of quaternions and the 
symplectic group Sp(n). see Fomenko ( 1988). 
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((/;) = ¢ ( 1.25c) 

The quaternion norm 1¢1 = 1¢1 is then defined by 

l¢l- N(¢) = (¢¢)'/2 = ((fJ¢)'/2 = (l¢~l2 + l¢r;I2)I/2 = (¢~ + ¢t + ¢~ + ¢~)'/2 
( 1.26) 

and vanishes only when (p is zero. Using 1¢1, we can explicitly construct the 
unique inverse ¢ ~ 1 of any nonzero quaternion ¢ as 

which by Eq. (1.26) satisfies 

Again using 1¢1, we can write the quaternion ¢in polar form 14 

with 

i¢, +J¢2 + k¢3 
e,l, = (¢f + ¢~ + ¢~)1/2 

(1.27a) 

( 1.27b) 

( 1.27c) 

(1.27d) 

a unit imaginary quaternion that commutes with the imaginary part of¢ and with 

0¢ =cos -I (¢0/1¢1), ( 1.27e) 

From the algebra of Eqs. ( 1.18) or ( 1.22a), we find that the conjugate of the 
product of two quaternion units (say i and;) is 

Tj = k = -k = ( -j)( -i) = ji ( 1.28a) 

and similarly for cyclic permutations of i,j, k, as a consequence of which the 
conjugate of a product of two quaternions p and¢ is the product of the conju
gate quaternions in reverse order, 

p¢ = (/Jp (1.28b) 

which in general is unequal to {!cp. 
Introducing an n x n quaternion matrix M,.s,r,s= l, ... ,n, the matrix 

elements of which are quaternions, we define the adjoint matrix Mt by 

t -M 
15 

= M 11 (1.29a) 

14 The polar form can be used. for example. to find the nth root; of the quaternion ¢. If pis an nth root of 
¢.so that q1 = p". then 1''/' = p"' 1 = '/'f!· and sop commutes with¢: hence if,in04, cJ 0 (so that¢ is not 
real). p must lie in the C( I. e4,) subalgebra. In this case there are exactly n nth roots of q1. given by 

f=O.i. .... n-1 
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Then using Eq. (1.28b) we find 

(MN)):, = (MN) 1,. = L M,p Npr = ~= Npr Msp = L N1.p MJ,, =(NT Mt),, 
p p p 

(1.29b) 

and so the adjoint of the product of two quaternion matrices M and N obeys the 
usual rule 

( 1.29c) 

We will later use the customary convention of defining the transpose MT of the 
matrix M by 

( 1.29d) 

so that Eqs. (1.29a) and (1.29c) become 

Mt = MT, (MN)t = (MN( = JVTMT = NtMt ( 1.29e) 

In general, however, for quaternionic matrices MN one has 

(1.29f) 

whereas these statements hold as equalities for complex matrices M, N. Defining 
a quaternionic column vector v" s = l, ... ,nand its adjoint v! = i'_; = v_,, we also 
have 

(1.29g) 
s s s 

giving (Mv)t = vtMt as expected. 
We define the trace operation Tr acting on a quaternion matrix M by 

(Finkelstein, Jauch, and Speiser, 1959) 

Tr M = tr L M,.,. (1.30a) 
,. 

Then for the product of two quaternion matrices M and N, we have 

Tr(MN) = tr ( ~ M,, N") = tr ( ~ N" M,,) = Tr(NM) (1.30b) 

Equations ( 1.29c) and ( 1.30b) hold for infinite-dimensional as well as finite
dimensional matrices, provided that the intermediate sums are sufficiently 
convergent. In the next chapter we will introduce quaternionic quantum 
mechanical operators, which like their complex quantum mechanics counter
parts can be represented as matrices of finite or (when there is sufficient 
convergence) infinite dimension, depending on the dynamical context. 

In certain applications involving fermions (see, e.g., Adler, 1985a) one intro
duces Grassmann quaternions x, defined by 
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x = xo + tx, + Jx2 + kx3 (1.3la) 

with XA = XA real Grassmann elements obeying the anticommutator algebra 

A,B=0,!,2,3 (1.3lb) 

A concrete realization of the XA can be given in terms of real 2 x 2 matrices 
T+, TJ, J2, 

(1.3lc) 

as follows: 

(1.3ld) 

with ¢ 0.1_2_3 real and with the superscripts (I) (4) indicating matrices acting in 
independent two-dimensional spaces. From Eq. (L3ld), we see that 

( '~ '~ )T _ XTXT 
t.At.B - B ·A (1.3le) 

Equation (L3le) implies that for two Grassmann quaternions x and ~. the 
analog of the product conjugation rule of Eq. (L28b) is 

(1.3lf) 

with the minus sign arising from the anticommutativity of the Grassmann 
elements. However, defining the adjoint of a Grassmann quaternion by Xt = XT, 
we find from Eq. (1.3le) that the product adjoint rule of Eq. (1.29c) is still 
obeyed with the usual sign, 

because T reverses the order of the real Grassmann elements. 15 

In addition to the quaternion conjugation operation of Eq. ( 1.24), we will 
make frequent use of the quaternion automorphism transformation 16 

lwl =I ( 1.32a) 

15 This differs from the adjoint rule for Grassmann elements proposed in Adler ( 1986c) where it was 
incorrectly assumed that transposition T acts trivially on real Grassmann elements. Note also that in using 
Grassmann variables in functional integrals in complex quantum mechanics, the operator adjoint x1 is 
replaced by a new Grassmann variable (often denoted by x, but not the same as x of the text) that is 
completely independent of X and that anticommutes with z. 
16 It can be shown that the transformations of Eq. (1.32) constitute the only automorphisms of the 
quaternion algebra. In particular, because quaternion conjugation reverses the order of products [see 
Eq. ( 1.28)[, it is not un automor-phism, but rather what is called an antiautomorphism. This contrasts with 
the complex case, where complex conjugation is an automorphism of the algebra of complex numbers. 
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so-termed because iw)w, kw obey the same algebra as do i,j, k, 

(1.32b) 

This transformation has the important property ,that if ¢ is a unit imaginary 
quaternion formed from an arbitrary unit vector£, 

then ¢,J) obeys 

¢= LeAiA =e·i, ;p = -¢, ¢2 = -1 
A 

¢w = (w¢w) = w(/Jw = -w¢w = -¢w 

¢~, = w¢ww¢w =' 1J.HjJ
2w = -1 

and so ¢w is a unit imaginary quaternion as welL Thus we can write 

"' =e·i' 'Vw 

(1.33a) 

(L33b) 

(1.33c) 

for an appropriate unit vector£'. In fact, by an appropriate choice of w we can 
make i' be any arbitrarily assigned unit vector. To see this, let 

w = cos 0 + sin Oe. ii ( L34a) 

with ii the unit vector orthogonal to the plane containing i and the desired f'. 
Then 

¢w =(cos f)- sin Oe· ii)e· i(cos 0 +sin Oe· ii) 

which using Eq. (1.18) and fl· ii = 0 reduces to 

¢oJ = e · f( cos 0 + sin Oe' · ii) 2 

= e. i( cos 20 - sin2 8) +e. ie. ii 2 sine cos e 
= e· fl(O) 

f(O) = cos(28)i + sin(20)f x ii 

(1.34b) 

( 1.34c) 

Since i( 0), 0 :::; 0 < n, sp,ans al/l_:!nit vectors in the plane containing i and i', for an 
appropriate O' we have fl(O') = fl'. In group theoretic language, what we have just 
shown is that the set of transformations of Eq. (1.32) is isomorphic to the proper 
three-dimensional rotation group S0(3). Comparing Eqs. (1.33a) and (1.34c), we 
also see that ¢w commutes with the original unit imaginary quaternion ¢ only 
when 0 = 0 (corresponding to ¢w = 1p) and when e = n/2 (corresponding to 
¢w = -¢).Thus if¢' and¢ are commuting unit imaginary quaternions, 

tr¢ = tr¢' = 0, [¢,¢'] = 0 (L35a) 

then we necessarily have 

¢'= ±¢ (1.35b) 
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To conclude, we note that in analogy with complex analyticity, a much more 
restricted concept of quaternion analyticity has been developed in the mathe
matical literature. Although we use complex analytic methods in our quater
nionic calculations involving symplectic components, we have not found any 
context in our development of quaternionic quantum mechanics in which the 
use of quaternion analyticity seems natural (but there could be one). 17 

17 The reader interested in pedagogical t·eviews of the methods of quaternion analysis should consult 
Giirsey and Tze (1979). Deavors (1973). Sudbery (1979), and Brackx. Delanghe. and Sommen (1982). 
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General Framework of 
Quaternionic Quantum Mechanics 

We proceed now to give the basic kinematic and dynamical framework of 
quaternionic quantum mechanics. In much of what follows there is a close 
analogy with the familiar framework of complex quantum mechanics, but there 
are a number of characteristic features of the quatcrnionic case that play a 
significant role in the sequel, and to which we alert the reader. First of all, since 
quaternionic multiplication is noncommutative, we must specify whether the 
quaternionic Hilbert space is to be formed by right or by left multiplication of 
vectors by quaternionic scalars; the two different conventions give isomorphic 1 

versions of the theory. Fallowing Finkelstein, Jauch, and Speiser (19 59) and 
Kaneno (1960), we adopt in Sec. 2.1 the convention of right multiplication by 
scalars, since this is the one appropriate to the usual conventions of matrix 
operations and to the Dirac hra and ket notation for state vectors. Second, 
although the spectral theory for quaternion self-adjoint operators (see Sec. 2.2) 
is a straightforward extension of the complex case, significant differences from 
the complex case arise in the spectral theory for quaternion anti-self-adjoint 
operators given in Sec. 2.3. Because anti-self-adjoint operators make a natural 
appearance in quantum mechanics in the role of symmetry generators, and in 
particular as the time translation generator or Hamiltonian, as discussed in 
Sec. 2.4, the characteristic features of their spectral theory have important 
consequences for the overall structure of quaternionic quantum mechanics. 
Third, we saw in Sec. 1.4 that a quaternion can always be represented, through 
the symplectic component formalism, as a pair of complex numbers. Despite 
this fact, however, quaternionic quantum mechanics is inequivalent to complex 
quantum mechanics with two internal wave function components, as is discus
sed in detail in Sees. 2.5 and 2.6. Finally, the formulation of quaternionic 
quantum mechanics given later makes essential use of the fact that quaternion 

1 Specifically, the theory with right multiplication by scalars and left multiplication by operators can be 
mapped into the theory with left multiplication by scalars and right multiplication by operators. as 
discussed in Sharma and Coulson (1987). Sec. VI. The isomorphism requires the reversal of the order of 
multiplication in the definition of the quaternion algebra. or. equivalently, mapping the quaternion units 
i.j. k into their conjugates i.j.k. When multiplication by scalars and by operators are both taken to act 
from the left. the structure of linear matrix operators is restricted. as discussed in Horwitz and Biedenharn 
(1965). Appendix 2; this corresponds to the restricted structure of linear matrix operators. which. in the 
conventions used in this book. act from the right, as can be inferred from Horwitz and Biedenharn (1984), 
Sec. 11.4. 

19 
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multiplication is associative; to emphasize this point, we show in Sec. 2.7 that 
key features of the formalism of Sees. 2.1-2.4 fail in an attempted octonionic 
extension, as a consequence of the fact that octonionic multiplication is nonas
sociative. 

2.1 STATES, OPERATORS, WAVE FUNCTIONS, AND INNER 
PRODUCTS 

The states of quaternionic quantum mechanics will be described by vectors of a 
quaternionic Hilbert space VJJ-1, defined2 by the following axioms. 

(i) V1H is a linear vector space under right multiplication by quaternionic 
scalars. Thus for vectors .1; g E V1H and scalars ¢, ¢ 1. ¢ 2 E IH, one has 
f¢, + g¢2 E v,H and 

U+ g)¢=.!¢+ g¢ 

f(¢,¢2) = (f¢,)¢2 

/(¢, + ¢2) =/(/J, +./¢2 ( 2.1) 

(ii) There is a scalar product, or binary mapping (fg) of v,H X v,H into IH, 
which can be used to define a real-valued norm II f II, with the properties3 

(fg) = (gJ) 

llff = (ff) > 0 

(!~ g + h) = (f g) + u h) 

(f;gqJ) = (fg)¢ 

unlcssf = 0 

which on combining Eqs.(2.2a) and (2.2d) also gives 

(/¢,g)= (/J(fg) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

(iii) The space VIH is separable (there is a dense sequence {j;,} E V IH that arbi
trarily closely approximates any f E V111 ) and complete (every Cauchy 
sequence {/;1 } E VIH has a limit fE VIH) under the topology defined by 
II f II- (These two assumptions, which are traditional properties of quantum 
mechanical Hilbert spaces, permit the use of standard limiting operations in 
quaternionic Hilbert space.) 

2 Sec Jauch (1968a). Sec. 2.1; Horwitz and Biedenharn (1984); Finkelstein. Jauch. and Speiser (1959): 
Kaneno (1960): and Finkelstein. Jauch. Schiminovich. and Speiser (1962). Appendix A. 

' We note here an imponant difference from the complex case. In complex quantum mechanics. an inner 
product satisfying (/.g)'= -(J<./) can always be redefined as (/.R)

1 ~ i(/.g), which satisfies 
(!.g)'" = (J<./) 1

• In the quaternionic case. an inner product obeying (/.J<) =-(g./) (as will be encountered 
in our dtscussion of the quaternionic Klein -Gordon equation in Sec. 11.1) cannot be analogously redefined 
to satisfy Eq.(2.2a). as a result of"noncommutativity of the quaternionic multiplication. For example, if we 
try ( f.R) 1 = i( f,J<). we get (t:g) 1 = i( f.R)- ( t:R)) = 1-(R-f)](- i) cc (J<./)icj i(J<./) ~ (R./)

1
• and we 

clearly also violate Eq. (2.2e). Thus the conditions or Eq.(2.2) arc more restrictive than they might at first 
seem. If one wishes to discuss indefinite metric quaterntonic Hilbert spaces, in which the condition of 
Eq.(2.2b) is relaxed, one should also drop the condition of Eq.(2.2a) and consider the two separate cases 

fTiJ = ±(g.IJ. 
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From the scalar product and norm properties of Eq. (2.2) we can immediately 
prove a quaternionic Schwarz inequality (Finkelstein, Jauch, Schiminovich, and 
Speiser, 1962, Appendix A). We start from 

and substitute¢= (g,g),l/l = (gJ) to get 

0 ~ (g.g)[(JJ)(g,g) ~ (f,g)(g. f)] (2. 3b) 

Since (g,g) ~ 0, Eq. (2.3b) implies the desired inequality, 

(fg)(gJ) = l(f.g)l 2 ~ Uf)(g.g) =IIIII 2 II g 11 2 (2.3c) 

We note that the equality can hold in Eqs. (2.3a-c) only if/¢ ~ gljl = 0, that is, 
only if the vectors f and g arc proportional (in the sense of quaterni onic scalar 
multiplication). 

It will be convenient to use the Dirac bra-ket notation for the states and 
inner product in VlJ-1. Hence we define kel states If) that obey 

If¢)= If)¢ (2.4a) 

and bra states (II as their adjoints in a matrix sense, 

Ul =Ill (2.4b) 

so that from Eq. (1.28b) and Eq. (2.4a) we have 

(f¢1 = (~UI (2.4c) 

The scalar product of Eq. (2.2) can then be consistently represented as 

(fg)=(flg) (2.5) 

As a concrete illustration of Eqs. (2.4a-c) and (2.5), let us consider the case of a 
finite, say n-dimensional, quaternionic Hilbert space. The ket state I f) will then 
be a column vector 

(fl) If)= : 

fn 

(2.6a) 

with quaternion componcnts/1, ... , f~, and Eq. (2.4a) becomes the statement 

(fl¢) (fl) 
If¢)= : = : ¢=If)¢ 

fn¢ fn 

(2.6b) 

The bra state U I is the matrix adjoint of Eq. (2.6a) in the sense of Eq. ( 1.29a), 
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as extended to nonsquare matrices; that is, the bra state (fl is the row vector 
obtained by taking the transpose of the quaternion conjugate of Eq. (2.6a): 

(
1 )T 

Ul= :

1 

.fn 

(2.6c) 

and Eq. (2.4c) becomes the statement 

(2.6d) 

The scalar product (fig), in the finite-dimensional case, is given by 

(2.6e) 

and is readily seen to obey all the postulates of Eqs. (2.2a-e). 
According to the discussion of Sec. 1.1, with the inner product or probability 

amplitude ( gl f) one associates a probability 

(2.7) 

From Eqs.(2.4a,c) and (2.7), we sec that the association between physical states 
and Hilbert space vectors is not one to one, for if we replace the unit-normalized 
vector If) by the inequivalent vector lfw), with lwl = 1, the probabilities P,e;! 

arc unchanged for all g. Physical states are thus in one-to-one correspondence 
with unit rays of the quaternionic Hilbert space of the form 

If)= {lfi1J): lwl = 1} (2.8) 

and any vector or ray representative I fiJJ) E I f) can be used to calculate prob
abilities. 

Corresponding to our convention that V1H is a vector space under right scalar 
multiplication, operators will always act on states from the left, as in 

Olf) (2.9a) 

When the term operator is used without further qualification, it will be assumed 
to be a quaternion linear operator obeying 

O(lf)¢) = (Oif))¢ (2.9b) 

for an arbitrary quaternion (p. More general classes of operators, such as colinear 
(or, specifically, counitary) operators and complex linear operators, will be in~ro
duced in Sees. 2.3 and 3.1. For any operator 0, we define the adjoint operator OT by 

(/, Og) = (0 1fg) (2.10) 
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for arbitrary state vectors J,g in suitable domains. Following Teichmuller 
(1935) and Horwitz and Biedenharn (1984), we introduce a set of left-acting 
operators 

1 Eo, (2.lla) 

that obey an algebra isomorphic to the quaternion algebra of Eqs. ( 1.18) and 
(1.22a). We caution that the left-acting operators I, J, K are to be distinguished 
from i,j, k, which are right-acting scalars; this point will be elaborated on in 
Sec. 2.3. For an arbitrary (quaternion linear) operator 0 we can define (again 
following Teichmuller, 1935 and Horwitz and Biedenharn. 1984) a set of 
'··formally real" components Oo.J.2.3 by 

0 0 =~(0-IOI-JOJ-KOK) 

01 = - ~ (IO +OJ-- JOK + KOJ) 

02 = -~(JO +OJ- KOI +!OK) 

03 = - ~ (KO +OK- !OJ+ JOI) 

so termed because they obey 

A= 0, 1,2,3 

and in terms of which 0 has the decomposition 

(2.llh) 

(2.llc) 

(2.lld) 

Equations (2.llc,d) can be verified by direct calculation from Eq. (2.llb); a 
succinct algebraic derivation follows from the method used in Eqs. (2.13a-d). 
As one might expect, the operators I, J, K can be consistently postulated to be 
anti -self-adjoint, 

It= -I 
' 

Jt = --J, 

and so the adjoint of Eq. (2.lld) is 

ot = 0~ - !Or - J01 - KO! 

If 0 is self-adjoint or anti-self-adjoint, then Eqs.(2.llc-f) imply that 

Oo = 0~ 
OA = -0~, 

Oo = -0~ 

OA = 0~, 

A=l,2,3 } 
0 self-adjoint 

A= 1, 2, 3 } 
0 anti-self-adjoint 

(2.lle) 

(2.llf) 

(2.llg) 

'' Razon. Horwitz. and Biedenharn (1988) have given an ar~ument showing that I (and similarly J, K) is 
anti-self-adjoint. provided one assumes that I ~ -i = 11111 • where IIJII is the least upper bound norm 
given by IIIII = sup,III/11/i! I II-
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Hence the relationship between operators, their adjoints, and their formally real 
components in quaternionic quantum mechanics is analogous to that familiar 
for real and imaginary parts in complex quantum mechanics. 

The set of left-acting operators I, J, K and right-acting scalars i,j, k can 
also be used (Teichmiiller, 1935, and Horwitz and Biedcnharn, 1984) to 
define "formally real'" components I fil,l. 2.3) for an arbitrary state I f), as 
follows: 

These obey 

I /0) = ~ (I f) ~ II f) i ~ Jl f) ./ ~ Kl f) k) 

I fi ) = ~ ~ (II f) + I f) i ~ Jl f) k + Kl f) j ) 

I h) = ~ ~ ( Jl f) + I f) j ~ Kl f) i + II f) k) 

I h) = ~ ~ ( Kl f) + I f) k ~ II f) j + Jl f) i) 

EclfA) = I!A)ec 

(2.12a) 

(2.12b) 

for all A, C = 0, 1, 2, 3, and the state I f) can be decomposed into its formally 
real components through the formulas 

If)= 116) + Il/1) + Jl/2) + Klh) =I /6) + lf1)i + 1/2)/ + lh)k (2.12c) 

Clearly, Eqs.(2.11 b-d) are just specializations of Eqs. (2.12a-c) to the case when 
the left-acting algebra I, J, K and the right-acting algebra i,j, k are the same. 
Equations (2.12b) and (2.12c) can again be verified by direct calculation. This is 
most succinctly done (following a method of L. P. Horwitz) by reverting to the 
notation EA, eA, A = 0, 1. 2, 3 for the elements of the left and right algebras, in 
terms of which Eqs. (2.12a) become 

(2.12d) 

for example, 

I /1 ) = ~ [I f) ( ~ i) + II f) ( ~ i) ( ~ i) + J I f) ( ~ i) ( ~ j) + Kl f) ( ~ i) ( ~ k)] ( 2 .12e) 

Multiplying Eq. (2.12d) from the left by Ec gives 

1 3 

Eel/A)= ti,LEcEslf)eAes 
B=O 

(2.13a) 

Now defining E_A = ~EA,e-A = ~eA for A= 0, 1,2, 3, we have by the quater
nion algebra 

(2.13b) 

which defines a unique D = D( C, B) as a function of C and B. Moreover, as 
B ranges from 0 to 3, the unsigned part of D assumes exactly once each of 
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the values 0, 1,2,3. From Eq. (2.13b) we have Es = EcED, the conjugate of 
which is Es = EDEc, which in turn has the isomorphic image in the right 
algebra 

(2.13c) 

Substituting Eqs. (2.13b,c) into Eq. (2.13a), we get 

giving Eq. (2.12b). Multiplying Eq. (2.12d) by EA from the left and summing, 
we get 

3 1 3 3 

L EAI !A)= 4L L EAEslf)eAeB 
A=O A=O B=O 

1 3 1 3 3 

= 4 L(EA)2
1 f) (eA)2 + 4 L LEAEsl f)eAes. 

A=O A=O B=O 
(2.13e) 

AJ"B 

The first term on the right-hand side ofEq. (2.13e) evidently gives If), while the 
terms of the off-diagonal sum in the second term cancel in pairs, since 

EoE3If)eoe3 + E1E2If)e1e2 = 0 

E3Eolf)e3eo + E2E1I f)e2e1 = O (2.13f) 

and similarly for the other index values obtained by cyclically permuting 1, 2, 
and 3. So Eq. (2.13c) reduces to the first half of Eq. (2.12c), and use of Eq. 
(2.12b) then gives the second half of Eq. (2.12c). 

We now can show that the inner product (.fAigs) of any two formally real 
components of the state vectors I f) and I g) is a real number, a result proved as 
follows. From the adjoint of Eq. (2.12b), together with Eq. (2.12b) rewritten 
with I fA) replaced by lgs), we have 

ec UAI = UAIEc, (2. 1 4a) 

Hence 

(2.14b) 

In other words, (.fAigs) commutes with the quaternion units i,j, and k, and 
hence is real. A number of applications of this result will be made later on. 

5 Since we will almost always be working in coordinate representation. in many discussions that follow we 
use the same notation x for both the coordinate operator and its eigenvalue. Thus in writing xlx) = lx)x, it 
is implicit that the x to the left of lx) is the coordinate operator, while the x to the right of lx) is its eigen· 
value. 
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An operator of particular importance in what follows is the coordinate 
operator x, which has a complete set of cigenstates ix') obeying5 

xix') = ix')x' (2.15a) 

(Even when eigenvalues arc real, we will write them to the right of the corre
sponding eigenstate, in accordance with our convention of right multiplication 
by quaternionic scalars.) Introducing the completeness relation 

(2.15b) 

into the general scalar product (fig), we get 

(2.16) 

Hence defining the quaternion-valued wave function g(x) by 

g(x) = (xig) (2.17a) 

we have from Eq. (2.2a) that 

g(x) = (gix) (2.17b) 

and so Eq. (2.16) takes the form 

(2.18) 

analogous to the familiar expression for the inner product in terms of the wave 
functions in complex quantum mechanics. 

With the quaterni on-valued inner product (fig), one can also associate 
(Horwitz and Biedenharn, 1984; see also Giinaydin, 1 976) a complex <C ( 1, i) 
inner product (f ig)c defined by 

(fig)c = tr(fig) ~ itr((fig)i) (2.19) 

and a real inner product (fig) R defined by 

(2.20) 

where tr is the operation of taking the quaternion real part defined in 
Eq. (1.22b). To interpret Eqs. (2.19) and (2.20) in more concrete form, let us 
express the quaternionic inner product (fig) in terms of wave functions, as in 
Eq. (2.18), and then write the wave functions in terms of their real or symplectic 
components, 

f(x) f=h + i.f1 +J.h + kh =f~ +Jfi1 

g(x) g =go+ ig1 +Jg2 + kg3 = g~ + jgfJ (2.21) 
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(fig)= j d 3x[f0go +figl +hg2 +f3g3 

+ i(f'ogl - f1go +hg2- hg3) 

+J(f'og2 -f2go +fig3 -/3gJ) 

+ k(f'og3- f3go + /2g1 -/ig2)] 

= ./ d 3x[f~g:x +f(1g/l + J(f~g/1--filg:x)] 

= ./ d 3xfg (2.22a) 

(fig)c = ./ d 3x[.f6go + /ig1 +hg2 + 13!;3 + i(/!JgJ -/igo + f3g2 -f2g3)] 

= ./ d 3 x(f~gcx +tpg11 ) (2.22b) 

and 

(2.22c) 

Since (fig)c and (fig)R are respectively the complex <C(l,i) and real projec
tions of (fig), any transformation which is an invariancc of (fig) is auto
matically an in variance of (fig) c and (I ig) R as well. 

2.2 OBSERVABLES AND SELF-AD.JICIINT OPERATORS 

In analogy with complex quantum mechanics, observables in quaternionic 
quantum mechanics will be represented by quaternion self-adjoint operators, 
that is, by operators H that arc both quaternion linear and self-adjoint or 
Hermitian, so that 

If ih) is an eigenstate of H with eigenvalue h, 

then we have 

Hih) = ih)h 

h = (hiHih) 
(hih) 

h = (hiHtih) == (hiHih) 
(hih) (hih) 

(2.23) 

(2.24) 

h (2.25) 

and the eigenvalue h is real. Because h is real, it commutes with any quatcrnion, 
and hence Eqs. (2.24) and (2.25) are unchanged in form when ih) is replaced by 
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any other ray representative lhw) of the same state. If lh) and lh') are 71-eigen
states with distinct eigenvalues h cjc h', then 

(hl711h') = (hih')h' 

= (hl71tlh') = h(hih') 

Since lz and h' are real, this gives 

(h- h')(hih') = 0 

or, in other words, 

(hlh') = 0 

(2.26a) 

(2.26b) 

(2.26c) 

Hence eigenstates of 71 with distinct eigenvalues are orthogonal. If 71 has a 
degenerate subspace with n > 1 eigenvalues h, the corresponding eigenfunctions 
can be orthogonalizcd (although not in a unique or canonical manner) by a 
Gram-Schmidt procedure. Using box normalization if necessary, we can assume 
all eigenfunctions I h) to be normalized to unity; thus just as in the complex case, 
the eigenstatcs of a Hermitian operator 71 form a complete orthonormal set of 
states, and 71 has the spectral representation6 

11 = :L lh)h(hl (2.27) 

" 
From Eq. (2.27), we see that the matrix element of 71 between states lh), lh') 

of an arbitrary representation is 

(hl711h') = :L (hih)h(hlb') (2.28a) 

" 
and setting lh') = I h) the expectation value of 71 in an arbitrary state I h) is 

(hl711h) = :L l(blh)l
2
h (2.28b) 

h 

Equation (2.28b) tells us that the expectation value (hl71lb) is an average over 
the eigenvalues h of 71, weighted by the probability of their occurrence in the 
state I b), and is independent of the ray representative chosen for the state I h), as 
expected for an observable. 

Evidently, the matrix (hl711h') is brought to diagonal form by a matrix 
transformation using the transformation function (hlh): 

:L(hlh)(hl711h')(h'lh') = (hl711h') = M""' (2.28c) 
b. b' 

In complete analogy with the complex case, the diagonalizing transformation 

'' References f"or the spectral propertie' of quatermon self-adjoint operators arc Teichmii!ler ( 1935) (who 
proves a spectral theorem for qua termon normal operators. for which -'1/i\'1 = N1 N. which includes both the 
self~adjoint and the anti-self-adjoint cases). pp. 385 386 of Finkelstein. Jauch. and Speiser (1959). Kaneno 
( !960). Finkelstein. Jauch. Schiminovich, and Speiser ( 1962). Appendix 8, and Mehta ( 1977) 
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forms a quaternion unitary matrix, since if we define 

(2.28d) 

then we have 

(uut)w = L uMu;,h' = L uh,,(Jb'" = L(hlh)(b'lh) = L(blh)(hlb') 
/1 /1 11 " 

= (bib') = i5w 

(u1 u)/J/1, = L u;lhuw = L oh,JJw = L (blh)(blh') = L(hlb)(bW) 
h h h b 

= (hlh') = !J/Ih, 

2.3 SYMMETRY TRANSFORMATIONS AND ANTI-SELF
ADJOINT OPERATORS 

(2.28e) 

As noted in Sec. 2.1, physical states in q uaternionic quantum mechanics arc in 
one-to-one correspondence with unit rays of the form I f)= {lf)w}, with If) a 
unit normalized vector and w a ·'quaternionic phase" of magnitude unity. A 
symmetry operation S of the system is a mapping of the unit rays I f) into 
images If'), which preserves all transition probabilities, 

Sl f) = If') 

I ( f'l g') I = I (fIg) I (2.29a) 

In the complex quantum mechanics case, a classic theorem of Wigner ( l931) 
states that the unit ray mapping of Eq. (2.29a) can be replaced, by an appro
priate choice of ray representatives, by a mapping Ul f) = If') acting on the 
vectors I f) of Hilbert space. with U either unitary or antiunitary. This theorem 7 

was generalized by Emch and Pi ron ( 1963), Uhlhorn ( 1963), and Bargmann 
( 1964) to the case of quaternionic quantum mechanics. The generalized theorem 
states that for a quantum mechanics based on the field IF (which according to 
Sec. 1.2 can be IR, <C, or IH), and with a Hilbert space VIF that is at least 

7 
The theorem. which appears in the appendix to Chapter 20 of Wigner ( 1931 ). has antecedents in projec· 

tive geometry: see Artin (1957). 

We recall that an automorphism A of a field If IS a mapping of IF into itself which preserves multi· 
plication and addition. 

An important feature of the theorem ts that the automorphism Au(¢) is independent of the state I f). as 
can be easily proved by acting with U on a state \11) that is the sum of two linearly independent states·, l) 
and I!;) and using additivity: 

U\lnjJ) ~ U\h)A 1.1;,(¢) c ( U\ /) -f U\g))A u 11 (¢) 

~ U(\i<P)+\g<P))=, U\!)Au
1
(q,), U\g)Au,(1J) 
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three-dimensional. the unit ray mapping of Eq. (2.29a) can always be replaced 
by a vector mapping 

u If)= If') 

In Eq. (2.29b), U denotes an additive counitary transformation obeying 

U(lf) + lg)) = Ul f)+ Ulg) 

Ul /¢) = Ul f) Au(¢) 

(Ug. un = (Uig))1(Uif)) = Au((glf)) 

(2.29b) 

(2.29c) 

with Au ( ¢) a U-dependcnt automorphism of the field IF. 7 When IF is the field 
of complex numbers{:, the only automorphisms are either the identity map 

(2.29d) 

or complex conjugation 

(2.29e) 

which correspond respectively to the cases in which the vector mapping U is 
unitary or antiunitary. When IF is the field of quaternions IH, the discussion of 
Sec. 1.4 implies that the automorphism Au must have the form 

lwul =I (2.29f) 

Defining now a new operator U by 

(2.29g) 

for arbitrary I f), we learn from Eq. (2.29c) that 

Ulf¢) = Ul.fC/J)cva = Ulf)Aa(c/J)wa = Ulf)wa¢wawu = Ulf)(vu¢ = Ulf)¢ 

(Ug,Uf) = (Uig))t(Uif)) = wa(Uig))tUif)wa = Wz){j)u(glf)wawu 

= (gl f) (2.29h) 

and so U gives a quaternion linear, unitary vector mapping that is compatible 
with the unit ray mapping of Eq. (2.29a). We conclude that in quaternionic 
quantum mechanics with the dimension of Vll-1 larger than 2, the unit ray 
mapping of Eq. (2.29a) can always be replaced by a mapping Ul f) = I .l') acting 
on the vectors I f) of Vll-1, with U quaternion unitary. The antiunitary-U case is not 
present in quaternionic quantum mechanics. 8 The presence or absence of the 
antiunitary case relates directly to the form taken by time reversal transforma
tions. In complex quantum mechanics. time reversal is described by a complex 
antilinear anti unitary operator. whereas in real quantum mechanics (see Sec. 2.6) 

"In the exceptional case dim V1H = 2. Bargmann shows that one can construct a ray mapping obeying 
Eq. (2.29a) that docs not correspond to any additive vector mapping. and so the generalized Wigner 
theorem is not valid. 
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and in quaternionic quantum mechanics (see Sec. 4.6), we shall see that time 
reversal is described respectively by a real linear or a quaternion linear unitary 
operator. 

As a consequence of the generalized Wigner theorem, the study of symmetry 
transformations in quaternionic quantum mechanics reduces to the study of 
quaternion unitary operators U, which [as is implicit in the calculation of 
Eq. (2.28e) of the preceding section] obey, by definition, 

uru = uut = 1 (2 30) 

Writing U as the exponential of an operator A, 

(2.3la) 

the conditions of Eq. (2.30) take the form 

(2.3lb) 

which implies that 

(2.3lc) 

in other words, the operator A is anti-self-adjoint. In many cases we will deal 
with a one-parameter group of symmetry transformations U(t), with 
U(t 1 + t2 ) = U(t 1) U(t2 ), in which case the quaternionic extension of Stone's 
theorem (Finkelstein, Jauch, Schiminovich, and Speiser, 1962, Appendix C; and 
Emch, 1963) asserts that 

U(t) = e'A (2.32a) 

with A anti-self-adjoint, 

A'=, --A (2.32b) 

Thus, ultimately, the study of symmetry transformations in quaternionic quantum 
mechanics reduces to the study of anti-self-adjoint or anti-Hermitian operators. 

Let ja) be a unit normalized eigenstate of A with eigenvalue a, 

Aja) = ja)a (2.33) 

so that 

a= (ajAja) (2.34a) 

Then we have 

a= (ajA 1 ja) =- (ajAja) =-a (2.34b) 

and the eigenvalue a is quaternion imaginary. As a consequence. the operator 
trace defined in Eq. (1.30a) vanishes: 

TrA = L tr(ajAja) = L tra = 0 (2. 34c) 

" " 
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Next let fa) and Ia') be A-eigenstates with eigenvalues a and a', so that 

(aja')a' = (alAja') =-(alAi ja') = -a(aja') = a(aja') (2.35) 

Taking the absolute value of the left- and right-hand sides of Eq. (2.35), we get 

(ja'l- jaj)j(ala')l = 0 (2 36) 

and so if jaj cl la'j, the inner product (aja') must vanish and the states [a).ja') 
are orthogonal. When jaj = ja'j, there are two possibilities: either (aja') is still 
zero or (aja') i' 0. When (aja') i' 0 [which by Eq. (2.36) requires that [aj = ja'j], 
we can define 

and Eq. (2.35) becomes 

a' = OJ 
I 

(ala') 
oJ = i(aja')l 

aw = r1Jam. 

(2.37a) 

lwl ~ I (2.37b) 

which implies that ja'l = jaj. Quaternions related by the transformation of 
Eq. (2.37b) will be said to be in the same automorphism class. The reason 
why A-eigenvectors with eigenvalues in the same automorphism class need 
not be orthogonal is readily apparent; if ja) is an A-eigenvector with eigen
value a, 

Aja) = ja)a (2.38a) 

then we have for general w with lwl = I, 

Ajaw) = Aja)w = ja)aw = ja)wwaw = jaw)rvaco (2. 38b) 

Hence jaw), which is in the same ray as ja) and corresponds to the same 
physical state, is an A-eigenvector with eigenvalue (JJaw. The conclusion from 
this analysis is that the eigenvectors of an anti-self-adjoint operator divide into 
mutually orthogonal eigenclasses, with each eigenclass corresponding to a ray 
of physically equivalent states. Eigenvectors within each eigenclass are not 
orthogonal and have eigenvalues related by the automorphism transformation 
of Eq. (2.37b). The spectrum of eigenvalue magnitudes jaj can be either 
nondegcncrate or degenerate. In the nondegencratc case, each cigenclass 
corresponds to a distinct value of ja[; when degeneracies are present, two or 
more orthogonal cigenclasscs can correspond to the same jaj value. 

Let us now use the properties of the automorphism transformation a---. waw 
to pick a particularly simple ray representative within each cigenclass. Writing 
a= ja[ea, with ea a unit imaginary quaternion, we have shown in Sec. 1.4 that 
we can always pick an Wu such that rvacawa is a specified unit imaginary 
quaternion, which for definiteness we will take to be i. Hence within each 
eigenclass there is a ray representative jawa) for which 

Ajawa) = jaoJa)laJi (2.39) 

In writing the spectral representation for A we take only one ray representative 
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from each eigenelass; choosing this to be the vector lac1Ja) we then get 

A= L lawa)lali(awal (2.40) 
a 

Henceforth we will simplify the notation by relabeling lawa) as Ia), so that the 
spectral representation takes the form 

A= I: la)lali(al (2.4la) 
a 

with Ia) hy convention the ray representative for which Ala)= la)lali. The 
matrix element of A between states I h), lh') of an arbitrary representation is then 

(hiAih') = ~=(hla)lali(alh') (2.4lb) 
a 

and just as in the self-adjoint case of Eq. (2.28), the matrix (hiAih') is brought to 
diagonal form by a quaternion unitary matrix transformation based on the 
transformation function (bla). 

We now see that there is an important difference between the structure of an 
anti-Hermitian operator in complex and in quaternionic quantum mechanics. In 
complex quantum mechanics, we can always trivially relate an anti-Hermitian 
operator Ac to an Hermitian operator Uc by removing a c-number9 factor i, 

Ac = iUc (2.42a) 

The analog of Eq. (2.42a) in quatcrnionic quantum mechanics is 

A= !AlAI 

IA = ~= la)i(al 
a 

IAI = ~= la)lal(al (2.42b) 
(/ 

The "modulus" IAI is Hermitian and positive definite (whereas Uc in general 
can have negative eigenvalues), and the '·'phase" JA is an operator rather than a 
e-n umber. In analogy with Eq. (2.lla) of Sec. 2.1, we can also introduce addi
tional left-acting operators JA, KA, 

JA = L la)j(al 
a 

KA = )__: la)k(al (2.42c) 
a 

that together with JA obey an algebra isomorphic to the quaternion algebra, 

a 

IAJA = L la)ij(al = KA, etc., (2.42d) 
a 

9 We recall that in complex quantum mechanics, a e-n umber is any complex constant multiple of the unit 
operator. 
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and that all commute with IAI, 

(2.42e) 

Since Eqs.(2.42b,c) imply that 

(2.43a) 

comparison with Eq. (2.12b) shows that Ia) is formally real with respect to the 
left algebra JA,.! A' KA and the right algebra i,j, k. However, in general Ia) is not 
reaL that is, i and Ia) do not commute, and so we have 

(2.43b) 

" 
with 1 the unit operator in quaternionic Hilbert space. Note that in complex 
quantum mechanics, i and Ia) do commute, and so JA = 1 i for any operator A. 
Hence the distinction between left-acting imaginary unit operators and right
acting imaginary unit scalars is not needed and is customarily not made; one 
simply writes i for IA· 

The operator algebra JA,JA, KA can be used to obtain some interesting 
properties of inner products and operator matrix elements in the Ia) repre
sentation. Let Ia) and Ia') be any two lA eigcnstates appearing in the sum over 
states in Eq. (2.42b). Since Ia) and Ia') both satisfy Eq. (2.43a), and so are 
formally real, the result of Eq. (2.14b) then implies that (ala') is reaL [Emch, 
1963, uses !Ala, a')= Ia, a')i, without the corresponding equations obeyed by 
.!A and KA, to show that (ala') is <C(l. i).] This result is actually somewhat 
trivial, since the sum over Ia) in Eq. (2.42b) contains only one representative 
from each eigenclass; hence either Ia) = Ia') I in which case (ala') = I, or Ia) is 
orthogonal to Ia'), in which case )ala')= 0. 0 Let us next suppose that 0 is an 
operator that commutes with JA, 1 

(2.44a) 

Taking the (al ... Ia') matrix element of Eq. (2.44a), we get (Emch, 1963) 

i(aiOia') = (aiiAOia') = (aiOIAia') = (aiOia')i (2.44b) 

and so the matrix element (aiOia') commutes with i and lies in the complex 
<C( I. i) subspace. The line of reasoning of Emch used in Eqs.(2.44a,b) will play 
an important role later in the analysis of symmetry properties and of the struc
ture of the S-matrix (sec especially Sees. 3.5, 3.6, 8.3, 9.5, and 12.3). 

10 We note at this point. following Cassinelli and Truini (1985), that if !A fa)= [a)i and !A fa')= [a')i, with 
fa) and Ia') linearly independent. then fa)+ Ia') j cannot be an !A eigenstate. For suppose that we had 
IA([a)-"- fa') j) ~ ([a)+ fa')j)f, for some unit imaginary quaternion i. Writing i =(/Jim. we have 
fa)ic!J ., [a')1jw- [a)wi + [a')j,iJi, which, since a) and fa') arc linearly independent, implies iw = iiJi and 
i(j,!J) -- (jw )i. The llrst of these equations implies that iiJ is C (I. i), while the second implies that jw is 
C (I. i). which is a contradiction. This construction gives a counterexample to Theorem 12 of Jauch 
(1968b), which incorrectly asserts that every vector[/) of V111 is an eigenstate of !A. Jauch's attempted 
proof fails, as can readily be verified. because of a number of algebraic errors. 
11 Note that since A= IA

1

A[. the vanishing of [A. 01 implies the vanishing of !A. OJ only if [A[ is bounded 
away trom £ero, that is, if all eigenvalues a arc nonzero. 



GE'IERAL FRAMEWORK OF QUATERNIO:\'IC QUANTU:vJ :vJECHAi\'ICS 35 

From Eqs.(2.41 b) and (2.42b), we see that the expectation values of A. I A, and 
IAI in an arbitrary state I b) of a general representation arc 

(hiAih) = L (hla) lali(alh) 
a 

(hiiAih) = ~=(hla)i(alh) 
a 

(hiiAllh) = L l(hla)l 2 lal 
a 

Now for (alb) cjc 0 we can write 

(hla)i(alh) = l(alb)I 26Jahiwab 

Wa!J = (alb)/l(alb)l 

(2.45a) 

(2.45b) 

and so the argument of Eqs.(l.32) (1.33) implies that (hla)i(alh) is quaternion 
imaginary, and the expectations (hiAih) and (biiAib) are quaternion imaginary 
as well. Under a change of ray representative lh) ----. lh)wb, we thus have 

(biAib)---> r:Uh(hiAib)wh 

( b II A lh) ---> (J)h ( h II A I b) Wh (2.4Sc) 

because both (hiAih) and (hiiAih) depend on the ray representative chosen for 
lh), neither the anti-self-adjoint operator A nor its phase operator IA is an 
observable. The Hermitian magnitude operator IAI gives us, of course. an 
observable operator associated with A. For example, if A is the Hamiltonian 
operator iJ introduced in Sec. 2.4, then the associated observable operator IHJ 
has as its eigenvalues the energy eigenvalues E ::;> 0 of the system, but neither H 
nor the Hamiltonian phase operator I iJ are observables. 

As a final application of the IA, J.A, KA algebra, we note that Eq. (2.42d) 
implies that, for arbitrary rotation angle 8, the operator 

is a unitary inversion operator for A. which obeys 

U~((J) = UA_ 1(0) = -UA(fJ) 

UA_ 1 (O)AUA(O) = -A 

(2.46a) 

(2.46b) 

We will refer again to this property of UA(O) in the discussion of time reversal 
invariance in Sec. 4.6. 

Substituting the spectral representation of Eq. (2.41 a) back into El (2.31 a), we 
get a spectral decomposition for our original unitary operator U = e in the form 

U = L la)eiful (a I (2.47) 
a 

Writing 

ial = Ou + 2nn, (2.48a) 
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with n an integer, and defining 

Eq. (2.47) becomes 

lu) = Ia), 

lu) = laj), 

0 -::: 8u -::: n 

-n < 011 < 0 

U = L lu)e1fl!,[ (ul 
II 

(2.48b) 

(2.49) 

which is the standard form 12 for the spectral representation of a quaternion 
unitary operator. 

2.4 TIME DEVELOPMENT 

We are now ready to discuss the dynamics of quaternionic quantum mechanics. 
We postulate that time development is a symmetry that preserves transition 
probabilities; in other words, if I f(t)) and lg(t)) are two arbitrary state vectors 
at time t, and I f(t + (5t)) and lg(t + bt)) are the corresponding state vectors at 
time t + bt, then we have 

l(f(t)lg(t))l = l(f(t+i5t)lg(t+i5t))l (2.50) 

By the quaternionic extension of Wigner's theorem, with appropriate quater
nionic phase choices for the states, there must exist a quaternion unitary 
operator U[t, bt] for which 

lf(t+bt)) = U[t,bt]lf(t)) (2.51) 

for all states I f). Expanding U[t, bt] and lf(t + bt)) to first o~der in the infini
tesimal bt and defining the expansion coefficient of U to be -H(t), we get 

U[t. (5t] = I - btH(t) 

I f(t + bt)) = 1 f(t)) + bt (~/! (t)) (2.52) 

with the unitarity of U implying that H(t) is anti-self-adjoint. Substituting 
Eq. (2.52) into Eq. (2.51) then gives the Schrodinger equation for quaternionic 
quantum mechanics, 

a -
a/f(t)) = -H(t)lf(t)) (2.53) 

In analogy with the terminology used in standard complex quantum mech
anics, we will refer to the operator H(t) as the Hamiltonian, even though H(t) 
is in fact anti-self-adjoint. 

12 Reference< for the spectral properties of quaternion anti-self-adjoint and or quaternion unitary opera
toh arc Teichmiiller (1935); f'inkelstein . .Jauch, and Speiser (1959); f'inkelstein. Jauch, Schiminovich. and 
Speiser I I %2). Appendix B; and Sharma and Coubon ( 1987). 
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As already noted, Eq. (2.53) requires a special choice of ray representative 
lf(t)). For a general ray representative lf(t)w1 (t)), with wr(t) an arbitrary 
quaternion of norm one, the corresponding dynamical equation is 

a -
0

/f(t)wr (t)) = -H(t)j f(r)wr (t)) + if(t)wr(t))ht (t) (2.54) 

with 

(2.55a) 

Differentiating w1w1 = I with respect to time, we get 

(2.55b) 

and so ht (t) is an imaginary quaternion. 13 Equations (2.53) and (2.54) can be 
formally integrated into finite-time transformations in the usual fashion: 

if(t)) = U(t. t')i/(t')) 

lf(t)wr (t)) = U(t.t')i f(t')w1 (t'))u(t, t') (2.56) 

U( ') T - ]'
1
, du!I(u) t,t = I(' I 

!
•I 

du/1 u) - 1 u(t, t1
) = T, e· 1' 

1 ( = Wf (t )wr(t) (2.57) 

where Tf and T, are time-ordering operators that respectively order later times 
to the left and to the right. The equivalence of Eqs. (2.56)-(2.57) with 
Eqs.(2.53) (2.54) is most easily verified by differentiation with respect to t, 
together with the equal time boundary condition U(t, t) = u(t, t) = I. Unlike the 
case of complex quantum mechanics, we cannot commute hr(t) [or u(t, 11

)] 

through the state vector and incorporate it into a redefined H(t) [or U(t. t')]. 
Hence in assuming Eq. (2.53) for the dynamics (a~ we generally will do in our 
subsequent discussion) one must keep in mind that we are making a special 
choice of ray representative for the description of the physical states. This point 
will be further discussed in Sec. 4.2. 

From this point on we will not explicitly indicate the time dependence of the 
Hamiltonian operator, and so will write simply fi for l!(t). It will very 
frequently be convenient to express the dynamics of quaternionic quantum 
mechanics in terms of the coordinate space wave function 

"C:onver>el). for any quatcrnion·rmagrnary /1 1 lr;. the unit quaternion 1u1 (r) defmed by 

() l.f'c~,;,,,, h ... I I'll. d I . h 'h 
C'Jf r ==- , C'· 1' • w ere 1 1 (a~ Jn t1e o O\\-ll1g text) or cr"' atcr t11nc~ to t c ng t, obey.;; 

(iJ1 (r)iJw1 (r)ji)r -- 111 (r). 1•;1 (0) - I. 
14 The second equalit) in Eq. (2.57) follows from iJiw1 (r')w1 U)]fiJr = ]1•J1 (r')ru1 (rl]/11 (r). which i·; a 
consequence of Eq. (2.55a). together with the r' r boundary condition oJ1 (r')r•Jr (r) , .. , = I•J1r·J1 =- 1. For 
a g~ncrali;ed ve"ion of the >econd equality in Eq. (2.~7) (involving. however. left instead of right time 
ordering). >ee Lqs.(5.85a) (5.88c) of See, 5.8 
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f(x, t) = (xi f(t)) (2.58a) 

instead of the abstract state vector If ( t)). Projecting Eq. (2.53) on (xi from the 
left, and defining the coordinate representation Hamiltonian operator H(x) by 15 

(xjH = H(x)(xl (2.58b) 

the Schrodinger equation becomes 

a -
Dt f(x, t) = -H(x)f(x, t) (2.58c) 

It is now useful to resolvef(x, t) and H(x) into real components. To do this, let 
us choose for the left-acting operators I, J, K of Eq. (2.11 a) the coordinate 
representation expressions 

(2.59a) 

so that 

(2.59b) 

which implies that jx) and (xl are formally real with respect to the left algebra 
I. J. K and the right algebra i,j, k. Making use of the decomposition of the 
generic operator 0 given in Eq. (2.lld), the Hamiltonian if has the representa
tion 

(2.60a) 

with H A. A = 0, I, 2, 3, commuting with I, J, K. Let us now define the coordinate 
representation operator HA(x) by 

(2.60b) 

Then combining Eqs.(2.59b) and (2.60b) with the fact that the HA commute 
with I. J, K, we get 

(2.60c) 

Thus the H A (x) commute with i.j, k and so are the real coordinate representa-

1' The notation if(Y) m Eqs.(2.58b.c) is somewhat schematic. in that this is not necessarily a local operator 
111 '· For cxarnple. we wrll see in Sees. 4.1 4.2 that the Galilean-invariant kinetic term in ii(x) reduces to a 
derivative operator proportional to --i\};. In principle at this stage. ii( Y) could even include finite-range 
nonlocalitrcs for whrch ii(x)j(x.r) rs a shorthand for Jd 1x'ii(x.x1)j(x'.r). but such structures will be 
excluded !Hter by Galilean rnvariance comiderations. 
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tion components of the Hamiltonian operator H(x), 

H(x) = Ho(x) + iH1 (x) +JH2(x) + kH3(x) (2.60d) 

Similarly, let I fA ( t)) be the formally real components of I/( t)) with respect to 
the left algebra I, J, K and the right algebra i,j, k, 

lf(t)) = 1/o(t)) +ll.fi(t)) +Jih(t)) +Kih(t)) 

= l.fo(tJ) + lfi(rJ)i+ l.h(tJ)J+ lh(t))k (2.6la) 

Then, since lx) is also formally real, Eq. (2.14b) implies that (xlfA(t)) is real, 
and so we have the expansion 

f(x, t) = (xlf(t)) = (xl.fo(t)) + i(xl.fi (t)) +j(xlh(t)) + k(xlh(t)) 

= .fo(x, t) + i.fi (x, t) +J(2(x. t) + k.f3(x, t) 

where we have introduced the notation 

.fA(x, t) = (xl.fA(t)) 

for the real components of the coordinate representation wave function. 

(2.61 b) 

(2.61 c) 

In the general case in which the wave function f(x, t) has n _internal and/or 
spin components, the coordinate representation Hamiltonian H(x) is an n x n 
matrix. Using the superscript T for the moment to denote internal index trans
position, the anti-self-adjointness condition fit= -H implies that this matrix 
obeys [with b\x) the Dirac delta function! 

(xliftly) = (yiHTix) = H(y)Tb 3(y- x) = H(y)Tb 3(x- y) 

= -(xiHiy) = -H(x)b3(x -- y) 

or in other words, 

Ho(y)Tb 3(x- y) = -Ho(x)b3(x- y) 

HA(Y)Tb 3(x- y) = HA(x)b\x- y), A= I, 2, 3 

(2.62a) 

(2.62b) 

Let us now extend the significance of the transpose T to include action on the 
coordinate operator structure, by defining 

together with the usual rule ( 00') T = 0' TOT for real 0, 0', so that 

__,. .:;;:3( ) ~ d( ) -Ts:.~~( ) 'ilJ·u x- y = -vxo x- y = 'ilxu x- y 

\ll.yi53(x- y) = Vy xi53(x- y) = x\ly (> 3 (x- y) = -x\lx 63(x- y) 

= XT \1~6 3 (x- y) = (Vx x)T63(x- y) 

(2.62c) 

(2.62d) 

and so forth. Then with the transpose T interpreted m the extended sense, 
Eq. (2.62b) can be compactly rewritten as 



40 INTRODLTTION A:\D GEI\ERAL FORMALISM 

7 . 
llo(x) = -Ho(.'(). A= I. 2, 3 (2.62e) 

When the wave function f has only a single component (n =, 1), Eq. (2.62e) tells 
us that any part V0 (x) of II0 (x) that is a purely local function of the coordinates 
(i.e .. that depends only on x and not on \7,), obeys V0 (x) = V0 (x) 7 =- Vo(x), 
and thus must vanish. 

From Eqs. (2.60d) and (2.62c), we remark that the anti-self-adjoint quater
nionic Hamiltonian cannot be converted to a self-adjoint Hamiltonian by 
multiplication by a quaternion imaginary unit that is fixed in coordinate repre
sentation. For example, if we try multiplication by i we get 

(2.63) 

which is self-adjoint only when H2 = JJ3 = 0 (corresponding to the complex 
quantum mechanics specialization of the general quatcrnionic Hamiltonian). 
Thus in the Schrodinger equation for the quatcrnionic wave function, unlike its 
complex quantum mechanics analog, the Hamiltonian in the generic case must 
be represented by an anti-self-adjoint operator. 

2.5 RELATIONSHIPS BETWEEN QUATERNIONIC, COMPLEX, 
AND REAL QUANTUM MECHANICS 

Let us next study some relationships between quaternionic, complex, and real 
quantum mechanics. It will be convenient to work throughout in coordinate 
representation, for which the basic quaternionic Schrodinger equation is given 
in Eq. (2.58c). Our point of departure is the observation that it is also natural 
to rewrite Eq. (2.58c) in terms of the symplectic components of if and f: 

gt f(x, t) = - [ H~(x) +-JHrl(x) 1 f(x. t) 

f(x, t) = f~(x, t) +- iff!(x, t) 

R~.(x) = Ho(x) +- iH1 (x). llr1(x) = II2(x)- iH3(x) 

f~(x, t) =f'a(x, t) +- z'/1 (x. t), f(1(x, t) =f2(x, t) -- if3(x, t) 

If we define a two-component complex <C( I, i) wave function 

\[!=\If (x. t) = (f~(x, t)) 
1 · ([!(x,t) 

(2.64) 

(2.65a) 

then Eq. (2.64) can be rewritten as a pair of coupled complex <C( I, i) equations 

(2.65b) 
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In terms of H~ and Hf!, the anti-self-adjointness conditions of Eq. (2.62e) take 
the form 

T 
Hr!(x) = Hp(x) 

and so i{ obeys the complex <C( I, i) anti-self-adjointness condition 

(2.65c) 

(2.65d) 

with the transpose in Eq. (2.65d) including interchange of the rows and 
columns of the 2 x 2 matrix H. In this form of the quaternionic Schrodinger 
equation, there is no explicit reference to the quaternion units j and k, and as 
a consequence the Schrodinger equat1ion for the two-component complex 
wave function can be rewritten in terms of a self-adjoint 2 x 2 matrix 
Hamiltonian H, 

H(x) = -iH(x) = H(x)*r (2.65e) 

Since the quaternionic Schrodinger equation can be written equivalently as a 
two-component complex Schrodinger equation, we must ask whether quater
nionic quantum mechanics is simply another way of rewriting complex quantum 
mechanics. To put this question in sharper perspective, we remark (as noted at 
the end of Sec. 2.1) that any in variance of the quaternionic scalar product ( f jg) 
is automatically also an in variance of the complex scalar product ( f jg) c- In 
particular, this statement applies to the quaternion unitary dynamics described 
by the quaternionic Schrodinger equation of Eq. (2.58c), which is an in variance 
of the quaternionic inner product 

(f jg) = j d 3 x](x, t)g(x, t) (2.66a) 

Through the symplectic decomposition of Eq. (2.64), this dynamics evidently 
generates a complex unitary dynamics, described by the two-component 
complex Schrodinger equation of Eq. (2.65b), which is an invariance of the 
complex <C(l, i) inner product [see Eq. (2.22b)] 

(fjg)c = j d 3 x[f~(x, t)g~(x, t) +f(/x, t)gf!(x, t)J = j d 3xw} (x, t)il1g(x, t) 

(2.66b) 

Thus to every quaternionic quantum mechanical system with inner product 
(f jg), there is a corresponding complex quantum mechanical system with 
inner product ( / jg) c· The question then is whether these two corresponding 
quantum mechanical systems are equivalent or have different physical 
content. 

In fact, the two systems arc inequivalent, as can be seen in a number of ways. 
First, from Eq. (2.22) we have 

(Ijg) = (Ijg)c+J(fjg)s (2 .66c) 
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with ( f :r;) 5 a symplectic inner product defined by 

(2.66d) 

Hence 

(2.67) 

and thus probabilities in the quatcrnionic quantum mechanical system are 
unequal to those in the corresponding complex quantum mechanical system. 
Second, let us consider the form taken by completeness in the two systems. Let 
{!hr)} be a complete orthonormal set in the quaternionic inner product, so that 

(hrlhm) = 6im 

(fig)= LUihf)(hflg) (2.68) 

Substituting Eq. (2.66c) into Eq. (2.68) and projecting out the complex ([ (I, i) 
part, we get 

(2.69) 

Thus { lh1)} is not a complete, orthonormal set in the complex inner product, but 
it can be used to construct such a set as follows. From the definition of 
symplectic components [see Eq. (1,23)] we get 

Hence 

(hpjlg)c = J d3x[(hpj):g" + (hpj)j1gti] = J d 3
x(-hp#gx + heagf!) 

= (hrlg)s 

and similarly 

(flhfl)c = j d 3 x[f~(h£f)" + J{J(h£J)r1] = j d
3
x( -f~ 11;# +.{# h£") 

(2.70) 

(2.7la) 

= -(flhe)'S, (2.7lb) 

which when substituted into Eq. (2.69) give (Horwitz and Biedenharn, 1984), 

U lg)c = L [ (f I he) c (h£lg)c + (f lh£!) c(h£) lg) cl (2.72) 
f 

Although the states ih1) and lhfl) are simply different ray representatives of the 
same state with respect to the quaternionic inner product, they are orthogonal 
states with respect to the complex inner product, where we have 

(hrlhrJ)c = J d 3x[h£a(hpj)a + h;11 (hpj) 11 ] = ./ d 3x( -h"fcxh;(i + hf.tJh£a) = 0 

(2.73) 
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Together, Eqs. (2.72) and (2.73) imply that {jh1), lht})} is a complete ortho
normal set of states in the complex inner product. Evidently this set has Mice 
the dimensionality of the corresponding complete set in the quatcrnionic inner 
product. 

Further light is shed on this two-for-one correspondence of complete sets of 
states by considering the special case in which {I he)} are if eigenstatcs, with 
[see the spectral representation of Eq. (2.4la). and the detailed discussion of 
Sec. 4.2] 

(2.74a) 

Then we have 

HjhtJ) = jhtJ)(-Ec)i (2. 74b) 

and so to each energy 16 eigenstate with Er 2: 0 in the quaternionic system, 
there correspond two energy eigenstates with energies ±Er in the related 
complex quantum mechanical system. Explicitly, projecting Eqs.(2.74a,b) into 
coordinate representation and using the two-component notation of Eq. (2.65), 
we have 

(2.74c) 

showing that the two orthogonal complex quantum mechanics energy eigen
states corresponding to the quaternionic state Jhe) have energy eigenvalues of 
opposite sign. As noted by Levay (1990, 1991), if we define the complex antili
ncar operator E.2, 

(0 -I) E.2 = I 0 K, E.~= -I (2.74d) 

with K * denoting complex conjugation, then the two energy eigenstates 
appearing in Eq. (2.74d) are related by the action of E.2, 

E.2 (hea) == ( -h*w) K hr{J hea (2.74e) 

The anti-self-adjoint 2 x 2 matrix Hamiltonian ii of Eq. (2.65b) commutes with 
[.2' 

(2.74f) 

16 Following the terminology used in the complex case. we define the energy eigenvalues and eigenstates as 
those arising from diagonalization of the time translation generator H(r). Strictly speaking, the term energy 
eigenvalues should be used for the Ep only when ii is time independent. However, the analysis of this 
section applies as well to the case when if= H(r) carries a nontrivial time dependence, with the E1 then the 
"instantaneous energy" eigenvalues £1(1). 
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while the self-adjoint 2 x 2 matrix Hamiltonian H of Eq. (2.65e) anticommutes 
with £2, 

(2. 74g) 

corresponding to the fact that the states related in Eq. (2.74e) by the action of E2 
have H eigenvalues of opposite sign. 

A very similar analysis applies in the case of standard complex quantum 
mechanics, and its relationship to a corresponding real quantum mechanics. In 
complex quantum mechanics, the analogs of Eqs. (2.58c), (2.60d), and (2.62e) 
are 

gt f(x, t) = ~H(x)f(x, t) 
f(x. t) = fo(x, t) + if1 (x, t) 

H(x) = H0 (x) + iH1 (x) 

Ho(x)T = ~Ha(x), 

and the inner product is 

(f )g) = j d 3 xf* (x, t) g (x, t) 

(2.75) 

(2. 76) 

The complex dynamics of Eq. (2.75) can also be written as a two-component 
real Schrodinger equation: 

1}1 = (16) 
fi ' 

- ( Ho H(x) = Hl (2.77) 

and the dynamics of Eqs.(2.75) and (2.77) is an invariance of both the real and 
the imaginary parts of the complex inner product defined by writing 

(f)g) = (f)g)R + i(f)g)I 

(f)g) R j d 3x[f0(x, t) go(x, t) +fi (x, t) g1 (x, t)] 

(f )g) 1 j d 3 x[fo(x. t) gl (x. t) ~fi (x, t) go(x, t)] (2.78) 

Hence associated with the complex quantum mechanics of Eqs.(2.75) and (2.76) 
is a real quantum mechanics with the dynamics of Eq. (2.77) and the inner 
product (f Jg) R' Again, the two systems have different physical content. The 
probability in the complex quantum mechanics is 

(2. 79) 

which differs from the probability )(f)g)R) 2 in the associated real quantum 
mechanics. Also, if { )h1)} is a complete set of intermediate states for the 
complex inner product (f)gj, 



GEI\'ERAL FRAMEWORK OF QUATIERNIONIC QUANTUM MECHANICS 45 

(f jg) = ~= (f I he) (hp jg) (2.80) 
£ 

then a calculation analogous to that of Eqs. (2.68)-(2.73) shows that {lhc), lhri)} 
is a complete orthonormal set in the real inner product (Horwitz and Bieden
harn, 1984), 

U Jg) R = L [ (f lht) R (h1 Jg) R + U lhci) R (hpijg) Rl (2.81) 
f 

Since Jhr) and jhpi) are simply different ray representatives of the same state in 
the complex inner product (fjg), but are orthogonal with respect to the real 
inner product ( f jg) R' there is again a two-for-one correspondence between 
complete sets of states in the two quantum mechanical systems. The only place 
where the analysis of the complex versus real systems differs from our previous 
discussion of the quaternionic versus complex systems is in the consideration of 
energy eigenstatcs: the discussion of Eq. (2.74) has no direct analog because, as 
we shall see in a moment, there are no energy eigenstates in real quantum 
mechanics. 

2.6 ENERGY EIGENSTATES IN QUATERNIONIC, COMPLEX, 
AND REAL QUANTUM MECHAriiiCS, AND THE COMPLEX 
EMBEDDING OF REAL QUANTUM MECHANICS 

To conclude our comparative discussion, let us set out in parallel form the 
energy eigenstate analysis in quaternionic, complex, and real quantum mechan
ics. We now assume that if is time independent. 

(i) In quaternionic quantum mechanics, the Schrodinger equation takes the 
form 

(2.82) 

with if quaternion anti-self-adjoint. As we saw in Eq. (2.74a), we can find a 
complete set of if eigenstates jhr) obeying 

(2.83a) 

for which the time development is 

I hr(t)) ==I hr(O))e-IE,r (2.83b) 

and in terms of which the general time-dependent state If/ can be repre
sented as a superposition 

If)= L=lhr(t))Cr (2.83c) 
i 

with time-independent quatcrnionic coefficients C1. The fact that energies 
are always nonnegative in quatcrnionic quantum mechanics at first may 
seem mysterious; why cannot we simply change the ray representative for 
the state I f) to shift the origin with respect to which energies are measured, 
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as we can do in the complex case? The answer is that a shift in the origin of 
the energy scale corresponds to a shift in fl by a multiple of 1 H' since 

(2.84a) 

but there is no reraying of I f), which, when applied to Eq. (2.82), can be 
absorbed solely in such a shift in fl. If we attempt the analog of what is 
done in the complex case, by making the change of ray representative 
I f)= I f')e- 1c ', Eq. (2.82) is modified as in Eq. (2.54) to 

{) -
0
/f') = -Hif') + lf')iC (2.84b) 

However, the right-hand side of Eq. (2.84b) cannot be rearranged to 
-(fl- Cliillf'), because If') is not in general an eigenstate of Iii' Hence 
by reraying the wave function we cannot shift the origin for the energy 
eigenvalue problem. and the energy zero point has an intrinsic significance 
in quaternionic quantum mcchanicsY 

(ii) In complex quantum mechanics, the Schrodinger equation takes the form 

r~Jn = -iii f) (2.85a) 

with fl complex anti-self-adjoint. Writing fl = ill, with H complex self
adjoint, we get the standard form of the Schrodinger equation 

(2.85b) 

For any Hermitian H, we can always find a complete set of energy cigen
states lhf) obeying 

(2.86a) 

with Ef real but not necessarily non-negative, for which the time develop
ment is 

I hf(t)) = I h!(O))e il:rr (2.86b) 

Changing th~ ray representative for the state I f) by writinr; 
If) = I f')e -IC' changes the Schrodinger equation to 

i:/f') = (H- C)lf') (2.87) 

in which the origin with respect to which energies are measured is shifted by 
the constant C. 

17 Thus, in quatcrnionic quantum mechanics, unless there is an energy gap bounding the spectrum :Hvay 

Ji·mn zero. the zero energy state is the ground state. The assumption that there is only one ground state 
(which implies Nernst's theorem or the ·'third law or thermodynamics." the vanishing of the entropy at 
zero temperature) is then the a"umption that the zero energy state is nondegenerate. 
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(iii) In real quantum mechanics the Schrodinger equation takes the form 

811) 
Dr 

-fr I f) (2.88a) 

with if real anti-self-adjoint. However, a real anti-self-adjoint operator is 
necessarily real skew-symmetric [e.g., see Eq. (2. 77)], and the canonical 
form for a real skew-symmetric matrix (Gantmacher, 1989) is 18 

- (0 H= 
I 

-1) 0 gD (2.88b) 

with ,;& denoting the matrix direct product and with D real diagonal. But 
smce the eigenvalue problem for 

(2.88c) 

cannot be solved over the reals (the eigenvalues of i2 are ±i). there are no 
energy eigenstates in real quantum mechanics. As discussed from a some
what different point of view 19 by Stueckelberg (1960, 1961, 1962) and by 
Mackey (1968), the only way to give real quantum mechanics a satisfactory 
physical interpretation is to effectively embed it in a complex quantum 
mechanics structure. 

1
' In the finite-dimensional case. Eq. (2.8Rb) assumes that If acb on an eYen-dimensional Hilbert space. In 

the case in which if acts on an odd-dimensional Hilbert space. there "ill be a one-dimensional subspace on 
which II vanishes identically. with if acting as in Eq. (2.88b) on the remaining even-dimensional subspace. 
In the wbsequent d"cussion we only comidcr the even-dimensional case. or its rnfinitc-dimenswnal 
extension. 
1
'' Stueckelberg concludes that real quantum mechanics must contain an operator I.!' = -I. that 

commutes with all observables. by requiring that all obsen abies should sausfy an uncertainty princrple of 
the usual form. If A and Bare two Hermitian operators. then [A. S: is anti-Hermitian: to obtarn a Henni
tian operator from the commutator. Stucckelberg introduces an operator I commuting mth A and B. 
which allows one to introduce a third Hermitian operator C (also commuting with [) bv writing 
'A. B ~!C. The uncertainty principle then gives an mequality relating the product of the drspcrsions of A 

~nd B to the expectation of C. (6.A)'(6.B)'?: ~ (C)2 Lse of the operator I is also required in the uncer
tainty pnnciple 111 quaternionic quantum mechanics derived in Sec. 3.4. 

Mackey analyzes the free-particle problem 111 a real Hilbert space and concludes that there is alwavs an 
operator I. 1" =-I (corresponding to ;. X I of the text). such that the Hilbert space can be complexified 
by defming I ()i =II f) for all states I f). An operator() will then be complex linear ifCJ( I )i) -- 1CJ' f 1 )i. 

that is. if 0(11 ()) = /(01 ()):in other words. 0 and /must commute. Mackey fmds that the usual 
operators such as position. momentum. angular momentum. etc .. do commute wuh I. and so free particle 
dynamics in a real Hilbert space is equivalent to that in a complex Hilbert space. with the usual obsenablcs 
represented by self-adjoint. complex linear operators, .\1orc generally. Mackey finds that all real self
adjoint operators 0 have the form 0- 0" + WO;,. where 0 0 J. commute with I. and where ~Vi,, self
adjoint and does not commute with/. Hence in addition to obsenables that commute with I. there is only 
one funct\Onally independent observable Win real quantum mcchamcs that does not correspond to an 
observable in the correspondrng complexified quantum mechanics. Mackey actually states further that 
0" h arc both self-adjoint and commute with W. This. howc\'er. is specral to the case analy?ed b)' him. as is 
made clear by the example of Eqs.(2.89a.b) of the text. in which only the 0 11 and 0· tern1s have Mackey's 
form. (I wrsh to thank G. W. Mackey for a discussion on this point.) The example developed in the text 
also shows that vV can be chosen to antr-con1mute wtth Mackey's I and. more specificall). to plav the role 
of the complex anti-It near complex conjugation opcratm in the complexified theory. and thus is related to 
the rmplcmentation of time reversal transformal!ons. For closely related drscussions. see D)'son (1962). and 
Finkelstein. Jauch. Schiminovrch. and Speiser ( 1962). Sec. I. 
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As a concrete illustration of this embedding, let us consider a 2n-dimen
sional real Hilbert space and represent it as the direct product of the two
dimensional Hilbert space acted on by the matrix i2 ofEqs. (2.88b,c) with the 
n-dimensional Hilbert space acted on by the matrix D of Eq. (2.88b). As a 
complete real matrix basis in the two-dimensional space we can take the four 
matrices 

12 = ( ~ ~), 

w (~ ~~), 

i2 = ( 01 -01) 

Wi2 = ( 0 -I) 
-1 0 

A general real linear operator 0 then takes the form 

(2.89a) 

(2.89b) 

with 0 0 .... 3 operators acting within the n-dimensional space, which 
therefore commute with the operators of Eq. (2.89a). [Despite the 
superficial resemblance of Eq. (2.89b) to a quaternionic symplectic 
decomposition, it differs fundamentally, since the operator W is self
adjoint and obeys W 2 =I, whereas the quaternionic analog J is anti-self
adjoint and obeys J 2 = -I.] The operator 0 will be self-adjoint when 
0 0.2_3 are real self-adjoint (symmetric) and 0 1 is real anti-self-adjoint 
(skew-symmetric); similarly, the operator 0 will be anti-self-adjoint when 
0 0.2.3 arc real anti-self-adjoint (skew-symmetric) and 01 is real self
adjoint (symmetric). 

Let us now require that all physical operators should commute with i2 , so 
that 0 is restricted to the form 

(2.89c) 

with Oo symmetric and 0 1 skew-symmetric for self-adjoint 0, and with Oo 
skew-symmetric and 0 1 symmetric for anti-sclt~adjoint 0. In particular, the 
real anti-self-adjoint time evolution operator H has the form 

(2.89d) 

permitting us to embed the real quantum dynamics in a complex quantum 
dynamics by reversing the analysis of Eqs. (2.75)-(2.78) of Sec. 2.5. Letting 
1}1 f denote the 2n-component column vector that obeys the Schrodinger 
equation 

Ql\{1 f - . 
_· = -Hwr ar · (2.89e) 

we write wr in terms of n-component column vectorsfo and/[, 

w = (!o) 
f .It (2.89f) 
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so that Eqs.(2.89d.e) take the form 

ofo ( . . l ot =- Hofo + Ht /1 , Of ~ 1 = Ht fo- Hoft 
ut · 

(2.89g) 

Using the skew-symmetry of Ho and the symmetry of H 1, this dynamics is 
easily verified to be an invariance of the two inner products 

(2.89h) 

This permits us to embed the real quantum dynamics of Eqs. (2.89e-g), 
which takes place in a 2n-dimensional real Hilbert space, in a complex 
quantum dynamics taking place in a complex Hilbert space with half as 
many dimensions. The complex quantum dynamics is defined by the 
complex wave function 

f=fo + ift (2.90a) 

with a complex inner product 

(2.90b) 

which is invariant under time evolution with the complex Schrodinger 
equation 

of --- -Hf ar- ·' H= Ho +iHt (2.90c) 

Since i2 acts on \{if as 

. (o -I) (lil) (-It) 12 1}11 = I 0 /1 = fo =Wit (2.90d) 

multiplication by i2 in the real quantum system maps into multiplication by 
i in the complex embedding. Similarly, since W acts on w1 as 

(I 0)(/o) (!o) wwr = o - 1 /1 = -ft = wr (2.90e) 

multiplication by W in the real quantum system corresponds to the 
complex antilinear operation of complex conjugation in the complex 
embedding. The restriction of Eq. (2.89c) then corresponds to the usual 
rule in complex quantum mechanics that physical operators (other than 
the time reversal operator) should be complex linear in form. 

2.7 NONEXTENDABILITY TO OCTONIIONIC QUANTUM 
MECHANICS 

We now show that the formulation of quantum mechanics developed earlier 
cannot be extended to the octonionic case. It suffices to give two examples of 
places where the associative law of multiplication, which fails for the octonions, 
is needed for the Hilbert space construction of quantum mechanics. The first 
example concerns completeness. In wnting the completeness formula 
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(fig) (flllg) = u{~lh,)(h,l}g) = u{~lht)(hrlg)) 
= :LUihl)(hrl.g) 

I 

(2.9la) 

we have assumed, in moving parentheses, that the product of three factors is 
independent of the order of multiplication. Giirsey ( 1974) has given the follow
ing simple counterexample to the completeness formula of Eq. (2.9la) in octo
nionic quantum mechanics. Take a two-dimensional Hilbert space. let If) and 
lg) be orthonormal, 

. I (e4) If)= V2 e6 • 

(2.91 b) 

and for the complete set { lh1)} take 

(2.9lc) 

Then 

(2.92a) 

and so 

u{ ~ lhr)(htl}g) =(fig)= 0 (2.92b) 

Also, using the octonionic identity a(ac) = (a 2 )c, we readily find that 

:L lh~ l (htlg) = I g) (2.92c) 
f 

and so 

u{ ~ lh1)(h1lg)) = o (2.92d) 

However, by direct calculation using the octonionic algebra, we find 

:LUiht)(hJig) = ![(e4e1)(e1e3) + (eM's)(estl)] = j(e7e2 + e1e6) = es i' 0 
r 

(2.92e) 

and hence Eq. (2.9la) fails in the octonionie easc! 20 

As a second example we consider the proof that the Schrodinger equation 
dynamics, 

:/l(t)) = -ll(t)lf(t)) (2. 93) 



GE~F.RAL FRAMEWORK OF Ql!ATERI\!ONIC QUANTl 1\l \1ECHAN!CS 51 

with anti-self-adjoint H, leaves invariant the inner product (f(t)!g(t)). Differ
entiating and using Eq. (2.93) and its adjoint, we get 

a ( 'J ) (a ) 
81 

(f(t)lg(t)) = ~~ (f(t)i (ig(t))) + ((f(t)l) 
81 

lg(t)) 

= (-(f(t)IIi 1 (t))lg(t)) + (l(t)l(-fr(t)lg(t))) 

= ( (f(t)IH(t)) jg(t)) +- (f(t)i ( -fr(t)lg(t))) (2.94a) 

If the multiplication is associ:ntive, as in the complex and quaternionic cases, 
we can remove the parentheses in the final line of Eq. (2.94a) to conclude that 
(fJ/8t)(f(t)jg(t)) = 0. However, this proof fails in the octonionic case, and 
hence one cannot follow the standard procedure to get a unitary dynamics. 
The problem here can be restated as the fact that defining an adjoint by Eq. 
(2. I 0), 

(2, 94b) 

requires the rebracketing of the product of three factors and cannot be eomis
tently carried out over the octonions (Goldstine and Horwitz, 1964, 1966). As a 
concrete counterexample, showing what goes wrong if we attempt to define an 
anti-self-adjoint Hamiltonian and use it to evolve an inner product (fig) in 
time, let us again work in a two-dimensional Hilbert space. We choose two 
states at time t = 0: 

if(O)) =_I (e4
)

J2 E'(J 

and take 

I (e1) jg(O)) = /2 ei , (f(O)I g(O)) = o 

II=(ci ~J 
so that the finite time evolution operator is 

0 ) = (cost - e 1 sin t 0 ) 
e-c,r 0 cost-e5 sint 

(2.95a) 

(2.95b) 

(2.95c) 

211 Note that the failure of completeness in this example depends nucially on the specific octonionic ray 
representatives used for the states I 11 1 2 ). IL for example, we choose 

lhr)= OJ 
then Eq. (2.9la) is valid for all states lfl and IRI· 

If in analogy with the quatemion trace of l:q. ( 1.22b) we define a trace tr over the oct onions by 
tr rp = ~ (¢ + qJ), then taking the squared modulus of Eq. (2.92e) gives 

tr,( f IR)I 2 I tr12__=( f hr)(hr g) 2 

I 

Hence even inside a trace. completeness fails in an octonionic Hilbert space. We comment further on this 
issue at the end of Appendix A. 
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Then we find 

I (e4cost-e7sint) 
1/(t)) = U(t.O)If(O)) = M - . 

v 2 e6 cos t + e 1 sm t 
(2.95d) 

I ( e3 cost + e2 sin t) 
I g(t)) = U(t, O)l g(O)) = M - . 

v2 e1cost-e6 smt 

from which we compute 

(2.95e) 

Hence in this example, even the modulus21 l(f(t)jg(t))i is not conserved under 
time evolution! 22 

21 This is why we have chosen a two-dimensional counterexample. In any one-dimenswnal analog of 
Eq. (2.95) we find. by virtue of Eq. (1.5e). that even when ( f(r)IR(r)) rs time dependent, the modulu, 
I( ((r)'g(r))l is constant. For example. with I f(O)) = c 1• g(O)l- c2. f{ = cs. we find that 
(f!l)

1
g(r)) = --e1 eos(2r) 1 c4 sin(2r). 

22 The failure of unitarily in octonionic quantum mechanics has motivated Waldron and Joshi (1992) to 
suggest that the octonion algebra may appear in quantum mechamcs only through its associative guater
nionic matrix representations. 
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Further Generclll Results in 
Ouaternionic Quantum Mechanics 

We next discuss certain general results in quaternionic quantum mechanics, 
which can be formulated independently of the detailed structure of the Hamil to· 
nian if. Our emphasis in this chapter will be on topics connected with symmetry 
generators. We introduce quaternion anti-self-adjoint space translation genera·· 
tors and use them to construct the momentum representation. Corresponding to 
these generators, we introduce several possible definitions for the self-adjoint 
momentum operators and show that none of them possesses all the properties of 
the momentum in complex quantum mechanics. A closely analogous discussion is 
given for the rotation generators and angular momentum. In the course of our 
analysis of linear and angular momentum, we are led to use of the complC'X !inC'ar 
operators introduced by Horwitz and Biedenharn (1984). Turning to time trans·· 
lations, we introduce the Heisenberg picture and also give the density matrix form 
of the time development equation. Our next two topics are the extensions to 
quaternionic quantum mechanics of the Heisenberg uncertainty principle, and of 
Wigner's analysis of the group representation problem generated by symmetries 
of the Hamiltonian. The methods used for the latter also lead, in the following 
section, to a generalization of the spectral theorems of Sees. 2.2 and 2.3 to the case 
of a mutually commuting set of quatcrnion self-adjoint and anti-self-adjoint 
operators (which typically will be taken to b~ the Hamiltonian and a maximal set 
of symmetry generators). In the final section we discuss spin and, in particular the 
structure of spin Hamiltonians, in quaternionic quantum mechanics. 

3.1 SPACE TRANSLATIONS AND MOMENTUM 

The operators for space translation play an important role in quantum 
mechanics, where they arc connected with the concept of momentum. To intra·· 
duce space translation operators in quaternionic quantum mechanics, we define 
the anti-Hermitian translation generators j11 by their ac.:tion in coordinate 
representation 1 on an arbitrary state I f). 

1 We make no di~tinction between quantitie' with upper and lower spatial indices. and specificall] x 1 
-· x 1 • 

Consistent with this. when special relativity is rntroduced in Part III. we use a(·-!. I. I. I) metric. In Parts I 
and II we generally use x to denote a coordinate three.vector. except where a display of the three-vector 
structure is needed for clarity. as in the scalar product fi· ."!.In Part Ill we usc v to denote a coordinatr: 
four-vector. and {to denote rts three-vector part. 

53 
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(xlfirlf) =-:-(xif) 
UXf 

(3.la) 

which is equivalent to the spectral representation 

(3.lb) 

From Eq. (3.1 b), we can immediately verify that J3i is anti-self-adjoint, by inte
gration by parts (which is valid when sandwiched between states), 

(3.lc) 

From Eq. (3.1 b) we can calculate the commutator of p111 with the coordinates x1, 

(3.ld) 

In terms of the operators fit, we then get a quaternion unitary representation of 
the translation group by writing (Horwitz and Biedenharn, 1984) 

(3.2a) 

with 6x1 an infinitesimal e-n umber. Using the commutator of Eq. (3.1 d), we find 

x1U(6x)ix) = U(6x)[U- 1(6x)xfU(6x)]lx) = U(6x)(x1 +6xp)jx) 

= U(6x)ix)(xp + 6x1) (3 .2b) 

and so U(6x)lx) is an eigenstate of the coordinate operator x with eigenvalue 
x + 6x. and with an appropriate choice of phases for our ray representatives lx) 
we have 

U(6x)ix) = lx+6x) (3.2c) 

We next introduce momentum eigenkcts I p) through the eigenvalue equation 
for the translation generators, 

hiP)= I p)iPt (3 .3) 

Following the reasoning used in the spectral representation discussion of 
Sec. 2.3, we could choose the ray representation for I p) to make one of the 
momentum components (say p3 ) always positive, but the other two momentum 
components (in our example, p 1 and p2 ) could then still have arbitrary sign. 
Such an asymmetric treatment of the momentum components is not natural, 
and so, instead, we restrict the ray freedom of I p) by requiring that the trans
formation function (xi p) should be complex <C(l, i), with the momentum 
components p1 all allowed to range from -= to oo. To compute (xi p) we 
project Eq. (3.3) on (xi and usc Eq. (3.la), giving the differential equation 

,-,() (xjp) = (xlfiflp) = (xjp)ip£ 
UXf 

(3 Aa) 
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Integrating Eq. (3.4a) and normalizing so that 

(3 .4b) 

we find 

-- 1 (xI p) = elP x ( ( p)' 
(2n)3/2 

l((p)l = I (3.5) 

with ( ( p) an arbitrary com pi ex ~( 1, i) phase. By making a change of ray repre
sentative for the momentum eigenket, IP) ---> lp)((p), we can eliminate ((p), 
and henceforth we define the momentum eigenkets so that 

.. • 1 
(xl p) = elpoc --

(2n)3/2 

-- 1 
(pix)= e-IJH 3/2 

(2n) 
(3.6) 

Just as we introduced coordinate representation wave functions2 

f(x) = (xl f), we can now introduce momentum representation wave functions 

f(p) =(pi[)= ( d 3x(plx)f(x) 
J 

from which we find the formulas 

/ d 3xl(x)g(x) = / d3p](p)g(p) 

j d3xlf(x)l2 = j d3plf(p)l2 

lflhlf) = / d3p](p)iptf(p) 

(3.7) 

(3 .8) 

However, care is required when acting on momentum eigenstates with the 
operators I, J, K, which we defined through their coordinate representation 
action in Eqs. (2.59a,b), since then the noncommutativity of the quaternion 
algebra comes into play. For example, although 

we have (Horwitz and Biedenharn, 1984, Appendix 2) 

Jlp) =.I d3xJix)(xlp) =.I d3xlx)j(xlp) =.I d 3xlx)(xlp)*j 

=.I d3xlx)(xl- p)j = 1- p)j 

'In Sees. 3.1 and 3.2. we do not explicitly indicate the dependence of \.f) on the time 1. 

(3 .9b) 
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and analogously 

Kip)= 1- p)k (3.9c) 

which arc equivalent to the momentum space representations 

I= .I d 3pl p)i(pl 

{:}= /d3pl-p){~}(PI (3.9d) 

N otc that we can also define a second left-acting algebra lp = I, Jp, Kp by 

(3.9e) 

which all have I p) as an eigenstate, 

{
lp} {i} Jp I P) = I P) i 
Kp k 

(3. 9f) 

but act in coordinate representation as 

(3.9g) 

[The operator lp should be distinguished from yet a third operator !PI' which is 
associated with f3t by the spectral representation of Eq. (2.42b) and which 
(suppressing the subscript£ throughout) takes the form 

j3 = ./ dplp) ip(pl = IfJIPI 

lfJI = / dplp) IPI (PI 

/ ·(p) / I p I 11, = dplp) z fPI (PI= dxdx lx) n(x1 _ x) (xI (3 .9h) 

with P denoting the principal value.] Returning to Eq. (3.9b), if we introduce 
symplectic components f~. r1(x) of the coordinate representation wave function 
f(x) by 

f(x) =f~(x) +iffi(x) (3.10a) 

then the symplectic decomposition of the momentum representation wave 
function is given by 

f(p) = / d3x(plx) [f~(x) +if(1(x)] = / d 3 x(plx)f~(x) +/./ d3x(-plx).i(J(x) 

(3.10b) 
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and thus 

f(p) = f,(p) + Jfri(P) 

f~(p) =.I d3 x(plx)f~(x). (3.10c) 

Reexpressing the coordinate representation wave function f(x) in terms of 
the momentum representation wave functionf(p), we have 

f(x) = .fd3p(xlp)f(p) = Jd3p eip":/2 f(p) = /d 3p eifl:/2 [f~(p) +if{J(p)] 
(2n) ' . (2n) 

(3.lla) 

and so we see that f( p) appears as a Fourier expansion coefficient ordered to 
the right. Qne can also define a Fourier expansion of[(x) with the expansion 
coefficientf(p) ordered to the left, 

f(x) = .ld3pj(p) /F;,2 = ld3p[}~(p) +J](J(p)] ( eifi:/2 
(2n) I . 2n) 

(3.llb) 

Comparing Eqs. (3 .!Ia) ~nd (3 .II b), we see that since jeifl" = e -ifl·".f, the 
symplectic components ofj(p) andf(p) are related by 

f~(p) =f,(p), f(J ( p) = /ii (-p) (3.12a) 

while comparing with Eq. (3.10c), we find that the symplectic components of 
](p) andf(x) are related by 

A I 3 frx(P) =. d x(plx)f~(x), ][i(P) =.I d3 x(plx)[rJ(x) (3.12b) 

Note thatfdoes not obey an analog of the first line of Eq. (3.8), 

(3.12c) 

but we do still have 

(3.12d) 

The issue of left or right ordering of the Fourier coefficient becomes irrelevant if 
we expand with respect to a real basis, as in 

f(x) = l d 3p[(xlp, +)f(p, +) + (xlp, -)f(p, -)] (3.13a) 

with 

_ 1; 2cos(ji·x)_ 
(xlp,+)-2 

312 
-(p,+lx), 

(2n) 
( I -) = 2I/2sin(ji·x) = ( -1 ) 
X p, 3/2 p, X 

(2n) 

(3.13b) 
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basis functions which are, respectively, even and odd in p. and with .J~ d 3 p 
extending over half of p-spacc (say, over p 1 .2: 0). The expansion of Eq. (3.13a) is 
readily inverted using 

f
. 13 

2 ~;cos(p .. ?)cos(p 1
• x) = 63(p- p1

) + 63(p + p1
) 

. (2n) 

I 
d3 

X · ~ ~ · ~1 ~ ~ I ~3 2 --
3 

sm(p · x)sm(p · x) = o3(p- p) -- o· (p + p1
) 

. (2n) 

I d3x ~ ~ . ~~ ~ 
--3 cos(p · x)sm(p · x) = 0, 

. (2n) 
(3.13c) 

f(p.+) =.I d 3x(p,+lx)f(x). f(p. --) """~ ./ d 3x(p. -lx)f(x) (3.13d) 

Expansions on a real momentum space basis will be used in the discussion of 
relativistic integer spin wave equations in Chapters II and 12. 

Up to this point we have characterized the momentum through properties 
of the anti-self-adjoint operator j)p. As discussed in Sec. 2.3, an anti-self-adjoint 
operator cannot be observable, and so if we wish to construct an observable 
momentum operator we must look for a self-adjoint analog of fir. As we shall 
sec shortly, there is in fact no quaternion self-adjoint momentum operator that 
has all the properties of the momentum expected by analogy with the 
momentum operator in complex quantum mechanics. To show this, we 
consider three possible natural definitions of the momentum operator. giving 
the merits and drawbacks of each (Adler, 199 I). We assume in this discussion 
that in the absence of spin, thc momentum operator acts on a single-compo
nent wave function; yet a fourth definition of the momentum, relevant in the 
case of the two-component semirelativistic wave equation, is introduced in Sec. 
11.7. 

(I) The first definition of the momentum operator to be considered, which we 
denote by p~I), is gi vcn by 

(3.14a) 

with J the unit quaternion operator 

(3.14b) 

and with i a fixed unit imaginary quaternion. Using the spectral representa
tions of Eqs. (3 .I b) and (3.l4b) to compute the commutator of P, with l, we 
have 

[PI, l] = ./ d3xlx) la~~~, i] (xl = o (3.15a) 

wl).ich (together with the fact that fif and i are anti-self-adjoint) implies that 
Pi:!) is self-adjoint, 



FURTHER GENERAL RESl:LTS l:\1 QUATER:"oolOI\'IC QlJANTL:vl MECHANICS 59 

(3.15b) 

Evidently, the definition of the momentum operator p~i) requires choosing 
an arbitrary complex <C( I. i) su balgebra of the full quaternion algebra and is 
not unique. We will adopt henceforth the convention of choosing i = i. i = I 
[with I the quaternion unit operator defined in Eq. (2.59a)], so that our first 

definition of the momentum operator becomes p~I) = p~I), with (Horwitz 
and Biedenharn, 1984) 

p~I) =-!fit= j d3 xlx) (-z/!.:-) (xl 
a:"-1 

(3 .16) 

For the commutator of p~I) with the coordinate operator X£, we find the 
familiar result 

[xf,P~;l] = J d 3xlx) lxr, -i()~J (xl = (jfm J d 3xlx)i(xl = Mtm (3.17aJ 

while in terms of p~n, the translation operator of Eq. (3 .2a) takes the usual 
form 

(3.17b) 

Acting on the momentum eigenket I p) \Vith p~I) we get, using Eqs. (3.3) and 
(3.9a), 

(3.18a) 

as desired for a momentum operator. Equation (3.18a) [or alternatively 
direct calculation fro~ Eq. (3 .16) using the transformation functions of 
Eq. (3.6)] shows that P/) has the momentum space spectral representation 

(3.18b) 

The definition p~!) for the momentum operator would appear completely 
satisfactory, until we consider the role of the momentum as the translation 
generator in a multiparticle system. 3 Let fl be the quaternionic Hamilto
nian for an N-particle system with particle coordir:ates x(r)£• r = I .... , N, 
and let us assume translation invariance, so that H depends only on the 
coordinate differences x (r)£ - x (.l)f. (An explicit example of such an if is 
given in Sec. 9 .I.) Letting I { x(s)}) denote the multi particle coordinate 
eigenstate, a formal expression of translation invariance is given by the 
equation 

[fl,Pcl ~= o (3.19a) 

3 The same problems occur for a translationally invariant single particle system with a constant but 
nonzero quaternionic potential. This rather trivial singlc-pmticle model is discussed in Sec. 5.!. 
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with Pr the anti-self-adjoint translation generator 

N 

Pr = LP(r)f', (3.19b) 
r=I 

We now see the problem with the self-adjoint momentum operator 
constructed in Eqs. (3 .14)-(3.16). Defining I for the multi particle system by 

I= (I] J d3
x(q)}{x(sJ})i({x(sJ}I (3.20a) 

and PY) by 

(3 .20b) 

we see that since in general I does not commute with H [recall, from 
Eq. (2.60a), that if= Ho + IH1 + JH2 + KH3, with the HA commuting with 

1], then P~!) also does not commute with if! Thus, although the first defini
tion of the momentum gives a self-adjoint operator with standard commu
tation relations with the coordinates, the total momentum P>!) does not 
commute with translation-invariant operators; rather, we must return to the 
anti-self-adjoint operator Pp = IPY) to get a translation generator. 

(2) Motivated by this problem, we consider a second definition of the momen
tum operator, suggested by the work of Emch ( 1963). Let us write the 
Hamiltonian if in the canonical form given by the spectral representation of 
Eq. (2.42b): 

(3.21) 

with lifl the Hamiltonian modulus and If! the corresponding phase. Then, 
continuing with the notation appropriate to the multiparticle case,( ~e 
denote our second definition of the total momentum operator by P/H , 
given by 

P(!,;)- -[- p-. 
f - H f 

with Pestill defined by Eq. (3.19b). Since formally we have 

lifl = (-if2)Ij2 

I-= H 
H ( _if2) 1/2 

Eq. (3.19a) implies that 

(3.22) 

(3.23a) 

(3.23b) 

in other words, the Hamiltoni~n phase I if is translation invariant. From 
Eq. (3.23b) and the fact that P1 and Iff are anti-self-adjoint, we see [by 
reasoning id_entical to that of Eq. (3.15b)] that P;1

if) is self-adjoint. More
over, since H commutes with Iff, Eq. (3.19a) implies that 
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(3.23c) 

and thus P~111 ) is a self-adjoint total momentum operator that commutes 
with the translation-invariant Hamiltonian. 

This second definition of the momentum operator, however, also has its 
problems. First of all, if we try to define individual particle momentum 
operators by analogy with Eq. (3.19b). 

(3.24a) 

then because Iii does not in general commute with the individual coordinate 
translation generators P(r)t (although it does, pf_foursc, commute with their 
sum), the individu1} 1)110mentum operators Pr/y are not self-adjoint (e-ven 
though their.sum P 1

11 is self-adjoint). Note that this problem does not arise 
with the first definition of the momentum operator, since from Eqs. (3.l9b) 
and (3.20a) we see that I does commute with the individual P(r)f· A Curlher 
problem with the second definition of the momentum is that since H does 
not commute with the coordinate operators x(r)f• neither does Iii c9mmute 
with the X(r)t· As a consequence of this, the momentum operators p(/~) have 
noncanonical commutation relatiom, with the coordinates, specifica~fy, 

[ (! fl)] - [ l - [ - l X(t)loP(s)m -- X(r)l• lif P(s)m- I if X(r)i•P(s)m 

= - [x(r)f• /If] P(,)m +I H 6rs 6tm (3.24b) 

where in arriving at the second line we have used the multiparticle analog of 
Eq. (3 .I d). Yet another problem with pi~)~) is that if we define multi particle 
momentum eigenstates as eigenstatcs of P(r)f, with complex <C( I, i) transfor
mation functions from the coordinate representation as in the single-particle 
discussion of Eqs. (3.3)~(3.6), then these states are not eigenstates of pi~)~), 
because 111 docs not reduce to multiplication by i in momentum space. 

(3) Returning to the notation of one-particle quantum mcchanics,4 yet a third 
dB)initio_n of the momentum operator (Rotelli, 1989a), which we denote by 
p1 , IS g1vcn by 

(3 .25) 

with I f) again an arbitrary state. Equation (3.25) is an example of a new 
type of operator, introduced by Horwitz and Biedenharn (1984) and called 
complex linear as opposed to quaternion linear. The general left-acting 
operator 0 introduced in Eqs. (2.9a .. b) is quatcrnion linear, in the sense that 

O(lf)¢) == (Oif))¢ (3.26) 

for an arbitrary quaternion ¢; thus the anti-self-adjoint translation genera-

4 A detailed di>cussion of multiparticle and multichannel scattering theory in quatcrnionic quantum 
mechanics 1s given in Chapter 9. 
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tor fiF and the self-adjoint momentum operators p~1 ) and p~1J!) are all exam
ples of quaternion linear operators. By contrast, the operator p;') defined in 
Eq. (3.25) obeys 

p~i) (I f)¢)- (pY)I f))¢= -h(l f)¢ )i +(hi f)i)¢ = Ptl f) [i, ¢] (3 .27) 

which vanishes only when ¢ is in the complex C( I, i) subalgebra. Hence the 
operator p~') is not quaternion linear, but instead is a member of the class of 
complex linear operators Oc, defined by 

Oc(l no= (Oclf)K, (E<C(Li) (3.28a) 

As shown by Horwitz and Biedenharn, a complex linear operator always has 
the form 

Oclf) = Oe1lf) +Odf)i (3.28b) 

with Oc12 quaternion linear, which is just the form of p~i) (with On = 0 
and Oe2 = -fie). . 

From Eq. (3.25), we can calculate the commutator of p1~11 ) with a general 
operator 0, 

[0, p~~lj I f) = O(p,~~J I f))- p~i,l(OI f)) = 0( -fiml f) i) + fim(OI f) )i 

= [p 111 , OJI f) i (3 .29a) 

which is again a complex linear operator. Taking 0 to be a translation
invariant Hamiltonian l!, for which [p 111 , if] = 0, we get 

(3.29b) 

and so p,~~) commutes with l!; more generally, p~~) commutes with any 
translation invariant operator, and this result generalizes immediately to the 
multiparticle case. Now taking 0 to be the coordinate operator Xt, we get 

(3.29c) 

and so p,~;1 has an elementary, explicitly known commutator with the coor
dinates. 

The problem with the momentum definition p~i), however, is that it does 
not give a quaternion self-adjoint operator. To sec this, we compute the 
difference 

(3.30a) 

which should vanish for a self-adjoint p~i). From Eq. (3 .25) we calculate 

(flp),i)lg) = -(flfirlg)i =? 

(glpnn = -(glfitlf)i 

= i(flfi1lg) = -i(flfitlg) (3.30b) 



FURTHER GENERAL RESULTS IN QUATERl\!O"'IC QUANTUM MECHANICS 63 

so that the difference in Eq. (3.30a) becomes 

(3.30c) 

which is in general nonvanishing. There is one important special case in 
which the right-hand side ofEq. (3.30c) does vanish. Evaluating (flfiflg) in 
coordinate representation, we have 

Ulfiflg) = jd3x}(x) ,
1
°_ g(x) 

uXe 
(3.31) 

so that if the wave functionsf(x) and g(x) are both <C(l.i), then (flfiflg) is 
<C(l, i) and Eq. (3.30c) vanishes. Thus p~i) is a satisfactory definition of the 
momentum operator when restricted to the complex <C( I, i) Hilbert subspace 
spanned by all C( I, i) coordinate-representation wave functions. Projected 
on such wave functions, Eq. (3.29c) gives 

(3 .32a) 

giving a canonical commutation relation within th~ q I, i) Hilbert 
subspace. Acting on the momentum eigenkct I p) with p;' J we get from Eq. 
(3 .25) 

(3 .32b) 

which again is satisfactory. A further characteristic feature of the <C( I, i? 
Hilbert subspace is that within this subspace the momentum definitions py 
and p~l) coincide. This follows from 

8 
(xl p~!) I f) = (xi- Ififl f) = -i~ (xl f) 

uxp 

(xlp~i)lf) =-"a -(xlf) i 
UX{ 

(3.32c) 

which are equal when (xi f) E <C( l, i). 

We conclude that although there is a quaternion anti-self-adjoint operator f3f 
with all the properties of a translation generator, there is no corresponding 
quaternion self-adjoint operator with all the properties expected for a momen
tum operator. Nonetheless, the concept of momentum remains relevant in scat
tering theory in quaternionic quantum mechanics. We shall see, from resullts in 
Chapters 5 and 6 in the context of potential scattering, that on the space of 
asymptotic scattering states the three definitions of the momentum operator, 
p;l), p; 111

) and Pii), become identical: p~111 ) and p~I) become identi1al becaur,~ 
liilx) approaches Ilx) asymptotically as lxl----> ::x:J, whereas p~1 

and p/ 
become identical because the asymptotic scattering wave functions, with a 
suitable choice of ray representatives, can always be chosen to be complex 
<C( I. i). Thus a momentum operator with all the expected properties can be 
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defined on the space of asymptotic scattering states, but momentum is not well 
defined on subasymptotic states.) These issues will also be addressed, in the 
context of multiparticle and multichannel scattering theory, in Chapter 9. 

3.2 ROTATIONS AND ANGULAR MOMENTUM 

Let us now study quatcrnionic quantum mechanics when the coordinate repre
sentation Hamiltonian if(x), introduced in Sec. 2.4, is rotationally invariant. In 
this case we expect the operators generating spatial rotations to play an impor
tant role. Considering, for simplicity, a spinlcss system in which the q uaterni
onic wave function f has only a single component, the Hamiltonian has the 
general structure 

(3.33a) 

with the coordinate representation form 

(xi it= H(x)(xl, l!(x) = Ho(x) + ifl1 (x) +ill2(x) + kll3 (x) (3.33b) 

and with flo vanishing when Galilean invariance is imposed in Chapter 4. 
Specializing now to rotationally invariant systems, we assume that the fl A (x) 
depend only on the magnitude r = l~xl of x, 

A= 0, 1,2,3 (3.33c) 

so that 

ii(x) = if(r) = llo(r) + iH1 (r) +iH2(r) + kH3(r) (3.33d) 

In the presence of a rotational invariance, we expect there to be a set of anti-self
adjoint rotation generators Lt that commute with the Hamiltonian fl. These can 
be readily constructed in terms of the anti-self-adjoint translation generators 
introduced in Sec. 3.1, as 

Lf =· L Efmn Xm fin 

m.n 

To verify that Lc is anti-self-adjoint, we have 

m.n m.n m.n 

(3.34a) 

(3.34b) 

and to verify that the Lf commute with if. we use Eqs. (3.lb) and (3.34a) to 
express the computation of their commutator in coordinate representation, 
g1vmg 

~ The situation is thus reminiscent of general relativity. \\there one cannot define the energy momentum 
locally i(Jr the gravitational field, but only globally as a surface integral over an asymptotically flat exterior 
region. There is an analogy, which will be further discussed in Chapter 14. between quaternionic quantum 
mechanics ami general relativity. with "asymptotically l[(i.i)'• in the former corresponding to "asymp
toticaliv flat'' in the latter. 
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(3.35) 

From Eqs. (3.ld) and (3.34a), we find that the L1 obey the SU(2) algebra 

- - ~-, -
[Lp, Lrn] = -- ).__ CfmnLn (3.36a) 

11 

and that their commutators with Xm and /5 171 arc 

[lr:, Xm] = - L Gfmn Xn, [ll,fim] =- L DfmnPn (3.36b) 
11 11 

Then starting from Eq. (3.36b), a calculation analogous to that of Eqs. (3.2a--c) 
shows that 

(3 .36c) 

is the quaternion unitary operator generating a rotation through angle 8 around 
the axis n. 

Working from Eq. (3.36a), by a standard angular momentum calculation we 
see that if we define the self-adjoint operator 

3 

L2 = _[2 = -- L L; (3.37a) 
f~i 

then we have 

(3.37b) 

Hence the operators L 2 and L3 form a maximal mutually commuting set of 
operators characterizing the rotational structure of the problem. Although L2 is 
self-adjoint and L3 is anti-self-adjoint, Wt~ will see in Sec. 3.6 that we can none
theless find simultaneous eigenstates l£,rn) of L 2 and L3 , with 

£ = 0, I, 2, ... 

m = -f, -£ + I, .... £ (3.38a) 

where we have invoked the standard results for the spectrum of L 2 and L3 , 

which follow from Eqs. (3.36a) and (3.37b). Projecting Eq. (3.38a) on (.XI, with 
~x = x/lxl the unit vector associated with x, and using Eqs. (3.la), (3.34a), and 
(3.37a), we get differential equations characterizing the transformation func
tions (.XI£, m). If we restrict the ray freedom by requiring that (~xl£, m) be 
complex <C( I, i), then these differential equations can be integrated to give the 
standard spherical harmonics. It is customary to restrict the remaining <C( l, i) 
ray freedom of the spherical harmonics by requiring that 

(3.38b) 

Using the fact that the restriction of the left algebra I, I, J, K of Eq. (2.59a) to 
the Hilbert subspace spanned by the states lx) is given by 
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we find that the orhil<-'.1 angular momentum analogs of Eqs. (3.9a-c) arc 

I/fi,m) = /dl\15<:)i(5i:/£,m) = ./ dn1Jx)(~t/f,m)i= /fi,m)i 

(.!.K)/fi,m) = / dn:Jx)(j,k)(x/f..m) = ./dlL,/x)(~X/f,m)*(.i,k) 

(3.38c) 

./ dl211"\") (x/f.. -m)(-I)"'(j,k) = /fi, -m)(-I)"'(j,k) (3.38d) 

Up to this point we have carried out the angular momentum analysis using anti
self-adjoint rotation generators L1, just as in Eqs. (3.1) -(3.6) we carried out the 
momentum analysis using anti-self-adjoint translation generators fit· If we now 
try to define self-adjoint angular momentum operators, we encounter difficulties 
similar to those encountered when we tried to define a self-adjoint momentum 
operator in the preceding section (Adler, 1991 ). Corresponding to the three 
definitions of the momentum operator studied in Sec. 3.1, there are three 
possible definitions of the angular momcntum,6 

and 

L~l) = -Ilt 

L Uirl _ -I-L
t - H I 

(3.39a) 

(3.39b) 

(3 .39c) 

Equation (3.39a) defines a quaternion linear and quatcrnion self-adjoint opera
tor L;!), but because I does not commute with fi of_ Eq. (3.33a), the operator L)l) 
does not commute with a ro~ationally invariant H. Equation (3.39b) defines a 
quate~nion-linear operator L/111 , which is also quaternion se]f-adjoint provided 
that His rotationally invariant (so that I it commutes with L1 ). However, since 
IH is in general a complicated nonlocal operator (see Sec. 5.4). the coordinate 
representation form of L~Ifl) is not explicitly known, and L;lfil docs not obey 
simple commutation relations, analogous to Eq. (3.36b), with the operators Xt 

and f31. Finally, L)i) obeys satisfactory commutation relations with fl, x1, and fir, 
but is only complex linear and is self-adjoint only within the Hilbert subspace 
spanned by <C( I, i) coordinate representation wave functions. Just as in the case of 
the momentum operator, in potential scattering the three definitions of angular 
momentum given in Eq. (3 .39) coincide on the space of asymptotic scattering 
states, and define there an angular momentum operator with all the expected 
properties. 

Very similar considerations arise when we attempt to define angular 
momentum ladder operators in quaternionic quantum mechanics. If we intro
duce ladder operators L~) defined by 

(3 .40a) 

6 A fourth definition of the angular momentum, appropriate to the case of the two-component semi
relativistic wave equation, is given in Sec. I 1.7. 
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then L3 and L~ obey the usual angular momentum algebra with I playing the 
role of the imaginary unit, 

[f~l, L3] = Cf-IL~l 

[f~l, fY_l] = 2Ii3 

! (f~l L(l_l + i(l_' [~l) = D- l~ (3.40b) 

But since fC{) do not commute with the general rotationally invariant fl, they 
do not define satisfactory ladder operators in the quatcrnionic case. Similarly. if 

~(I. J 
we define ladder operators L±" by 

~(!if) ~ -
LI = Lt :'cl;{L2 (3.41) 

they satisfy an algebra analogous to Eq. (3.40b) (with l replaced by I if) bu1 do 
not have an explicitly known coordinate representation form. The only satis
factory way to define angular momentum ladder operators in quatcrnionic 
quantum mechanics (Rotelli, 1989a) is to use a complex linear construction7 

analogous to Eq. (3.39c), 

L~) I f) = L I I f) ± l21 f) i 

Then for the commutator of f~l with il, we find 

[f~l, fiJI f) = f~l (HI f)) - fi L~l I f) 

= ltfll f)± L2lll f)i- fi(Ltl I)± i2l f)i) 

= [Lt,H]If) :!: [L2.if]lf)i = o 

and similarly the commutator of L~) with x 111 is 

(3.42a) 

(3 .42b) 

[L~), X1nJI I) = [fi, Xm]l f)± [f2, Xm]l f)i =- L Cimn Xnll) Cf L E2mn X17 1 f)i 
n n 

while for the algebra obeyed by L3 and L~l we have 
(3.42c) 

[f~l, L3]1 f) = f~l (l31 f))- l3f~l I f) = [l1, lJ]!l) ± [l2, l3]l f)i 

= Cff~)lf)i 

[f~l, L~lJI f) = Lt (Ltl f) - L2l f)i) + L2(l1l f) - L2l f)i)i 

-lt (ltl f)+ l2lf)i) + l2(ltlf) + l2l I)i)i 

= -2[l1. l2ll f)i = 2l3l f)i 

! ( l ~) L ~i) + L ~) L (II) ) I f) = ! L I ( L I I f) ·- l21 I) i) + ! L 2 ( L til) - L 21 f) i) i 
I~~ ~ I~~ ~ 

+2Li(Ltlf) + L2lf)i) -2L2(L1If) + L2II)i)i 

= (f2 -l~)lf) (3.42d) 

Hence the operators f~) commute with fi and act as rotation generators on the 

7 Equation (3.42a) clearly has the general structure of I::q. (3.28b), with OCJ = i.. 1 and Oe2 = cri~ 2 . 
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coordinates x 111 • Moreover, they satisfy the angular momentum ladder operator 
algebra appropriate to constructing angular momentum representation matrices 
that lie in the q I, i) subalgcbra and that multiply quaternion-val ucd radial 
functions from the right [because the i in Eqs. (3.42d) ·appears ordered to the 
right]. Fortunately, as we shall see in Sees. 3.5 and 3.6, this is just the form taken 
by the angular momentum representation matrices and the rotational invariance 
analysis of the wave function, when we adopt the standard ray convention of 
Eq. (2.74a) for energy eigenstatcs. 

3.3 TIME TRANSLATIONS, EVOLUTION OF EXPECTATION 
VALUES, AND THE HEISENBERG PICTURE 

Let us turn next to a brief discussion of time translation. According to 
Eq. (2.56), the state vector at timet is related to that at timet' by 

if(t)) = U(t. t')if(t')) (3.43a) 

and when if is time independent the unitary evolution operator U(t, t') takes the 
form 

U(t, t 1
) = U(t- t 1

) = e ii(r-r') (3.43b) 

so that Eqs. (3.43a,b) give the evolution of state vectors under time translation. 
From the Schrodinger equation 

:/f(t)) = -ilif(t)) (3.44) 

which is the differential form of Eqs. (3.43a, b), we can derive as usual the 
equation for the time evolution of operator expectations. Defining the expecta
tion value (A) f for a unit normalized state I f) by 

(A)t= (fiAif) (3.45) 

we have 

:r (A)t= (:t (fi)Aif) + (fl~~ If)+ (/lA :tlf) (3 .46a) 

which on substituting Eq. (3.44) gives 

d DA - jDA - ) 
dt(A)t= Ul at if)+ UI[H,AJif) = \Ft+ [H,AJ t (3.46b) 

An alternative approach to Eq. (3.46b) is given by the density matrix formalism. 
The density matrix Pt for the state I f) is defined by 

Pt =If) (II (3.47a) 

and is clearly the same for all choices of ray representative, 

Ptin = l/i1J)(fivl = lf)(iJw(fl = lf)(fl = Pt (3.47b) 
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The time evolution equation for Pt follows immediately from Eq. (3.44) and its 
adjoint. 

gt P r = ( :t I f)) (I I + I f) %r ( f I = -ill f) ( f I + If) (I I if = - [if, P 1] ( 3. 48) 

The quaternion-rcal expectation value of a quatcrnion self-adjoint operator can 
now be expressed in terms of P( by using the trace operations tr and Tr defined 
in Eqs. ( 1.22b) and (1.30a), 

(A)r = (IIAif) = tr(IIAII) = Tr(Aif)(fl) = Tr(Ap1) ( 3.49) 

and the time evolution equation for (A)1 follows by usc of Eq. (3.48), 

iJ (DA c7 ) (()A - ) -:-(A)1 =Tr -p1+A-pr cc=Tr -, p1 -A[H.p1] 
cJr ar iJt ar · 

(3.50a) 

Using Eq. ((30b) to cyclically permute factors in the second term on the right, 
we have 

iJ { (DA - ) .} j DA - ) Dt (A)1 = Tr Dr+ [H. A] Pr = \ 75t +[H. A] 
1 

(3.50b) 

in agreement with Eq. (3.46b ). 
Equations (3.43) (3.50) describe time evolution in the Schrodinger picture, in 

which the state vectors carry the time dependence. Just as in standard complex 
quantum mechanics, we can alternatively introduce a Heisenberg picture in 
which the operators carry the time dependence. Corresponding to the Schro
dinger picture operator A, the Heisenberg picture operator All and state vector 
I fl!) arc defined by 

and obey the time development equations 

and 

with 

dAll _ oAll [- ] -
1
-- -,)- +- If, AH 

ct ({ 

a I fir ( - iJ) . Dt (H) = e H + Dt If) = 0 

oA!l- ilr {}A -fir ---e -e 
ar - Dr 

(3.5la) 

(3.51 b) 

(3.5llc) 

(3.5ld) 

Since the state vector I fl1 ) is time independent in the Heisenberg picture, 
Eq. (3.46b) for the time evolution of (A)1 follows immediately from taking the 
expectation of Eq. (3.51 b). 

The formalism of this section readily generalizes to the case in which the 
Hamiltonian H( t) is time dependent. In this case, the evolution operator e --llr 
must be replaced by 
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(3. 52 a) 

so that, for example, the Heisenberg picture operator AH and state vector I !H) 
arc defined by 

All= UT(t,O)AU(t,O), I fi-1) = u1 ( r, o) 1 f) (3.52b) 

Differentiating Eq. (3 .52b) with respect to time, we get 

(3.52c) 

with 

iJAll _ t iJA 
-."-- U ( t, 0)--;:;--- U( t, 0) 

ut ut 
(3.52d) 

Equation (3.52c) evidently has the same form as Eq. (3.51 b), except that the 
Heisenberg picture f~rm if JJ( t) of the Hamiltonian must be used in the 
commutator. When H(t) is time independent, we see from Eqs. (3.52a) and 
(3.52d) that HH(t) reduces back to H, yielding Eq. (3.5lb) in this limit. 

3.4 THE UNCERTAINTY PRINCIPLE IN QUATERNIONIC 
QUANTUM MECHANICS 

Having discussed the momentum operator, it is natural to consider the quater
nionic generalization of the Heisenberg uncertainty principle. The formulation 
of the quaternionic uncertainty principle, just as the definition of the momen
tum operators p;l) and p)il in Sec. 3.1, requires picking a distinguished complex 
subspace of the full quaternion algebra. For definiteness, we take this subspace 
to be <C( 1./) for left-acting operators and <C( I, i) for right-acting scalars, 
consistent with our discussion of momentum in Sec. 3.1. Let A and B be two 
<C( 1./) quaternion self-adjoint operators; that is 

[A./]= [B,l] = 0 (3.53) 

By the Jacobi identity for the commutator (which remains valid in quaternionic 
Hilbert space because quaternion multiplication is associative), Eq. (3.53) 
implies that 

[[A, B].I] = [[AJ]. B]- [[B, I], A]= 0 (3.54a) 

and since [A. B] is anti-Hermitian we can write 
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[A,B] = JC 

C= ct. [C,l] =0 (3.54b) 

Let now If) be a general unit normalized quaternionic state, and let us use the 
expectationS (A) to define the dispersion llA of the Hermitian operator A by 

(A)= UIAif), (3.55) 

The q uaternionic uncertainty principle to be derived gives a lower bound, 
proportional to the magnitude of the expectation of the commutator C, for the 
product of the dispersions of the operators A and B. 

Historically, an uncertainty principle in quaternionic quantum mechanics 
was first given by Horwitz and Biedenharn (1984), and we begin by describing 
their derivation. It will be convenient to work in the coordinate representation 
where 

(x[A = A(x)(x[; (3.56) 

we note that Eq. (3.53) implies that A(x) is <C( L i) and that Hermiticity implies 
A'(x) = A(x)T, with T the operator transpose. [ntroducing a <C(1, i) symplectic 
decomposition for the wave function we find 

(A)= J d3 x(f~ +i/r3)T A(xlUcx + ifr1l 

J d 3 j·*TA ( ) ,. J d3 j'"'TA* ( )j' = X x X h + X. fi X ji (3.57a) 

where the term proportional to j on the right-hand side vanishes since 

J d 3x[ff/( -j)A(x)j~ +f~T A(x)Jfii] =if d3x[ -fftA(x)f~ + J;A(x)Tfp] = 0 

(3.57b) 

Defining, for any O(x) E <C(L i), the symplectic state norms and expectations 

i, = j d3 x[j~[ 2 , 1-- i. = j d3xlfi 

(O)zfJ = j d3 xi:~ O(x)f~fi / j d3xl f~.i 
Eq. (3.57a) becomes 

(A)= A(A)" +(I-- }.)(A*)fi 

(3.57c) 

(3.57d) 

and using this and the analogous formula for (A 2
), the dispersion becomes 

(3.58a) 

H In this section we drop the state subscript !'from (A),; the expectation tn a fixed state In will be 
understood. 
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From Eq. (3.58a) we find 

(llA)
2

- {1.[(A 2 )y- (A);]+ (I-/.) l((A*)2)fi- (A')~]} 

= i(1 _ i)[(A)" _ (A')r1r~ o 

Hence defining symplectic components of the dispersion by 

we have the inequality 

and similarly for the operator B, 

We now multiply Eqs. (3.60a) and (3.60b) to get 

(3.58b) 

( 3.59) 

(3.60a) 

(3.60b) 

(llA) 2 (llB) 2 ~ [i(llA)~ + (I - l.)(llA*)~] x [;,(llB); + (I- l.)(llB')~] 

= {1.[(llA);- (llA*)~] + (llA')~}{i.[(llB)~- (llB')~] + (llB*)n 

= ;_2 [(llA)~- (llA*)~J [(llB)~- (llB*)~] +linear in /c (3.60c) 

If (llA);- (llA*)~ and (llB);- (llB*)~ have the same sign, the linear factors 
on the second line of the inequality in Eq. (3.60c) increase or decrease together 
as ), is varied from 0 to 1

2 
and so the right-hand side is minimized at an 

endpoint. If (llA);- (llA*) 11 and (llB);- (llB*)~ have the opposite sign, we 
sec from the final line that the right-hand side of Eq. (3.60c) is convex down
ward and is also minimized at an endpoint. So in either case we have 

(3.60d) 

Since A(x), B(x), and C(x) are all <C( 1. i), and since the dispersions on the right
hand side of Eq. (3.60d) involve only expectations in C( I, i) wave functions as 
defined in Eq. (3.57c), we can now invoke the usual uncertainty principle argu
ment for complex quantum mechanics [sec, e.g., Schiff, 1968, and the quater
nionic analog given in Eqs. (3.63)- (3.64)] to get the inequalities 

(llA);(llB); ::> i (C); 

(llA*) 2 (llB') 2 > l (C*) 2 
(i (i-4 (i (3.61) 

Combining Eqs. (3.60d) and (3.61) gives finally the Horwitz- Biedcnharn form 
of the uncertainty principle in quaternionic quantum mechanics, 

(3 .62) 

When [A, B] =I, as in the position-momentum commutation relation between 
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x1 and Pi,~ of Eq. (3.17a), then Cis the unit operator, and Eq. (3.62) reduces to 
(llA) 2(llB) 2 :2: 1/4. 

The derivation leading to Eq. (3.62), which as we have seen requires judicious 
use of the symplectic component formalism, treats the operators A and B on a 
completely symmetrical footing. An alternative form of the quaternionic uncer
tainty principle, which is an analog of the complex formula of Eq. (3.61 ), can be 
derived by treating the operators A and Bin an asymmetrical fashion. We begin 
by multiplying the commutator [A, B I by -1, and using the facts that I commutes 
with Band that (A) and (B) are real multiples of the unit operator, to get 

c = [-/A' B I = [--/(A - (A))' B - (B) I (3.63a) 

Multiplying Eq. (3.63a) by 1/2 and taking the expectation value then gives 

~(C)= (~[-/(A- (A)),B- (B)]) (3.63b) 

with the left- and right-hand sides of Eq. (3.63b) quaternion-real. We next note 
that since 

{I(A- (A)),B- (B)}t = -{I(A- (A)),B- (B)} (3.63c) 

the expectation value 

(H-I(A- (A)),B- (B)}) (3.63d) 

is quaternion-imaginary, and consequently the squared modulus of the sum of 
Eq. (3.63b) and Eq. (3.63d) contains no interference term between the expecta
tion of the commutator and the expectation of the anticommutator. We thus get 
the inequality 

i(C)
2 = I~(C)I 2 

= 1(~[-/(A- (A)),B·- (B)])I
2 

::; 1(~[-/(A- (A)),B- (B)])I 2 + I(H-I(A- (A)),B- (B)})I 2 

= 1(~[-/(A- (A)),B- (B)])+ (H-I(A- (A)),B- (B)})I 2 

= 1(-/(A- (A))(B- (B)))I 2 (3.63e) 

We now usc the Schwartz inequality, applied to the state vectors I( A - (A)) I f) 
and ( B - (B) ) I f), to get 

1(-/(A- (A))(B- (B)))I 2 
= I(II-I(A- (A))(B- (B))I/)12 

::; (fl- I(A- (A))I(A- (A))If)(fi(B- (B)) 

x(B-(B))I/) 

=((A- (A))2)((B- (B)) 2
) = (llA) 2 (llB) 2 (3.64a) 

which when combined with Eq. (3.63e) gives the alternative quaternionic 
uncertainty princi pie 

(3.64b) 
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When (C)~ and (C*) 11 have the same sign, we have 

I(C)I = 1/,(C)~ +(I- ;,)(C) 11 1 = li(CU +(I- J,)I(C*) 11 1 

2> Min(!( C)), I(C)fi
1

1

) (3.64c) 

and the inequality of Eq. (3.64b) implies that of Eq. (3.62). When (C)~ and 
(C') (I have opposite signs, Eq. (3.62) can yield the stronger inequality. Of 
course, when Cis the unit operator, the inequalities of Eqs. (3.62) and (3.64b) 
are equivalent. 

In cone! usion, we note that in deriving Eq. (3 .64b ), it is essential to first 
multiply through by-/. as in Eq. (3.63a). If this is not done, the procedure of 
Eqs. (3.63) and (3.64) gives the inequality 

(3.65) 

This is a correct formula, but when C is the unit operator, the right-hand side 
of Eq. (3.65) reduces to {1(1)1 2

, which can vanish for certain states. For 
example, if we take (x! f) = F(x) E <C( Li) for x 1 > 0 and (xi f) = jF(x) for 
x 1 < 0, then 

(I) = ;· d 3 x F' (x)(i +fij)F(x) = 0 
. x1>0 

(3.66) 

and the inequality of Eq. (3.65) reduces to a triviality, even though Eqs. (3.62) 
and (3.64b) have useful content. 

3.5 REPRESENTATION OF SYMMETRIES OF H 

As our next general topic, let us consider the representation theory of symme
tries of if. Let { Ua} be a set of quaternion unitary transformations with the 
group property 

(3.67) 

and which commute with ir 

(3.68) 

We wish to consider the action or Ua on ann-fold degenerate set {lh{)} of fl 
eigenstates, where quaternionic phases (i.e., the choice of ray representative for 
lh1)) have been chosen as in Eq. (2.74a), so that 

Hlhf) = lhi)Ei 

f'= !, ... ,11 ( 3.69) 

Taken together, Eqs. (3.68) and (3.69) imply that 

( 3. 70) 

hence Ualh1) also has fi eigenvalue Ei, and therefore is a linear combination of 
members of the originaln-fold degenerate set, 
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n 

L lhm)Dml(a) (3.71) 
m= I 

Substituting Eq. (3.71) into Eq. (3.67), we find 

n n n n 

Uhalhr) = L lhm)Dm{(ba) = uh L lhp)Dpf(a) = L L lhm)Dmp(h)Dpt(a) 
m=l p=l p=l "'~1 

(3.72a) 

which implies that 
11 

D111 p(ba) = L: D111p(b)Dpe(a) (3.72b) 
p=l 

and so just as in the complex quantum mechanics case (Wigner, 1931, Chap. 
II), the expansion coefficients {D 111 p(a)} form ann x n matrix representation of 
the symmetry group { Ua }. 

Although one might suppose that the Dme(a) form a quatcrnion-valued 
representation of the symmetry group, we will show that in fact D111p (a) always 
lies in the C( I, i) subspace of the full quaternion algebra for nonzero E. Multi
plying Eq. (3.71) from the right by Ei and using Eq. (3.70), and then using Eqs. 
(3.71) and (3.70) a second time, we get 

11 n 11 

L lhm)Dme(a)Ei = Ualhi)Ei = ifUalhe) L if lhm)Dme(a) = L lhm)EiDmt(a) 
111=1 111=1 m= I 

(3.73a) 

which implies that forE I= 0 we have 

[Dmc(a)., i] = 0 (3.73b) 

Thus, forE I= 0, the { D111p( a)} form a complex <C( I, i) matrix representation of the 
symmetry group { Ua}, just as in the standard complex quant~m mechanics case!9 

We see, then, that the representation of symmetries of H does not lead to a 
quaternionic matrix representation problem. In particular, although quaternio
nic representations of general compact groups, 10 and specifically of the rotation 
group, 11 have been analyzed in the literature, the angular momentum analysis 
for spherically symmetric Hamiltonians if will only involve the standard 

9 ForE= 0. the argument leading to Eq. (3.73b) breaks down. and quaternionic representations Dm1(a) 
arc possible. As discussed in Sec. 12.3, this exceptional case can be of relevance for vacuum spontaneous 
symmetry breaking in quaternionic quantum mechanics. 

We note at this point that there can also be symmetry operators that anticommute with if. See, for 
example, the discussion of time reversal in Sec.4.6. 
10 Quaternionie representations of general compact groups have been discussed by Emch (1963) and by 
Finkelstein, Jauch, and Speiser ( 1963); see also Dyson (I 962). To state the basic result obtained by these 
authors. we note that if Dis a CC(I. i) complex group representation, then it is also a quaternionic group 
representation, sinc:e CC(I, i) is a subalgebra of the quaternions IH. The issue is then under what circ:um· 
stances a representation D that is irreducible over CC becomes reducible when CC is embedded in IH. The 
answer is that if Dis of Frobenius- Sc:hur class 0 or +I. then Dis also irreducible over IH, whereas if Dis of 
Frobenius- Schur class -I. then D reduces over IH into two representations D1 ED D 2 , with D 1 and D 2 
equivalent and irreducible over IH. [For a derivation of the Frobenius- Schur classification, see Wigner 
( 1931 ), English ed., pp. 285 287.] We wiil return to this point in greater detail in Sce.l3.4. 
11 See Sec. 8 of Finkelstein. Jauch, and Speiser (1959), and Sees. 12.3 and !3.4. 
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complex representation theory for the rotation group. Similarly, the analysis of 
translation invariance in multi particle systems and of parity invariance proceed 
as in complex quantum mechanics, and as discussed in Sec. 9.2, only complex 
representations of the symmetric group are needed for identical particle systems 
in which the Hamiltonian has a particle permutation symmetry. 

Because the argument leading to Eq. (3.73b) is of such central importance 
(particularly in the discussions of scattering theory in Chapters 6, 8, and 9 and 
of the Poincare group in Chapter 12) we restate it, with group index a suppres
sed, in the form of a lemma (Adler, 1990): 

Lemma I: Let U be an operator that commutes with the quaternionic 
Hamiltonian if, 

- -
HU= UH (3. 74a) 

and let {/h111 )} be a complete set of if eigenstates with quaternionic phases 
chosen so that 

(3.74b) 

Then (h111 / U/h 11 ) vanishes if £ 117 c/c E17 , and if E111 =En c/c 0, then (h111 / U/h 11 ) is 
complex [:(I, i). 

To prove Lemma I we follow the method of Emch (1963) used in Eq. (2.44). 
Taking the matrix element of Eq. (3.74a) between (h111 / and /h11 ), we have 

(3.75a) 

Equating the absolute values of the left- and right-hand sides of Eq. (3.75a) then 
g1ves 

which implies that 

and setting E111 = En c/c 0 and dividing by En gives 

i ( hm i U/ hn) = ( hm/ U/ hn) i, 

which implies that (h 111 / U/hn) is a::(!. i). 

3.6 SIMULTANEOUS DIAGONALIZATION OF MUTUALLY 
COMMUTING SELF-ADJOINT AND ANTI-SELF-ADJOINT 
OPERATORS 

(3.75b) 

(3. 75c) 

(3.75d) 

In complex quantum mechanics, any anti-self-adjoint operator can be made self
adjoint by multiplication by i, and so we are accustomed to the fact that all 
operators of physical interest observables such as the coordinates, and 
symmetry generators such as the momentum and the Hamiltonian-are repre
sented by Hermitian operators. A standard theorem of complex quantum 
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mechanics then tells us that any set of mutually commuting Hermitian operators 
can be simultaneously diagonalized, and it is customary to label the eigenstates 
comprising a complete set of states by the eigenvalues of an appropriately 
chosen maximal set of commuting Hermitian operators. In quaternionic 
quantum mechanics, by contrast, an anti--self-adjoint operator cannot be trivi
ally converted to a self-adjoint one by multiplication by a c-number [the 
"phase" !A of Eq. (2.42b) is an operator], and so we must deal with the 
symmetry generators in their original anti-self-adjoint form. The quaternionic 
analog of a complete set of mutually commuting complex Hermitian operators 
is then a complete set of mutually commuting quaternion self-adjoint and 
quaternion anti-self-adjoint operators. Such a set of operators can also be 
simultaneously diagonalized. with the eigenvalues all lying in the complex a::( I. i) 
subspace, as we shall now show by an extension of the method used to discuss 
the representation of symmetries in Sec. 3.5. 

We state our result in the form of a second lemma: 

Lemma 2: Let O(l)· .... O(n) be a mutually commuting set of operators 
that are either quaternion self-adjoint or quaternion anti-self-adjoint, 

s = I, .... n (3.76a) 

Then we can find a basis of states in the quaternionic Hilbert space of the 
form 

with a( I)• ...• o(n) real. For each s = I ..... n we have 

with 

. -'( . -{0 l.(s) - 2 I - C.(s)) - 1 
if£( 1) =I. 
if [;(1) =-I 

(3.76b) 

(3.76c) 

(3.76d) 

and with any one of the anti-Hermitian operators (say O(S)) having non
negative eigenvalues, 

some S with £(s) = -I (3.76e) 

We prove Lemma 2 by induction. For n = I. the lemma is equivalent (apart 
from a change in state labeling) to the spectral theorems for self-adjoint and 
anti-self-adjoint operators given in Sees. 2.2 and 2.3. Let us now suppose that 
the lemma has been proved for n - I ;:, 0 and focus on the state or states with a 
specified set of eigenvalues o( 1) ••••• o(n-l l. Treating the generic case in which 
these form an N-fold degenerate set, we have by the induction hypothesis a set 
of orthonormal states 

f.=l. .... N (3.77a) 

obeying(fors= l, ... ,n- I) 

(3.77b) 
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Let us now add a self--adjoint or anti--self--adjoint operator 0(11 ) that commutes 
with the operators O(l)· .... 0(11 -1)· 

i 
0(11 ) = 8(11)0(11), £(11 ) = ±I 

[O(n)· Or,Ji = 0, s = I, .... n- I 

For any basis state jo(l)· .... o 111 _ 1);f) and any s <::: n- 1 we have 

0(1)0(11)/oll)· ... '0(11 I); f)= O(n)O(s)io(l)• ... '0(11-1): £) 

= 0(11) /o(l)· .... 0( 11-1): f-)/l•io(.1) 

( 3. 78) 

(3. 79) 

and so the state 0(11 ) /oc 1), .... 0( 11 __ 1); f) must be a linear combination of the basis 
set of Eq. (3.77a), 

(3 .SO a) 
m~ I 

Orthonormality of the basis set implies that the coefficients c~;J are just the 
matrix elements 

(l1) - ( · I I · ) emf - 0(1)· .... 0(11-1)· m 0(11) O(J): ... '0(11-l)· £ 

and from the adjointness properties of O(n) we deduce 

c');;~ = (0(1)•·••·()(11 1):£10(11)10(1)•·••,0(11-l);m) 

= (o(l)· .... 0(11-1): mjOi11 )ioriJ• · · ·, O(n-1): f) 
.( 17) 

= 0(11)(1/lf 

(3.80b) 

(3 .SOc) 

and so the coefficients C111
) form an N x N quaternionic self--adjoint (or anti--

m~ 

self--adjoint) matrix when t:( 11) =I (or- 1). 
Let us now consider separately two cases. In case (i), either all the operators 

0 11 ), ... , 0( 11 __ 1) are self--adjoint, or if there are any anti--self--adjoint operators 
among the set 0 11 ) •.... O(ll-l)• then their corresponding eigenvalues in the set 
o(l)· ... , o(l1-l) are zero. Either way, no complex subspace of the quaternion 
algebra is singled out by the induction hypothesis of Eq. (3.77). since i 1

·1•1o(,) is 
either nonzero and real, or zero. We can then invoke the spectral theorems for 
quaternion self--adjoint and anti--self--adjoint operators of Sees. 2.2 (~nd 2.3, 
which when applied to the N x N quaternionic coefficient matrix C

1
;;f tzl\ us 

that we can always find a quatcrnion unitarv matrix U( 11
) that reduces C 11 to 

J mf 
canonical diagonal form, 

(3.8!a) 

so that 

(3.81 b) 

with o(ll) diagonal and real when c\n) is self--adjoint, and with o(l1) diagonal and 
<C( 1. i) imaginary when C( 11

) is anti--self--adjoint. Defining a rediagonalizcd basis 
by 
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(3.82a) 

we find that the analog of Eq. (3. 77b) st1ll holds: 

N 

0(,) Ia(! )· .. · · o(n-1): £)' = L Ia( I)'···, O(n-1); m)i 
111 =I 

s=l, ... ,n-1(3.82b) 

by virtue of the fact that i 1
(' 1o(s) is real when nonzero. Acting now with O(n) on 

the rediagonalized basis, we have from Eqs. (3.80a), (3.8lb), and (3.82a). 

v 
0 I 

. '")' - ~ 0 I . ) ',(n) (n) o(l), ... ,o(n-1)·{. - L (n) o(l) ..... o(n-l)·m umi 
m~l 

V N 

= L z:= !ott), ... ' O(n-1) :p)C/V,;l u~;) 
mcccl p=l 

iv- i"l 

= L2)o(!), .... o(n-l);p)U~,',;o~;J 
m~-1 pc- I 

N 

= L lo(l), ... , o(n-l):m)'o;;,') 
m~ I 

(3.82c) 

This has the form of the induction hypothesis, with the operator O(n) added to 
the original set of n- I operators, and with the states lo( 1) •••. , o( 11 ): £)identified 
with the basis states lo(l)• .... o(n- 1):m)' corresponding to the various diagonal 
blocks of o(n). 

We next consider case (ii), in which among the operators 0(1)· .... O(n- 1) 

there is at least one anti-self-adjoint operator O(R) with a nonzero eigenvalue 
O(R)' 

(3.83) 

Using the fact that O(R) and O(n) commute. combining Eqs. (3.80a) and (3.83) 
gives 

= O(R)O(n)lo(l), .... o(n-1):£) 

= O(n)O(R)Io(l)·· .. ,o(n-1):£) 

= O(n) lo( 1), · · .. O(n-1): £) io(R) 

:v '>-' I ) (n) . = "-' 0(1)· ... ,O(n-l):m C111flO(R) 
m~ I 

(3.84a) 
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which since o(R) cjc 0 implies that 

(3. 84b) 

or in other words, the coefficient matrix C,~~) is <C( I. i). Then applying the usual 
theory for complex self-ad~oint or anti-self-adjoint matrices, we know that there is 
a <C( I, i) unitary matrix U11~) that diagonalizes c~:). Hence defining a rediagona
lizcd basis as in Eq. (3. 82a), the action of O(s), s = I, .... n - I and of O(n) on the 
rediagonalized states is still as given in Eqs. (3.82b,c), with the diagonal matrix d"l 
automatically <C(l. i). By identifying the basis states ioll)• ... , o(n): 1:~ with the 
primed basis states corresponding to the various diagonal blocks of o(n , we again 
recover the induction hypothesis, with the operator O(n) added to the original set. 

Finally, we note that if O(S) is any anti-self-adjoint operator among the set 
0!1)· ... , O(nJ• then we can make the corresponding eigenvalues o(s) nonnega
tive by an appropriate choice of ray representatives for the states 
lo( 1), ... , o(n): f). (Wherever the original o(S) is negative. reray the corresponding 
eigenstates by multiplication by j from the right.) This completes the proof. 

As an application of Lemma 2, let us consider the case, discussed in Sec. 3.2, in 
which fi is rotationally invariant. Then the operators fl.l 3 , and L 2 form a 
mutually commuting set o_f operators; note that one of these operators (L2

) is 
self-adjoint and two (L3 . H) are anti-self-adjoint. By Lemma 2, and noting the 
angular momentum spectrum given in Eq. (3.38), we can find a basis of ~tates 
IE,£. m) in quaternionic Hilbert space that are simultaneous eigcnstates of H, L 2 , 

and L3, and for which the eigenvalue E associated with fi is nonnegative, 

HIE,f.m) = lr.',f,m)iE, E> 0 

I}IE,f.m) = IE,f,m)f(f+l), £=0,1,2, ... 

m = -P, -P + I, ... , P (3.85a) 

The analysis of Sec. 3. 5 tells us that the wave functions (xl£, fi, m) must trans
form under rotations as a basis for the angular momentum fi representation of 
the rotation group, with complex <C( I, i) representation matrices acting from the 
right as in Eq. (3.71). This implies that (xiEJ m) must have the form 

(3.85b) 

with R1m a quaternion but with Yem the usual complex <C( I, i) spherical har
monic. Equation (3.85b) provides the starting point for the angular momentum 
analysis of the wave function in quaternionic quantum mechanics, and it will be 
used in Sec. 6.2. 

As a second application of Lemma 2, we consider the case, discussed in 
Sec. 3.1, in which fi is a translation-invariant multipartiele Hamiltonian. 
Letting P1 be the translation generator introduced in Eq. (3.19b), the anti-self
adjoint operators fi and Fe, 1: = I, 2, 3, now f~rm a mutually commuting set. 
By Lemma 2, we can find a basis of s_tates IJ:, P) in quaternionic Hilbert space 
that are simultaneous eigenstates of Hand Pt, and for which the eigenvalue E 
associated with fi is nonnegative, 

HIE, P) =IE. P)iE, 

Pel£, F)= IE,P)iPf, 

E>O 

(3.86a) 
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The analysis of Sec. 3.5 now tells us that the wave functionsj {x(s)}!E P) must 
1ransform under translations as a basis of the momentum P representation of 
the translation group, with complex C:::( I, i) representation matrices acting from 
the right. So ({x(s)}l£. P) has the form 

(3.86b) 

with f a quaternion-valued function of the coordinate differences and X the 
center of mass coordinate defined by 

(3.86c) 

Equation (3.86b) gives the separation of the center of mass motion in a trans
lation-invariant, multiparticlc quaternionic quantum system. 

In both of the preceding applications of Lemma 2, we sec that some of the 
members of the mutually commuting set arc anti-self-adjoint. This situation is 
completely general, as is made clear by the following: 

Corollary 1 to Lemma 2: A mutually commuting set of quaternion self
adjoint operators can always be extended to include a quatcrnion anti-self
adjoint operator with eigenvalues of unit magnitude. Specifying the 
eigenvalues of this operator to be i fixes the choice of ray representatives 
for the corresponding eigenstates up lo a complex q 1. i) phase. 

To prove this corollary, let us suppose that O(l)• ... , O(n) constitute a set of 
commuting self-adjoint operators. Then, by Lemma 2, we can span the quater
nionic Hilbert space with states of the form 

(3.87a) 

with 

(3.87b) 

and with o(s) real. Consider now the operator, with eigenvalues of unit magni
tude, 

(3.87c) 

where the sum extends over a complete set of states (i.e., we include the 
complete span of all degenerate manifolds). Since o(s) is reaL for any s we have 

O(sP(n+l) = L Ia( I):···, O(n))o(,)i(o(l)o .. ·, O(n)l 

= L lo(J), ... , O(n))io(s)(O(J): .... O(n)l = O(n,IP(s) 

(3.87d) 

and therefore the set of commuting operators can be extended to include O(n·f 1 )· 

We can now rela?el the states in our complete basis as lo(l)• ... , o(n)• o(n+J)) with 
o(n+l) = 1 and with 

(3.87e) 
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If we change the ray representative by multiplying by a quaternionic phase w 
from the right, then the 0 111 ,_ 1) eigenvalue changes to wiw, 

and the eigenvalue is left invariant only when 1n E C( I. i). 
As a concrete illustration of Corollary I, consider the case of coordinate 

eigenstatcs !x'), which obey the eigenvalue equation 

£ = I, 2, 3 (3.88a) 

For any quaternion-valued function f(x') of the eigenvalues x', we can define a 
corresponding function of the operator x by 

f(x) = / d 3 Y'Ix')f(x')(x'l (3.88b) 

and by the same argument used to prove Corollary I J(x) commutes with the xp, 

[f(x).x;] = 0 (3.88c) 

In particular, forf(x') = i we get 

f(x) =I=./ d 3
x'lx')i(x'l (3.88d) 

which commutes with the xp. Even though I is formally a function of x, it can be 
used to distinguish between the different ray representatives for lx). Regarding 
Xf. I as an extended commuting set of operators, the state lx) can be relabeled, 
from the viewpoint of this extended set, as lx, I), with 

I lx, I)= lx, l)il (3 .88e) 

An alternative notation, which conforms with that of Sec. 2.3, is to include the 
quatcrnionic phase of the eigenvalue of I in the state label by writing lx, I) as lx; i), 

xflx: i) = lx: i)xp, I lx: i) = lx; i)i (3.88f) 

The advantage of this latter notation, which will be used in Sec.4.3, is that the 
choice of ray representative can be indicated [up to a a::( I, i) phase ambiguity] in 
the state label. Thus, with lwl = I and with iw = iiJiw, we have 

lx: i)w = lx: i,0 ) 

xplx; iw) = lx: iw)Xt 

Ilx:iw) = lx:iu,)iw (3.88g) 

The construction used in Corollary I can also be used to convert anti-self
adjoint members of a mutually commuting set to self-adjoint form, as reflected 
m: 

Corollary 2 to Lemma 2: Let 0(1), ... , O(n) be a mutually commuting set of 
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quaternion self-adjoint or anti-self-adjoint operators. These can be 
replace~ by an e9uivalent mut.u~lly comm.uting set 0(1)· ..... O(,,)·.o(n-+l)• 
wtth_O(I)•

2 
.. ,o(n) all self-adJoint and wtth 0( 11+1) antJ-self-adJotnt and 

obeymg o(n+-1) = -1. 

To prove the second corollary, we again invoke Lemma 2 to span the 
quaternionic Hilbert space with states that diagonalizc 01 .... , 0 11 as in 
Eq. (3.76b). We then construct O(n+ I) as in Eq. (3.87c), which immediately 
g!ves ofn ~I)= .-1, and we note that Eq: (3.87d) isi still valid when the real 
eigenvalue o(s) IS replaced by the <C(l, 1) e1gcnvalue 1 1' 1o( 1), and consequently 

s = I, ... , n (3.88h) 

We now define the operators O(s) by 

if t:(s) = I. s = 1, .... n 
if l:(sl = -1, s = 1, ... , n (3.88i) 

which by construction arc mutually commuting and self-adjoint. Note that if 
O(n+ I) is already some member O(R) of the set O(l)• ... , O(n)• then the corre
sponding self-adjoint operator O(R) is just a multiple of the umt operator. As an 
illustration of Corollary 2, in the rotationally invariant example of ~q. ~3.85a), 
the equivalent mutually commuting set can be taken as I HI, L , and 
L~1 

if) = -I iiL3, which are self-adjoint, together with I 11. Similarly, in the trans
lation-invariant multiparticle example of Eq. (3.86a), the equivalent mutu;:dly 
commuting set can be taken as IHI and P~111 ) = -If!Pr.,_ which are self-adjoint, 
together with I if' As we shall see in Sec.5.4, even when H has a relatively simple 
G1lilean invariant structure, the operators IHI and Iii (and hence also L~111 ) and 
P~ 11

)) are very complicated and highly nonlocal. Consequently, the transfor
mation to standard form suggested by Corollary 2, although of formal interest, 
is generally not of practical value. However, we will make use of Corollary 2 to 
give a simple proof of the following further result: 

Corollary 3 to Lemma 2: Let O(l)• ... , O(n) be a mutually commuting set 
of quaternion self-adjoint or anti-self-adjoint operators. Let 
Ia( I)• ... , o(rl)) and 18(1)• ... , o(n)) be two simultaneous eigenstates of 
these operators, as defined in Lemma 2. Then either (i) the two states 
are orthogonal, or· (ii) the states have ray representatives for which 
o(i) = r!(i) for allj= l. ... ,n. 

To prove the third corollary, we usc Corollary 2 to replace 0( 1), ••• , O(n) by 
0( 1) •••• , O(n), O(n,-l) with 0( 1), •.• , O(n) self-adjoint. By the analysis of Sec. 2.2, 
the eigenvalues o'1, ••• , o;, on the first state must equal the corresponding eigen
values 8'1, ••• , a;, on the second state, or the two states are orthogonal. By the 
analysis of Sec. 2.3, either the eigenvalues o,,, 1 and oil+l are in the same auto
morphism class, in which case the states can be rcrayed (without changing the 

I . I I I A/ AI ) k A I h rca e1genva ues o1, ... , 0 11 , o1, ... , o
11 

to rna e 0 11+1 = On+-l, ore set estates are 
orthogonal. Hence either the two states are orthogonal or they have ray repre
sentatives that have identical eigenvalues for the operator set 
0'(1)• ... , O(n)• 0( 11 +1), which implies identical eigenvalues for the original 
operator set 0(1), ... , O(n). 
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3.7 SPIN ANGULAR MOMENTUM AND HAMILTONIAN 
STRUCTURE 

In discussing angular momentum in Sec. 3.2, we considered only the spinless 
case in which the quaternionic wave function f has a single component. Let us 
now turn to the case in which there is a single spin-1/2 degree of freedom, 
corresponding to a two-component wave function. We wish to characterize the 
structure of a set of operators consisting of the angular momentum generators 
] 1 with spin terms included. which obey the angular momentum algebra 

[Jf, J/11] =- L Cf/1111]11 (3 .89a) 
,, 

together with a rotationally invariant Hamiltonian if with which they commute, 

(3 .89b) 

Invoking Lemma I, we know that with the standard ray representative choice 
for energy eigenstates 117111 ), the action of rotations on the wave functions (xlhm) 
is described by 

(3 .90) 
11 

with complex <C(l, i) representation matrices D, 111 (Jf). Since right multiplication 
of the quaternionic wave function (xlhn) by iis the same as left multiplication by i 
(for the ex-symplectic part) or -i (for the fl-symplectic part), Eq. (3.90) implies 
that the spin-1;2 part of ]f(x) can be_represented by <C(l, i) spin matrices, or 
equivalently, that the spin-! /2 part of h can be represented by <C(l ,/) spin mat
rices. 12 Hence we introduce the usual Pauli spin matrices in <C( I, I) form, 

(
0 -1) 

a2 = I 0 ' (3.9la) 

12 To elaborate on this argument, we note that the D,,..(./1 ) in Eq. (3.90) can in general be a reducih/e 
representation of the rotation group. Once we know that J, is I[ (I.!), we see that when we use Eqs. (2. I 2a
c) to split lh,,) into symplectic components according to lh,..) = lh,l'l) + llhmfJ), then rotations do not mix 
the 'and (i parts of lh,,), and so Eq. (3.90) can be reduced to 

J,(x)(xlh,l'l) = ~(xlh,,)D;,,,(lt). lr(')j(,lhmf!) = ~j(\lhn/i)Di:"'(JI) 
" " 

with n;,,,(./1) and n(;,,(l1) P()tcntially d~fferent representations of the rotation group. In fact. with lr a 
("(1.1) matnx, we have D;,,(l1 ) = n;,;,(J1 ). because the left-acting algebra formula 

lrlh,,) = ~ D,,(JI· !)lh,) = ~ D,,,(Jr.I)(Ih,n) + llh,fi)) 
!/ !1 

can be rewritten, using Eq. (2. I 2b). as 

.lrlhm) = ~:lh,,)n,,(Jr. i)" llhnf!)D~,,(Jr. i)] 
" 

and thus gives the right-acting algebra formula 

lr(x)((xlhm,) +j(xlhmfl)) = (xll;lhm) = ~[(xlh,,)Dnm(lr.i) +j(xlhnfi)D~,,(J,.i)j 
" 

These formulas are a rotational analog of the connection between left- and right-ordered definitions of the 
Fourier transform defining the momentum representation. given in Eq. (3. 12a). 
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in terms of which we can construct anti-self-adjoint spin operators Sr, 

1: == I, 2, 3 (3,91 b) 

which obey the angular momentum algebra 

(3,9lc) 

The total angular momentum generators .!1, including both orbital and spin 
terms, are then given by 

- - -
.!1 = L; + Sl, L, == L Cfmn Xm fin 

m.n 

and obey the angular momentum algebra of Eq, (3.89a), 

(3.9ld) 

Let us now c;onsider the construction of a rotationally invariant Hamilto
nian if_ We would like to proceed by making a symplectic decomposition of 
fl, but we iml_!lediately notice a problem: since S1 is Q:( I. 1), .! does not 
commute with .!1 and so is not a rotational scalar! To deal with this. we note 
that the operator .Ja2 commutes with all three of the Sr (and correspondingly 
anticommutes with all three of the a1), It commutes with Su because I antj
commutes with .! and a2 anticommutes with au. and it commutes with S2 
because the formally real operator la2 commutes with both a 2 and .!. There
fore . .Ja2 is a rotational scalar, 

(3.92a) 

and so it can be used to make a symplectic decomposition of if, 

(3.92b) 

in which both H"l and Hf! are rotational scalars. Expressing this in algebraic; 
terms by substituting Eqs, (3.92a.b) into Eq. (3,89b). the condition on H 
separates into independent conditions on H, and Hf!· 

(3,92c) 

These conditions are now satisfied by 

Hr! = H~ + Ls,H~ (3.93a) 
I 

with H;_f! both Q:( I, I) orbital angular momentum scalars satisfying 

- s .. s . 
rs,.u'l.f!l = [L1.H7 r!J = o (3.93b) 

and with H~f!l both Q:( 1./) orbital angular momentum vectors satisfying 

(3.93c) 
II 

The condition that fi be anti-self-adjoint imposes the restrictions 
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(3,94a) 

on the ex-symplectic components. To get the corresponding restrictions on the 
{3-symplectic components, we use 

( 3.94b) 

When combined with the condition that if of Eq. (3.92b) should be anti-self
adjoint, these give 

( 3.94c) 

that is, 

(3.94d) 

with ' denoting the <C( I. I) conjugation I---" -I and with T denoting the opera
tor transpose acting on the nonspin degrees of freedom, Equations (3.92b), 
(3,93a-c), and (3.94a.d) characterize the structure of a rotationally invariant 
Hamiltonian when spin is present. We shall see in Sec, 11.5 that they are in 
agreement with the spin Hamiltonian obtained from the nonrclativistic reduc
tion of the quaternionic Dirac equation. 



II 

Non relativistic 
Quaternionic Quantum 

Mechanics 

In the preceding chapters we have developed features of quaternionic 
quantum mechanics that are independent of the detailed structure of the 
Hamiltonian operator {I, To proceed further, we now introduce more specific 
dynamical assumptions, Here, in the chapters comprising Part II. we postu
late nonrelativistic kinematics for the kinetic part of if and develop in detail 
the structure of nonrelativistic quaternionic quantum mechanics. In keeping 
with the assumption of nonrelativistic kinematics, we will assume throughout 
Part II that in the absence of spin (or internal symmetries). the wave function 
has only a single component. 1 Not ~ll the results of Part II depend on the 
specific nonrelativistic structure of H~ those sections that are more general 
(and that could equally well have been included in Part I) are labeled by a 
dagger (t). Subsequently, in Part Ill, we will introduce relativistic quaternio
nic Klein-Gordon and Dirac equations, and give a systematic treatment of 
one-particle relativistic quaternionic quantum mechanics, We will see there 
that the nonrelativistic reduction of the quaternionic Dirac equation leads to 
quaternionic potential models of the form studied in the chapters that follow. 

1 
This distinction is important because we will sec in Sec. 11.6 that the relati\·istic quaternionic '"'"" 

equations can be reduced to a semirelativistic two-component form. in which particle and antiparticle 
solutiOns remain coupled but obey nonrelativistic kinematics. As outlined m Sec. ll 7. the semirelativistic 
quatcrntonic wave equation has substantially diffet·ent properties from the nonrelativtstic equation studied 
in Part 11. 
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One-Particle Quantum 
Mechanics-General Formalism 

4.1 RESTRICTIONS ON THE FORM OF H FROM 
TRANSLATIONAL, ROTATIONAL, AND GALILEAN 
INVARIANCE 

We begin the discussion of nonrelativistic quaternionic quantum mechanics by 
analyzing the allowed form of if for a single-particle system, We will assume, as 
is done in complex nonrelativistic quantum mechanics, that if is invariant under 
Galilean transformations and that the kinetic or noninteracting part of fi is 
rotation and translation invariant. In analyzing the implications of these 
assumptions, we follow the method used in Sec, 13-4 of Jauch (1968a) in the 
complex quantum mechanics case [see also Mackey (1968), and Feynman as 
described in Dyson (1990)], and so work in the coordinate representation (cf, 
Sec, 2.4), and use the Heisenberg picture (cf. Sec. 3,3) to describe time evolution. 
For brevity of notation, we omit the subscript H for Heisenberg picture opera
tors and denote the coordinate representation Hamiltonian if(x) as simply fl. 2 

Then, letting x = (xi, x2, x3) be the Heisenberg picture coordinate operators, 
th(~y obey the Heisenberg equation of motion 

~ dx [-~l 
X= dt =o H,x ( 4.1) 

2 Note that in the Heisenberg picture, the left-acting algebra operators I. J. K become the time-dependent 
operators 

with U(t. 0) as in Eq.(3.52a). The corresponding coordinate representation operators i11 (x)-iH(-'"). k 11 (x) 
are then defined by 

In keeping with otlr abbreviated notation, we denote i11 (x).fn(x).kH(x) by i.i.k. but it should be kept in 
mind what is really meant. One should also note I hat although the Heisenberg picture state vector is, by 
construction, time independent. its formally real con~ponents, as defined by the Heisenberg picture tran
scription of Eq.(2.12d), are time dependent as a consequence of the time dependence of the left algebra 
operators !11. JH. KH· 
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The assumption of Galilean invariancc means that physics (i.e .. the set of 
transition probabilities) is the same whether described with respect to the 
original coordinates .'!or with respect to a new coordinate frame moving with 
velocity r relative to the original one. with the coordinate origins of the two 
frames momentarily coim:ident. 3 As we saw in Sec. 2.3. in quatcrnionic 
quantum mechanics. invarianccs of the transition probabilities can always be 
realized as unitary transformations on quaternionic Hilbert space. Hem:e, in a 
Galilean-invariant system, there must exist a unitary transformation Gl' 
describing the connection between the original and the boosted coordinate 
frames. This transformation must obey the group multiplication law of Gali
lean transformations, 4 

( 4.2) 

must leave the coordinates invariant 

G ~c-1 
r·X r' ( 4.3) 

and must simultaneously increment the velocities by i', 

( 4.4) 

Our task is to analyze the implications of Eqs. ( 4.1 )-( 4.4) for the structure of if. 
In general, G,· could be an operator of the form Gl'(x. t, \!\ ), but since Eq. 

(4.3) is equivalent to 

( 4.5) 

1 Such a nan>fonnation is called a pas.1ir~ Galilean transformation by Piron (1976), as di>tinct from an 
uctil·e Galilean transformation. to be discussed in Sec. 4.2. in which the coordinate origins of the two 
frames arc displaced by an amount 1'1. 
4 Although Eq.(4.2) b clearly consistent with Eqs.(4.3) and (4.4). it is not implied by them. It i> easy to see 
that Eqs.(4.3) and (4.4) require only that G, obey a projective representation (Bargmann. 1954) of the 
Galilean group. c,, G,-. _ .. G,,_,,r•J(ri.l'2L with ro(1'1· ~'cl a quatcrnion umtary phase obeying 
[oJ(1'1.1'2 ) •. \']-= [w(i",.1.2 ) .. 'c'l ~-- 0. We have not attempted to analyze the case of general <•J. but as in the 
discuS>ion of the Poincare group in Sec. 11.3. we can give a heunstic argument that applies to the multi· 
central case (also discussed in the text in Sec. 4.3) in which 

for each pair 1'1 • 1•2. As usual in Lie group arguments. it suffices to consider the infinitesimal case. so 
we write G- ~- c'1 A G- = e'··A and use the Baker Campbell-Hattsdorff formula [Eq.(4.83a) in the ll ' 1:::> . 

text] to write 

Since the defining fonnu)a 1m plies that m(i:,_ 0) ~ w(O. f2) -- I. and since G,, H·- is symmetric in 1'1 and f2. we 
must have w = t> 1 ;;-1 x 

1,.~ ~ 81 
·· • wilh ~ r1,·1 · A'. 112 · A' = ( r'1 x (1) · iJ. However, sinCe w colnmutes with .t and.~. 

we cannot use \'or 0, to form k In Sec. 12.3 we will sec that - ~ ~· = - ,( (1. i. k) obeys the angular momen
tum commutation algebra; hence if a term - ~<1 is included in the total angular momentum. <'transforms as a 
rotational vector and can potentially be used to construct the needed vector B. A term (1''1 x 1'2 ) · e·can 111 fact 
arise as a commutator 1"1 · e·. 1'2 · e]. but for linearly independent 1'1 . 1'2 . '(1'1 x l''c) · z:.J', 2 · il # 0. contra
dicting the assumption of multiccntrality. Since there is no other obvious candidate for B. this argument 
suggests jj = 0. and G,-

1 

G,.·, -" G,
1

_ ,_..An analogous argument shows that the coordinate-space t"tnslation 
group has no multieentral projective representations. 

Note that the coordinate representation phase w(1'1·\2 ) used 111 this footnote is a shorthand for 
ro(x: i: 1'1. 1'2 ). in the expanded notation of Eq.(4.44) and Eqs.(3.~8f.g) med in Sec. 4.3. 
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G1 can have no dependence on '\}, and is diagonal in the coordinate repre
sentation. The spectral analysis for quaternion unitary operators (cf. Sec. 2.3) 
and the Abelian group multiplication law of Eq. (4.2) then require Gr to have 
the form 

( 4.6d) 

with/anti-self-adjoint and with the componentsfi 2. 3 mutually commuting. By 
the spectral theorem for anti-self-adjoint operators, the components fu. 3 have 
the form5 

j((.'f. t) = e1 (.Y, t)F1 (x. t). f: = 1. 2. 3 (4.6b) 

with the e1(x. t) unit quaternions and the F1(x. t) real. For the componentsfu 3 
to be mutually commuting, we must, however, have [by Eqs. (1.35a,b)] 

e(x. t) e1 (x. t) = :±e2(Y. t) = ±e,(x. t): ( 4.6c) 

absorbing the ::t: signs into the definition of Fu. 3 , we thus arrive at the structure 

G
- _ 0 -e(u)l'F(u) 
J'- L 

with e(x. t) a unit imaginary quaternion, 

c(x. t) =' -c'(x. t) 

e2 (x. t) = -1 

and with F(x. t) real. Expanding Eq. (4 .. 6d) as 

G..,= cos[V· F(x, t)] - e(x. t)sin[V· F(x. t)] 

( 4.6d) 

( 4. 7) 

( 4.8) 

we see that the dimensionless argument v · F(x, t) of the cosine and sine must 
satisfy the requirements of rotational and translational invariance. Rotational 
invariance around .1? = 0 reg uires 

F(x, t) = 5'!f(.1?1
. t) ( 4. 9a) 

and translational invariance in space and time then further requires that 

f(.1C2 , t) = m = a constant (4.9b) 

Hence to satisfy the requirements of Eqs. (4.2) and (4.3), and of rotational and 
translational invariance, G.., must have the structure 

(4.10) 

'At this point in the argument we make essential usc of the assumption that Gee acts on a one-component 
wave function. 
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Let us next usc the information contained in Eq. (4.4). Abbreviating 
e = e(x. t) in Eqs. (4.lla)-(4.15a) that follow. we define a quaternion covariant 
derivative !5, by 

(4.lla) 

By virtue of the fact that 

(4.llb) 

the covariant derivative !5, is anti-self-adjoint, 

~t ~t I ~ ~ I ~ 
D.='-'.-- e('-' e)=-'-'.--('-' .e)e .\ v .\ 2 v .\ v \ 2 v .\ 

(4.llc) 

The motivation for the definition of Eq. (4.lla) is that !5, parallel transports the 
space-dependent quaternion unit e, as evidenced by the fact that !5, commutes 
withe, 

(4.12a) 

A second commutator involving !5,, which is needed for the steps that follow, is 

(4.12b) 

As a consequence of Eqs. (4.12a,b), we have 

[- :
1 
!5,, emv · .YJ = [!5,, v .. YJ = v (4.13) 

and thus taking G.,: from Eq. (4.10) we learn that6 

G- --D. G- = -- D + v ( 
e ~) -I e ~ ~ 

,. m ' ,. m ·' (4.14a) 

6 We use here the identity ciA Be-iA = B + i.[A. B]. valid when [A.[A, B]] = 0, and derived by differentiat
ing with respect to i .. 
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Comparing Eq. (4.14a) with Eq. (4.4), we see that 

(
. e ~) 1 • e ~ 

Gl' .\' + - Dy Gr = x + - Dy 
m m 

(4.14b) 

which, expanding Gl' to first order in v, implies that 

(4.14c) 

By making a symplectic decomposition of -~ + (e/m) Dy with respect to the 
<C( I, e) subalgebra, we learn that the 7.({1) symplectic components defined this 
way, respectively, commute (anticommute) with v · x. Hence the Y. component is 
a function of_"(, and the fJ component vanishes. 7 We conclude that Eq. (4.14b) 
can be satisfied only if 

· e -· I ~ 
."Z+-D\ == -A(x,t) 

m m 
(4.15a) 

with A(x. t) an arbitrary function of x, t lying in the quaternionic subspace 
<C( I, e(x. t)). Equation ( 4.15a) can be equivalently written as 

. I ~ ~ 
_"( =- [-e(x. t)D, +A (x, t)]. 

m 
A(x, t) E <C( I. e(x. t)) (4.15b) 

and so by using Eq. (4.4) we have determined the structure of the velocity 
operator .\'. 

The final step in the derivation is to use Eq. ( 4.1) to determine the structure 
of if. Let us first form the trial Hamiltonian if 0 given by 

- e(x.t)[ ~ ~ ]2 H o = --- -e(x. t)D, +A (x. t) : 
2m 

( 4.16a) 

we note that by virtue of Eq. ( 4.12a) the factor ordering is inessential, and we 
could equally well write 

if o = [ -e(x, t)D, + A(x, t) J ~~:7
12 [ -e(x, t)Dx + A(x, t)] (4.16b) 

Using Eq. (4.12b), we find 

[ii0 ,X] =~[-e(x,t)D,+A(x,t)] =x (4.17a) 

and so comparing with Eq. (4.1) we see that 

[il-il0 ,x]=O (4.17b) 

The details here are as follows. Denoting the (i symplectic component of) +(e/m) i5, by Ail- we have 
F \'.Ail} =' 0. This implies that i(i' .\')2 Ard = 0. wh!ch shows ~hat A11 depends only on >'. r, b_ut not \},. 
The vanrshing of the anticommutat<;r then _implies A11 (.'i'. r) = C(r)ii(i"· .'i'). and finally, since A11 must be 
independent of 1'. we conclude that C(r) = A11 = 0. 
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Equation (4.17b) implies that 

fl- flo= V(x, t) = Vo(x, t) + z'V1 (x, t) +JV2(x, t) + kV1(x, t) (4.18) 

with V0 .... 3 (x. t) local real functions of x, t. Finally, the requirement that fl be 
anti-self-adjoint imposes the conditions 

(4.19) 

on the potentials, with the dagger t as usual indicating quaternion conjugation 
together with operator and internal (and/or spin) index transposition. 

To summarize, then, the requirements that fl be anti-self-adjoint and that the 
underlying physics be rotation, translation, and Galilean invariant, impose the 
very restrictive structure 

- e(x, t) ~ ~ 2 -
H= 

2 
[-e(x,t)D,+A(x,t)] +V(x,t) 

m 

i5, = '\j,- ~e(x, t)('\j,c(x, t)), A(x, t) E C( I, e(x, t)) 

- - T 
V(x. t) = - V(x, t) , 

-~T 

A(x, t) = A(x, t) ( 4.20) 

This result gives the quaternionic generalization of the corresponding Hamilto
nian derived by Jauch ( 1968a) in the complex quantum mechanics case. 

To conclude this section, we note that Eq. (4.20) can be rewritten in an 
alternative form that eliminates the difference in quaternionic structure between 
the scalar potential V and the vector potential A. Again abbreviating e(x, t) by c 
in Eqs. ( 4.21 )-( 4.23a), we consider the expression 

f{ ~ = - [ f5, + A (X. t)] · 
2
;n [ Dx + A (X, t)] (4.21) 

with A a general quaternion-imaginary vector potential. Making a symplectic 
splitting in the form 

{e.AL}=O (4.22a) 

we have 

-, ~ ~ ~ e ~ ~ ~ 

H 0 = - [ D, + c A + A ] · 
2
m [ D, + c A + A _1_] 

=-(i5 +cA)·_!__(f5 +C'A)- [(i5 +cA)·_!__A +A1 ·_!__(f5,+eA)] \ 2m ·' .\ 2m - -- 2m · 
--+ c --+ 

-Al·~Al 
2m 

e ~ ~ 2 -
= ~ ( -eD, +A) + W 

2m 
( 4.22b) 
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with 

(4.22c) 

Hence we see that if~ of Eq.J4.21) differs from if 0 of Eq. (4.16a) only by the 
local quaternionic potential W. Thus we can alternatively write 

( 4.23a) 

with the potential V in Eq. ( 4.23a) differing from the potential V in Eq. ( 4.20) by 
W, and with only an apparent coupling of !5, to the part of the vector potential 
anticommuting with e. The requirement that if be anti-self-adjoint now imposes 
the conditions 

- - T 
V(x, t) = - V(x, t) 

~ ~ T 

A(x. t) = -A(x, t) 

on the potentials in Eq. (4.23a). 

4.2 SIMPLIFICATION OF THE SCHRC)DINGER EQUATION BY 
CHOICE OF RAY REPRESENT A.TIVE 

(4.23b) 

With the coordinate representation Hamiltonian given as in Eq. (4.20), the wave 
functionf(x, t) = (xi f(t)) satisfies the Schrodinger equation 

a .( - .( l iJtf x,t) == -Hf x.t ( 4.24) 

As pointed out in Sec. 2.4, in writing Eq. ( 4.24) we have made a special choice of 
class of ray representatives for the state If ( t)), while for a general ray repre
sentative If( t)w1 ( t)) the Schrodinger equation is modified to 

gt f"(x. t) = -J{f"(x, t) +f"(x. t)hr(t) 

f"(x.t) == (xlf(t)wj(t)) =f(x,t)wj(t) 

h1(t) = (iJt (t)iJw1 (t)jiJt ( 4.25a) 

Note, however, that when w1 (t) is a time-independent constant wr, Eq. (4.25a) 
reduces back to · 

[) '"( - "( ) iJt f x, 1) = -Hf X. t ( 4.25b) 
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and therefore Eq. (4.24) is valid generally for the class of ray representatives 

lf(t)wt ), w1 = constant ( 4.26) 

Independently of the choice of ray representative for If( t)), we can arbitrarily 
change the choice of ray representative for (xl by making the replacement 

(xl--+ w(x, t)(xl, lw(x, t)l =I 

f(x,t) = (xlf(t)) -+f'(x,t) =w(x,t)f(x,t) ( 4.27) 

Corresponding to Eq. (4.24) for f(x, t), the wave function f'(x, t) obeys the 
Schrodinger equation 

0 ·/( -I ·I 

01 
f x, t) = -Hf (x, t) ( 4.28a) 

with the modified Hamiltonian 

- ow(x.t) - e'(x.t) [ ~ ~, ]2 
H' =-

8 
· w(x. t) + w(x. t)Hch(x, t) = · -e'(x. t)D'y +A (x, t) 

t 2m · 

+ V'(x, t) 
- iJw(x t) -
V' (x, t) = -

01
' w(x, t) + w(x, t) V(x. t)(!J(x. t) 

~ I 
A '(x, t) = 2. [(\l,w(x, t))e(x, t)Cv(x.t)- w(x, t)e(x, t)(\7.J1J(x, t))] 

+ w(x, t)A(x, t)(v(x, t) 

~, ~ I '( )( ~ '( )) Dx=vx- 2e x,t vxe x.t 

e'(x, t) = w(x, t)e(x, t)w(x, t) ( 4.28b) 

Since (with arguments x, t implicit) 

( 4.29) 

the new vector potential A' (x, t) commutes with e' (x, t), and thus is in_ the 
<C(l, e'(x, t)) quaternionic subalgebra. Th~refore the modified Hamiltonian H' is 
of the same general form as H, apart from the replacements 
e --+ e', ;{--+ A'' v--+ v'- To summarize. then, the Schrodinger equation of Eqs. 
( 4.20) and ( 4.24) is preserved in form under the following two classes of change 
of ray representative, 

(i) I f(t)) --.I f(t))wt, 

(ii) (x/--+ w(x, t)(x/, 

w1 = constant /wtl = I 

jw(x, t)j = I ( 4.30) 

Let us now usc this form invariance to reduce both the time-dependent and 
the time-independent Schrodinger equations to simplified canonical forms. 
Beginning with the time-dependent Schrodingcr equation, let us choose w(x, t) 
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in Eq. (4.28b) [transformation (ii) of Eq. (4.30)] so that 

e'(x, t) = w(x, t)e(x. t)w(x, t) = i (4.3la) 

which then implies that 

D
~, . ~ 

x = l Vc 

[ ~, ·] A(x,t),l =0 (4.3lb) 

Hence, dropping primes, we conclude that by an appropriate choice of ray 
representative for (xi, the time-dependent Schrodinger equation can always be 
brought to the canonical form 8 

{) -
ot f(x, t) = -Hf(x, t) 

. 2 

H= 2~(-i\l,+/t(x,t)) +V(x,t) 

A(x, t) E <C( I ,i) 
- - T 
V(x, t) =- V(x. t) , 

--+ --+ T 
A(x, t) = A(x, t) (4.32) 

We note that in achieving this canonical form we have not completely fixed the 
ray representative choices of (xi and if(t)), since the form of Eq.(4.32) is 
invariant under the ray representative changes of Eq. ( 4.30) when these are 
restricted to w(x, t) = ((x, t) E <C( I, i) and Wf = (f E <C( 1, i). 

We turn next to the time-independent Schrodinger equation, obtained m 
generic form by assumingf(x. t) to have the exponential time dependence 

f(x, t) =f(x)e-efEt ( 4. 33) 

with C£ a constant unit imaginary quaternion. Substituting Eq. (4.33) into 
Eq. (4.32) gives the time-independent Schrodinger equation in the form 

(4.34) 

Let us now choose w1 of Eqs. (4.25-4.26) [transformation (i) of Eq. (4.30)] so 
that 

E?-_0 (4.35) 

s When e(x.t) is not a continuous function of x. the transformation of Eq. (4.31a) can lead to a 
singular transformed potential A'. as illustrated by the following example (which is suggested by 
the theory of Abelian and non-Abelian monopoles, reviewed in Coleman. 1985). Let 
c(x, t) = :< · e= icosO+jsinOcos¢ + ksinOsin¢ = icosO+jsinOe '¢. Then we find wew = i for 
w = cos(0/2)- ksin(0/2)e-'¢, and the transformation from e to iinduces the vector potential 

This is the "string" vector potential describing a unit Dirac monopole located at r = 0. 
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Again dropping primes, we conclude that by an appropriate choice of ray 
representative for I f), the time-independent Schrodingcr equation can always 
be brought to the canonical form [already introduced via the spectral theorem in 
Eqs. (2.74a), (2.83a), and (3.69)] 

ilf(x) = f(x)iE, E?_-_0 ( 4.36a) 

with the corresponding form forf(x. t) given by 

f(x, t) =f(x)e-IEr ( 4.36b) 

Throughout the remainder of this work, in discussing the time-dependent and 
the time-independent Schrodinger equations, we will always use the canonical 
forms of Eqs. (4.32) and (4.36a,b), respectively. In most of the detailed deri
vations that follow, we will simplify the dynamics by assuming no vector 
potential and a single-component wa\l_c function (i.e., no internal symmetry 
and/or spin structure), in which case H reduces, in coordinate representation, 
to 

- l ~2 - -
H(x) = --\.7, + V(x, t), V(~t, t) = iV1 (x, t) +jV2(x, 1) + kV1(x, t) ( 4.37a) 

2m · 

Equivalently, in representation-independent form, we have 

- I "'2 -
H =--p + V(x, t). V(x, t) = IV1 (x, t) + JV2(x, t) + T(V3 (x, t) (4.37b) 

2m 

with p the anti-self-adjoint translation generator introduced in Sec. 3.1, with 
I, J, K the operators defined in Eq. (2.59a), which commute with both x1 and 
PI, 

(4.37c) 

and with V1.2 3 formally real with respect to the I, J, K algebra. 
Let us now give two applications of the canonical Schrodinger equation of 

Eq. (4.32). First, we can immediately see that multiplication by -i does not 
convert ii to a Hermitian operator. We have in fact 

- I ( ~ )2 -iH = 
2111 

-i'{j, + A(x, t) +V1 - kV2 +jV3 ( 4.38) 

which is self-adjoint only in the complex quantum mechanics limit v2 = v3 = 0. 
Second, from Eq. (4.32) we can easily obtain the form of the Schrodinger 
equation in a frame which, for all times, moves with velocity v relative to our 
original frame, thus giving the explicit implementation of an active' Galilean 
transformation. Defining 

](x, t) = e-1/\(u)f(x + vt, t), (4.39a) 
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a direct calculation from Eq. (4.32) shows that/obeys the Schrodingcr equation 

a , .,_ A 

[)I f(x. 1) = -Hf(x, 1) 

if= _i (-z vx ti(x-, 1)) 
2 
+ v(x, 1) 

2m 
( 4.39b) 

Equation (~.3,9b) has the same form as Eq. (4.32), but with moving frame 

potentials X V which arc related to the~ rest frame potentials by 

A(x, 1) = A(x + I'L 1) 

V(x. t) = iv · A(x +vi, 1) + e-iA(x,r) V(x +vi, l)eiA(x.t) 

= iv· A(x +vi, 1) + iV1 (x +vi. 1) + j(x, 1) V2(x +VI, 1) 

+ k(x, 1) V3(x + vt, 1) 

and with the moving frame quatcrnion units i, j, k related to i,j, k by 

.J(x, I) = e-ii\(x.t)jcl\(x.t) = je2i.\(x,r) 

k( x' I) = e- iA( u) kei,\(x.t) = keh\(x.t) 

4.3 PROJECTIVE GROUP REPRESENTATIONS AND THE 
QUATERNIONIC SCHUR'S LEMMA1 

(4.39c) 

(4.]9d) 

In the preceding sections we have introduced a number of examples of groups of 
unitary operators representing symmetry transformations of the wave function, 
which compose according to the group representation law 

( 4.40) 

For example, m Sec. 3.1 we introduced the coordinate space translation 
generator 

( 4.4la) 

which acts on the operators x,p as 

( 441 b) 

and which composes according to the Abelian version of Eq. ( 4.40), 

(4.4lc) 

1 We remind the reader that the Sections and Chapters in Part II labeled by a dagger (t) do not depend on 
the specific nonrclativistic kinematics for if used in Sees. 4.1 and 4.2. 
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Similarly, in Sec. 4.1 we introduced the special Galilean generator 

G -e(x.t)mv·x ;:=e ( 4.42) 

which acts on coordinates and velocities as in Eqs. ( 4.3) and ( 4.4 ), and 
composes according to Eq. (4.2), which is again an Abelian version of Eq. 
( 4.40). Specializing e( x, t) to i, and denoting ~mv~ = !Jp, Eq. ( 4.42) can be 
viewed as the coordinate representation form of the momentum space transla
tion generator 

( 4.43a) 

which acts on the operators x,p as 

U(!Jp)-l xU(!Jp) = x, (4.43b) 

and which again composes according to the Abelian version of Eq. ( 4.40), 

( 4.43c) 

Because of the ray structure of quantum theory, the composition rule of 
Eq. ( 4.40) is not the most general one possible for symmetry transformations. 
The most general allowable composition law is 

lw(fb,a)l=l ( 4.44) 

for some complete set of states {I f)}. A symmetry transformation obeying 
Eq. (4.44) is said to obey a projective representation or to constitute a 
2-cocycle. 9 Let us take the set of labels f to include the quaternionic phases of 
the eigenvalues of anti-self-adjoint operators used to specify the complete set 
{I .f)}, as in Eqs. (3.88f,g). Hence when we multiply If) by a quaternionic phase 
¢,with 1¢1 = l, we have 

withf¢ = epf¢. 10 Then combining Eq. (4.45a) with Eq. (4.44), we get 

Ubalf)¢w(f"q,;b,a) = Uhalfq,)w(};p;h,a) = UhUalf"q,) = UhUalf)¢ 

= Uha I f)w(j; b, a)¢ 

which implies that 

¢w(f'q,;b,a) = w(f;b,a)¢ 

( 4.45a) 

( 4.45b) 

( 4.45c) 

9 In the complex quantum mechanics case, projective representations are discussed by Bargmann (1954) 
and cocycles by Jackiw (1985). 
10 Note that whi!e./,1, = ¢1¢ means the quaternion automorphism transformation generated by¢ acting on 
the state /a/Je/ (, when we write If'¢)= I/)¢ the notation 'I¢" does not mean right multiplication of the 
state label f by¢. but rather right multiplication of all quatcrnionic scalar components of the vector If) by 
</>.as in Fq. (1.6b). 
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or equivalently, 

w(f1,:h.a) = rpw(fb.a)rp (4A5d) 

If w( I !uz) had no dependence on j; that is, if w(f; h, a) = w( b, a), then 
Eq. (4A5c) would imply 

rjJ m(h, a) = w(b, a)qJ ( 4A6a) 

for all quatcrnionic phases rp. Equation (4A6a) requires that 

w(h. a)=± I ( 4A6b) 

which further implies that in the sector continuously connected to the identity, 
Eq. (4.44) reduces to Eq. (4.40), that is, the projective representation reduces to 
an ordinary representation. However, we will see that in general w(f h, a) has a 
nontrivial/dependence, and so the line of reasoning of Eqs. (4A6a,b) is not 
justificd. 11 

To deal with the /dependence of the phase w, let us define the left-acting 
operator O(b.a) by 

so that 

r-l(b.a) = L lf)w(fh.a)(fl 
f 

r-l(b, a)l f) = I f)w( l h. a) 

(4.47a) 

(4A7b) 

Note that the spectral decomposition of Eq. ( 4A 7a) defining 0( b, a) is indepen
dent of which ray representative is used for If), since by virtue of Eq. (4A5d) 
we have 

I t;p)(v(f;;,: h. a)(fq, I = I f)¢¢ w( f: b. a)cfJ ¢U I = I f)w(f h. a) U 1 

Since 

we have 

O(b.a) 1 = Llf)(1J(f;h,a)(fl 
l 

n(b,a)tQ(b.a) = Llf)rll(f:b,a)w(J;h.a)(fl = Llf)(fl =I 
l f 

(4A7c) 

( 4A8a) 

( 4A8b) 

and similarly for O(b.a)O(h,a)t, and so O(b,a) is a unitary operator. Combin
ing Eqs. (4.44) and (4A7b), we get 

(4A9a) 

11 Emch ( 1963) ignores the distmction hetween the left and right quaternion algebras acting on states. 
which leads him to assume that C•>( f: h. a) has no /-dependence. This leads him to the erroneous conclusion 
that projccti\e representations can always he reduced to ordmary representations in quaternionic quantum 
mechanics. For an English translation. see Emch (196'i). 
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which since {I f)} is a complete set, implies the operator relation 

( 4.49b) 

Equation (4.49b) is the general operator form taken by projective representa
tions in quaternionic quantum mechanics. 

As an example of a set of operators obeying Eq. ( 4.49b ), let us consider the 
modified translation generators 

(4.50a) 

withE= (!, .!, K). Since E commutes with both S! and p [see Eq. (4.37c)], r) still 
satisfies Eq. (4.41 b), 

O(bx)- 1x O(bx) = ~x + b.i 

O(bx)- 1p O(ox) = p 

However, under composition the operators 0 obey 

( 4.50b) 

( 4.50c) 

and since b.x1 · E and b.x2 · E do not commute for linearly independent c5x1, bx2, 

the exponents bx1 • E and 6.?2 · E cannot be simply added to form a new expo-
nent. Instead, we must use the Baker-Campbell-Hausdorff formula given in 
Eq. (4.83a), which implies that 

e-6\'tfe-6'<2 £ = e-(6x't+6x'2) i'e~[<l.\' 1 £.o'i2 l]+O((r5Y) 3) 

= e-(6\'t +r5i'2) f.'e(rli't x6-<'2)·E+O((r5x) 3) 

Thus the operators 0 obey the composition law 

D(bxi)O(bx2) = D(iht + (h2)D(bx1. bx2) 

n(bxt, bx2) = e(6Yt xr5'?2)l+0((6x)1) 

which has just the form of Eq. ( 4.49b ). 

(4.50d) 

( 4.50e) 

We conclude, then, that even in as simple an example as the translation 
group, projective quaternionic representations are permitted unless we make 
further assumptions about the structure of the operator n. The minimum 
assumption required for n to behave similarly to the projective phase in the 
complex <C( I, i) analog is (as already mentioned briefly in footnote 4 of Sec. 4.1) 
the assumption of multicentrality, 

[D(h, a). U0 ] = [n(h, a). Ub] = [!l(h. a), Uah] = 0 (4.5la) 

for all pairs a. b. Multicentrality implies that the phase operator D(b, a) can be 



ONE-PARTICLE QUANTUM MECHANICS-GENERAL FORMALISM 103 

freely ordered anywhere in Eq. (4.49b), so that the equations 

UhUa = Uhal?.(b,a) == D(b,a)Uhu 

n- 1(b,a)UhUa = UbD- 1(b,a)Uu = UhUun- 1(b,a) = Uha (4.5lb) 

are all equivalent to each other and to Eq. (4.49b). A stronger assumption that 
can be made is the assumption of centrality, 

(4.5lc) 

for all triples a, b, c. In the Galilean in variance analysis of Sec. 4.1, footnote 4, 
and the Poincare group discussion of Sec. 12.3, only the assumption of multi
centrality is made, and this is used to reduce the relevant projective representa
tions to ordinary representations. There are, however, cases of nontrivial 
projective representations that satisfy both the multicentrality assumption and 
the stronger centrality assumption, as we shall now show. 

To analyze the implications of the centrality assumption, we first discuss the 
quaternionic generalization of Schur's Lemma, due to Emch (1963, 1965). Let 
{ U,} form an irreducible unitary group representation, all of which commute 
with some operator T, 

[T, U,] = 0 (4.52a) 

Splitting T into self-adjoint and anti-self-adjoint parts Hand A, 

T = H +A, ( 4.52b) t I " A = -A = - ( T - T 1 
) 

2 

we can write Eq. (4.52a) as 

U,(H +A)== (H + A)U, (4.53a) 

Taking the adjoint of Eq. (4.53a), and using Eq. (4.52b) and the unitarity of U,, 
gJVes 

(H- A)U; 1 = (H + A)t UJ = U!(H + A)t = u; 1 (H- A) (4.53b) 

which on multiplying by U, from left and right gives 

U,(H- A) =(I-f- A)U, (4.53c) 

Thus, adding and subtracting Eqs. (4.53a) and (4.53c), we get 

(4.54a) 

in other words, U, commutes with Hand with A separately. Since His self-adjoint, 
the analysis of Sec. 2.2 shows that H can be diagonalized, with real eigenvalues. 
Suppose that there are two H eigenstates jh 1) and jh2) with h1 f h2. Then taking 
the (h 11· · ·lh2) matrix element of the first equality in Eq. (4.54a), we get 

(4.54b) 
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which, since h 1 and h2 are real and unequal, implies that 

(4.54c) 

Thus { Uc} have no matrix clements connecting the H-eigenstates with eigen
value h1 with those with eigenvalue h 2, which implies that the set { U,} can be 
block diagonalized, contradicting the assumption of irreducibility. Therefore H 
can only have one distinct eigenvalue h; in other words, 

H = hl (4.54d) 

with h real. This argument cannot be directly applied to A, which is anti
Hermitian, but the second equali1y in Eq. (4.54a) also implies that 

UA 2-A2rr c - uc (4.55a) 

in which A 2 is self-adjoint and moreover, since 

(4.55b) 

A 2 is negative semidefinite. Therefore the argument of Eqs. (4.54a-d) gives 

(4.55c) 

with a real, which together with Eq. (4.54a), implies that 

(4.55d) 

with 

1~=-l, [fA, U,] = 0 (4.55e) 

We thus conclude that T has the structure 

T=hl+alA (4.56) 

where IA is an operator (or matrix) obeying Eq. (4.55e), 12 If we now add the 
assumption that Tis unitary, we get the additional condition 

(4.57a) 

that is h = cos G, a = sin(] for some angle 0, so that 

(4.57b) 

Let us now apply the quaternionic Schur's Lemma to a projective repre
sentation that satisfies the centrality assumption of Eq. (4.5lc). The lemma 
implies that for each a, b, the phase operator Q(b, a) must have the form 

12 It is only in the final steps of Eqs. (4.55d,e) that the quaternionic Schur's Lemma differs !'rom its 
complex analog. In the complex C(l.i) case, Eq. (4.55d) is replaced by A= ail, and Eq. (4.56) reads 
T = (h + ia) I = cl, with c a complex ([ (I. i) constant. 
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0( b, a) = r/(h,o)C-l(b.a) ( 4.58a) 

with J(h, a) and 8(h. a) commuting operators which obey 

J(h, a)t =-I( b. a), 
2 . 

I(b,a) =-1, 8(h,a)1 =8(b,a) 

[I( b. a), U,] = [E1(b, a), U,] = 0 (4.58b) 

and with (-)( b, a) a constant within each irreducible subspace of the group { Uc}. 
Also, centrality implies that the operators I(b, a) and 8(b, a) for different values 
of a, b commute, that is 

[I(b,a),I(b',a')] = [l(b,a),C-3(b',a')] = [8(b,a),I(b',a')] = [8(b,a),8(b',a')] 

=0 (4.58c) 

for all a,b,a',b'. In the simplest case (e.g., if {U,} is irreducible), there will be 
only one distinct operator I(h,a) =I, and C-3(h,a) will be a c-number O(h.a) so 
that Eq. (4.58a) becomes 

D(b, a)= elll(b.a) (4.58d) 

As a concrete example of the occurrence of a projective representation, let us 
consider the group of operators U( bx, bp) defined by 

(4.59a) 

which by application of the Baker-Campbell-Hausdorff formula can be 
rewritten as 

(4.59b) 

Comparing Eq. (4.59b) with Eqs. (4.4llb) and (4.43b), we see that U(bx,bp) 
generates simultaneous translations of .x· and p 

U(bx, bp)- 1p U(bx, bp) = p + Jbji 

(4.59c) 

and so acts as a translation generator on phase space. Again by application of 
the Baker-Campbell-Hausdorff formula, we find that the composition law of 
these operators is 

U(bx1, 6p1 )U(bx2, bp2) = U(bx1 + bx2., ,5p1 + bp2)D(bx 1 , bp1, bx2, bp2) 

D( 6x 1 , bp1 , bx2, bp2) = e I~(6fl1 ''·"2 -6Jh .ix1) ( 4.60a) 

giving an example ofEqs. (4.49b) and (4.58d). Referring back to Eq. (3.88g), the 
action of non the state lx; iq,) = lx)¢ is 

D( bx1, bpt, bx2, bp2) lx; iq,) = lx; iq,) w( iq,; bxt, bp1, bx2, bp2) 

w( iq,; bxt' 6pl' bx2, bp2) = e i,;,~(6PJ.b.'i'r6fl26xl) ( 4.60b) 
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with w a phase factor in the right quaternion algebra. Since i1, = rpirp, the phase 
factor w automatically obeys Eq. (4.45c), 

rpw(iq,: · ··) = rpw(rpirp: · · ·) = w(i: · · ·)¢ (4.60c) 

for an arbitrary quaternion rjJ of unit magnitude. 

4.4 DYNAMICS OF DENSITIES AND EXPECTATION VALUES 

Taking the Hamiltonian of Eqs. (4.37a,b) to describe the dynamics, we now 
derive the quatcrnionic analogs of the standard quantum mechanical results for 
the time evolution of densities and expectation values. We begin by defining the 
probability density p and probability currcntJ 

(J =fl 

J = 2~ [ -}i((!, f)+((!' ])if] ( 4.6 I) 

where the ordering of the i between the f and f factors (which do not in general 
commute with i) is essential. The usc of i (rather than j, or k) in Eq. (4.61) is 
dictated by the i in the kinetic term of Eq. (4.37a). From the Schrodinger equa
tion we have 

of= - iJ.t· = (-i ) ,-=; 2 I- Vf Dt · 2m vx. · 

af = ~2 1-. (~) + 1- v ot \lx. 2m · 

from which there follows 

ap =of!+ 1- of= _I [f-i ~2 1. _ ( ~2 1-c) if'] = _ ~ .. -c ar Dt · · Dt 2m \1, \lx · \lx .J 

Hence p and j satisfy the local conservation law 

op ~ ~ 
-+" ·.J=O Dt v X 

( 4.62) 

( 4.63) 

(4.64) 

confirming the interpretation as probability density and current given them 
above. 

We next consider the dynamics of expectation values, from which we get the 
quaternionic analogs of the Ehrenfest and virial theorems. We begin with 

( 4.65) 
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Taking the time derivative and using Eq. (4.63) we get 

:r(.X) =.I d3xx~ =.I d
3
x.':(-Vx ·JJ =.I d 3

xJ= ~1 .1 d 3
x](-i'(}J) 

=J.._Ulft(l)lf) =J.._(ft( 1 )) (4.66a) 
m m 

with 

( 4.66b) 

the momentum operator of Eq. (3.16). We consider next the time derivative of 
I ~(I)) 
\P ' 

Substituting Eq. (4.62) for of/at, a}/ at we get 

:, ( ft (ll) = / d
3 
x l ( -\]~ }2~) ( -i\}x f) +/ ( -ivx 2~ \)~ t) J 

+ / d3 x []V( -ivx f) + l ( -i (j,) (-Vf)] 

(4.67a) 

( 4.67b) 

The first integral on the right-hand side vanishes by integration by parts, while 
the second integral can be rewritten as 

( 4.67c) 

gJVmg 

2 

m !!_ ( x) = !!_ ( ft U l) = - ( [ ft Ul v]) 
dt2 dt , ( 4.68) 

Because p(I) contains a factor of I, which docs not commute with V, the right
hand side of Eq. (4.68) cannot be reduced to being propertional to ((Vx V)), as 
in the complex quantum mechanics case:. Instead we get 3 

-([ftUl, V]) =- ./ d3xf(x)[(vxVt) +J((v.,Y3) +2V3Vx) 

- k(((j, V2) + 2V2Vx)] f(x) ( 4.69) 

and a semiclassical law of motion for (x) is obtained only in the special case in 
which v2 = v3 = 0 (which is of course just the complex quantum mechanics 

11 Consistent with our earlier usage. the parenthesis m (V, V1 ) indicates that the operator 9, acts only on 
V1 • and not through to the right as well. 
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limit of H). This breakdown of the Ehrcnfest theorem occurs for essentially the 
same reason as the failure of ji(I) to be a satisfactory translation generator, as 
discussed in Sec. 3.1, and can be viewed as another manifestation of the diffi
culty in defining a momentum operator in quatcrnionic quantum mechanics. 

In a similar fashion, we can derive a quaternionic analog of the "virial 
theorem" of complex quantum mechanics. We begin by separating fi into 
kinetic and potential energy contributions by writing 

- - -
H= T+ V, ( 4.70a) 

The factorization of the anti-self-adjoint kinetic term t into a modulus opera
tor and a phase operator, following Eq. (2.42b), can now be carried out 
explicitly, 

- I :o2 I :ot :o ITI = --p =-p ·p 
2m 2m 

( 4.70b) 

The self-adjoint modulus operator I Tl is an observable, and the virial theorem 
gives an expression relating its expectation value to an expectation involving the 
potential energy V. The derivation begins by applying Eq. (3.46b) to the opcra-

1 ( ~ ~ (/) ~ (/) ~) • • tor 2 x · p + p · x , gJVmg 

(4.7la) 

We then substitute Eq. (4.70a) and use the commutator 

[T- I ( ~ ~(I)+ ~(I) ~)] _ [ I (~(1))2 I ( ~ ~(!)+~(I) ~)] ' 2 X . p p . X - 2m p ' 2 X . p p . X 

(ji(/))2 -p -
_:::__~ =-- = 21 Tl 

m m 
(4.7lb) 

to get 

\ [ fl,~(x :fiul + fiUl. x)]) = 2(lfl) + G {.X. [V,JiUlJ + [V,fiUlJ. x}) 
(4.7lc) 

But for a stationary state If) obeying HI f)= lf)eEE [cf. Eq. (4.34)], we have 

\[ii,~(x·fiUl +fiUl -.~)]) = [eEE,G(x·fiUl +fi(IJ ·x))l (4.7ld) 

which vanishes because the expectation value of the self-adjoint operator 
~ (.i · ji (!) + p (I) · x) is real. Hence for a stationary state we conclude that 

2(ITI) = \~{x· [jiUl, v] + [jiUl, v]·x}) ( 4.72) 
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which is the virial theorem in quaternionic quantum mechanics. Again, because 
the I in ji (I) does not commute with the J. Kin V, the commutator on the right
hand side of Eq. ( 4. 72) cannot be reduced to .? · ( \7, V), as is possible in the 
complex quantum mechanics case. 

4.5 THE FEYNMAN PATH INTEGRAL. FORMULA: A PARTIAL 
ANALOG 

Although the Schrodinger equation provides the traditional formulation of 
quantum mechanics, in recent times the Feynman path integral reformulation 
(Feynman, 1948; Feynman and Hibbs, 1965) has played an increasingly impor
tant role. We give here the derivation, insofar as it can be carried out, of the 
quaternionic analog of the Feynman path integral formula for the matrix 
element (x1jU(t1. t;)jx;) of the time evolution operator U. We assume that the 
Hamiltonian fJ is given by Eq. ( 4.37b ), but with a time-independent potential V, 
so that the general formula of Eq. (2.57) for U reduces to 

( 4. 73) 

Since the '?perators exp[(t1 -t;)I-fi2/2m], exp[-(t1-t1)V(x)], and 
exp [-(t1- t;)H] are all quaternion unitary, we can employ the Trotter product 
formula (Schulman, 1981) to rewrite Eq. (4.73) as 

U(tt. t;) = lim [ci"'-tfft2/2me-Q.rV(x)]N 
:v -----Jo'X 

(4.74) 

Inserting N- I complete sets of intermediate states 

£= l, .... N-1 (4.75) 

between theN factors in Eq. (4.74), we get (with x,v- -'l• xo x;) 

( 4. 76) 

Making use of the fact that 

(I, J, K) lx) = jx) (i,j, k) (4.77) 

as shown in Eq. (2.59b), 'Ye see that the intermediate state jx1) is an eigenvector 
of the operator exp [ -llt V(x )], and so for each individual factor in Eq. ( 4. 76) we 
have 
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(x£+1ieL'>.r!}Pj2me-L'>.rV(x)lxr) = (xr-'-lleL'>.rifi2f2mlxr)e-L'>.rV(xt) 

V(xc) _ iV1 (xr) +jV2(xp) + k V3(xg) ( 4. 78) 

The kinetic energy matrix element in Eq. (4.78) can be evaluated by inserting a 
complete set of momentum eigenstates and using Eqs. (3.6) and (4.77), as 
follows: 

( 4. 79) 

Substituting Eqs. (4.79) and (4.78) into Eq. (4.76), we obtain finally the quater
nionic analog of the Feynman path integral formula, 

(x1j U(t1, t1)jx1) = jim (11 ;· d3x1) ( m )
312 eim(i':V--'~'.v-1 )2 

/(2L'>.r)e-L'>.rV(x.v 1) 
.lv~x l-~l 2nu::::.t 

X ( m )312 
eim(i'.v_J-I'.v d/(2L'>.r)e-L'>.rV(xv 2) 

2ni/::,t 

X ... X ( m )3
1
2 

eim(.\'1 -.i'o)
2 /(2L'>.r)e-L'>.rV(xo) 

2ni/::,t 
(4.80) 

Equation (4.80) is as far as the standard derivation can be carried in the case 
of a general quaternionic potential. In the complex quantum mechanics limit in 
which V2 = V3 = 0, the exponents can be combined to give the usual formula 

(4.81) 

with S the classical action. But in the case of nonzero V2 andjor V3, the 
noncommutativity of i with f. k prevents us from combining exponents to get an 
analogous formula. For example, consider the adjacent pair of factors 

(4.82) 

We can combine them into a single exponential using the Baker-Campbell
Hausdorff formula (sec, e.g., Wilcox, 196"/, for a derivation) 
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exp Xcxp Y = exp [X+ Y +~[X, Y] + /
2 

([[X, Y]. Y] +[X, [X, Y]]) + ... J 

(4.83a) 

with 

. ( ~ ~ )2 
lm Xf~I -X£ 

X= (2llt) 
Y = -lltV(xe) (4.83b) 

and we find that the first commutator correction is 

( 4.84) 

Since the leading Gaussian term X determines the characteristic values of 
[.X'f-,-1- _\'1 [ to be of order (llt) 112

, we get the estimate 

(4.85) 

and thus the commutator coErections [X. YJ. [X. [X, Y]J, ... , are as important as 
the potential term Y = -llt V(xr) itself! Hence in the quaternionic path integral 
formula of Eq. (4.80), we cannot combine exponential factors to get a quater
nionic action of "kinetic energy-potential energy" form. 14 The fact that Eq. 

14 Further reduction of Eq. (4.80) may still be possible. as follows. Since (i-- 1·1 )
4 

c· ·-I =·real, the 
i-'!2 = -i 112 factors can be eliminated over groups of four mtermediate factors. by using the identity 

·I 2 1 ·1!2 1 ·1·2r· ., .. 21· c·-)·2 1 ., 2lc·-'r ·lc·-1 2 1 .,·2lf 
{ I 1,{ . 21 I . 1 { . () =- { . 3 I ' I 2{ I ]I 0 

effectively replacing V(x 1) by i_'.'' 2 V(x 1 )i''i2, where rr o= f(mod4). Then. because the quaternion algebra 
is isomorphic to S0(3) "'SU(2), we can use the SL'(2) Baker -Campbell Hausdorff formulas, which are 
known in closed form (Gilmore, 1974) to combine the exponents in a nonlinear fashion. Another method 
that may be relevant is the usc of anticommuting variables (Samuel, 1978) to combine noncommuting 
matrix exponents. 

A complex quantum mechanics analog of the discussion in the text is provided by the spin Hamiltonian 
If= "I (p' j2m) ~ "I V1 - " 2 V2 -"- "' V3, with ""'a== I, 2. 3 the Pauli spin matrices. As pointed out to me 
by J. R. Klaudcr. this model can be given a path integral formulation (Klauder, 1962) by using a spin .J /2 
coherent state representation for the Pauli matrix vanables. jp, q. 0. <,0) ~ e -uri' e'1'Q e "'s'e i!IS.IO). with 
(Q +- iP)IO) = 0. s,:o) = 1/210). iJ = 2S. This g1ves in the one-dimensional case 

(p". q". O". ¢"1e __ ,,,, .,, llllr'. q'. O'. q!) 

== /'./ TI./ dpdq sin Od0d¢e' .f fAr 

L =p<i+
1
cos0¢- sinOcos¢1/ + V1(q) 1

- sinOsin<jJV2(q) -cosRV,(q) 
2 2111 

with the obvious generali~ation to three dimensions. For a related discu"ion, see Belyea, McKellar. and 
Warner (1990). These methods may also have generaliLations relevant to the quaternionic case, m which. as 
discussed in Sec. 2.5. the dimensionality of a complete set of states is half that of the corresponding 
complex two-component spinor case. 

In the case of the 'cmirelativistic quaternionic wave equation discussed in Secs.ll.6 and 11.7. the diftl
culty of Eq. (4.H5) does not arise, and the path integral derivation can be pushed a step further. corre
sponding to the fact that the semi relativistic wave operator is reducible to a complex wave operator with 
spin-dependent potentials. 
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(4.81) has no direct quaternionic analog means that in quaternionic quantum 
mechanics the Hamiltonian if. rathC'r than an action, is thefimdamental dynamical 
entity. 

4.6 TIME REVERSAL INVARIANCE FOR SPIN ZERO SYSTEMS 

In Sec. 2.3 we discussed symmetry transformations that preserve transitiOn 
probabilities and pointed out that in quatcrnionic quantum mechanics such 
transformations always have a unitary Hilbert space realization. This contrasts 
with the situation in complex quantum mechanics, where symmetries that 
preserve probabilities can be of either unitary or anti unitary type. In particular, 
since time reversal invariance in complex quantum mechanics is an antiunitary 
type of symmetry. we can expect to encounter new features in generalizing the 

f . I . . h . . 15 concept o t1me reversa mvanance to t e quatermomc case. 
Let us begin by examining in detail why quaternionic conjugation cannot be 

used to formulate a quaternionic time reversal invariance, in contrast to the use 
of complex conjugation to formulate time reversal in spinless complex quantum 
mechanics with a local potential. We start from the quaternionic Schrodinger 
equation (in coordinate representation): 

of= -iff 
iJt 

H- i ~2 ·v ·v 1 v = --2 v X+ l I +.! 2 + ( .1 m ~ 

(4.86) 

Using the fact that if= -if, together with Eq. (1.28b), we see that the quater
nion conjugate of Eq. (4.86) is 

of =-Tilt -ill 
a(-t) · 

(4.87) 

Evidently, quaternionic conjugation does not yield a time-reversed version of 
the original Schrodinger equation because it reverses the order of factors in a 
product, as well as changing the signs of i,j, k. 

Let us now rewrite Eq. (4.86) in representation-independent form, 

( 4.88) 

with time-independent potentials, and determine the conditions under which 
there exists a time-independent, unitary time reversal operator Ur. To time
reverse the Schrodinger equation of Eq. (4.88), UT must have the property 

(4.89) 

since then the state U Tl f) obeys the time-reversed Schrodinger equation 

l.o For two prior discussions of time reversal invariancc in quatcrnionic quantum mechanics. sec Truini. 
Biedenharn. and Cassinelli ( 1981) and Cassinelli and Truini ( 1985). 
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D -
a(-t) Ur[f) = -HUr[f) ( 4.90) 

Although Eq. ( 4.89) is a necessary condition for U T to be a time reversal 
operator, it is not a sufficient condition. A hint that this should be so is pro
vided by the fact that for any if we can find a one-parameter family of unitary 
operators that reverse the sign of if. This is an immediate consequence of Eqs. 
(2.42b) and (2.46a,b ), which tell us that if we write if in spectral form, 

(4.9la) 

then for any mixing angle G, the unitary operator 

(4.9lb) 

is a time-independent inversion operator obeying Eq. ( 4.89). The construction 
of Eq. (4.9la) applies to any quatcrnionic Hamiltonian if, and so if Eq. (4.89) 
were a sufficient condition for Ur to be a time reversal operator, we would be 
able to conclude that any quaternionic quantum mechanical system is time 
reversal invariant! This is obviously too strong a conclusion, since a quaterni
onic Hamiltonian if can always be specialized to a complex <C(l, I) one, and 
time reversal invariance is not automatic in complex quantum mechanics. 

In fact, in the formal scattering theory analysis of Chapter 8, we shall see that 
construction of the S-matrix requires separating if into a free-particle Hamil
tonian if 0 describing the asymptotic state dynamics, and an interaction term V, 

- -· 
H= H 0 + V (4.92a) 

If we can find a unitary Ur for which hath 

- -! -
UrHUr = -H, 

- I -
UrHoU! = -Ho ( 4.92b) 

it is then further shown in Sec. 8.4 that U T acts on S as 

(4.92c) 

which is the usual operator form of the statement that the S-matrix has a time 
reversal symmetry. We now immediately see why the spectral theorem 
construction of Eqs. (4.9la,b) fails to give a time reversal operator. Although 
U if( G) by construction sa!isfies Eq. (4.89), for V f 0 it is in general not also an 
inversion operator for H 0 , and so fails to satisfy the second condition in 
Eq. (4.92b). This failure is manifested in the fact that Uif(O) has in general no 
simple action on momentum eigenkets I p). 

It is now easy to see that there cannot be a universal U T that satisfies both 
conditions of Eq. (4.92b), independent of the detailed structure of if. To show 
this, we note that Eqs. (4.92a) and (4.92b) combined imply that Ur must also be 
an inversion operator for V, 

(4.92d) 

If a universal Ur existed, applying Eq. (4.92d) to the case of constant V1,2,3 
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would imply that 

Ur(l, J. K) U 7] = - (!. J. K) 

which contradicts the quaternion algebra 16 obeyed by I, J. K. since 

Ur!JU7] = l/rKUy] = -K 

f. UTIU] 1UTJ[Ii 1 = (-!)(-.!) = +K 

(4.93a) 

(4.93b) 

Hence the generic quaternionic Schrodinger equation of Eq. (4.88) is not time 
reversal invariant. There arc, however, restricted cases of Eq. ( 4.88) that admit a 
UT that depends on the structure of fr (Adler, 1990). If v2 = 0, so that 

- I -::2 
Ho = --p 

2m 
(4.94a) 

then UT =.!obeys Eq. (4.92b), and by Eq. (3.9b) acts on momentum eigenkets 
as UTIP) =I- p)j, and similarly if V3 = 0, so that 

- I ::'2 
Ho = --p 

2m 
(4.94b) 

then we can satisfy Eq. (4.92b) with UT = K, which by Eq. (3.9c) acts on 
momentum eigenkets as U T/ p) = I - p)k. More generally, if V2 and V3 are 
linearly dependent, so that 17 

(4.95a) 

for real constant multipliers h 3, then we can satisfy Eq. (4.92b) with 

(4.95b) 

This operator acts on momentum eigenkets as 

Uri p) = I- p)uT, ( .. k' )/('2 )2)1/2 ur = .Jic2 + 1.3 1·2 + •3 (4.95c) 

and similarly, by Eq. (3.38d), acts on orbital angular momentum eigenkets as 

U1 /f.,m) = /f.,-m)(-lt'ur (4.95d) 

Thus these restricted cases of the quaternionic Schrodinger equation are time 
reversal invariant. In our discussion in Sees. 5.2 and 6.3, of the optical poten
tial in quaternionic quantum mechanics, we will sec explicitly that time reversal 
violation occurs in the generic case (Adler, 1988). However, in accordance with 

"' L. P. Horwitz has pointed out that the CliiTord algebra C3 can be diagonalized into two sectors, c,~ and 
C3_, with C1 , spanned by the quaternion units J.J.K and with C3_ spanned by -f.-.1.-K. Hence for a 
quantum mechanics over C1 [which, however, does not fulfill the condition of Eq. (l.Se)], a unitary time 
reversal operation can be consistently defined by the transformation C1 1 

H C1 

17 Equation (4.95a) can be rewritten as Hr1 =VIi~ V2- iV, = V2 (1 t- ih/i.J). and so is equivalent to the 
statement that H11 has a constant phase. See Davies and McKellar ( 19H9b). 



ON~~-PARTICLE QUANTU:Vl MECHANICS-GENERAL FOR:v!ALIS:vl 1'15 

the discussion we have just given, we will find that the time-reversal-violating 
effects are proportional to the antisymmctrized product of V2 and V3, and 
thus vanish for the restricted cases of Eqs. ( 4. 94a, b) and ( 4. 95a ), for which an 
operator U7 can be constructed that obeys Eq. (4.92b). 

For the remainder of this section, let us assume that fi and if o obey the time 
reversal invariance conditions of Eq. (4.92b), with Ur given by Eq. (4.95b), and 
examine some of the consequences these imply. To begin with, from Eq. (4.95b) 
we immediately find that 

2 Ur=-1. u~ = -Ur. ( 4. 96) 

Let us next consider the action of Ur ~n energy eigenstates. Let {\h11 )} be a 
complete energy eigenstate basis for H in the standard ray representation 
convention of Eq. (2.74a). 

H\h 11 ) = \h11 )i£11: £ 11 2: 0; ( 4.97a) 

we shall focus henceforth in this section and the next on states with nonzero 
energy £ 11 • (As was the case for the analysis of symmetries of if in Sec. 3.5, the 
restrictions on the form of energy eigenstates implied by time reversal invariancc 
have a zero energy exception.) 

Consider now the state Ur\h 11 ), which by virtue of Eq. (4.92b) obeys 

if U rlh11 ) = - U rH\h11 ) = U r!hn) (- iEn) ( 4.9'7b) 

Hence Ur\h 11 ) is an eigenstate of if with eigenvalue -i£11 , and therefore when 
£ 11 f 0 must be a reraying of some state 1 h11 r), which is in our original complete 
basis [or more generally, which is a linear combination with <C( I, i) coefficients 
of states of energy £ 11 in our original basis], of the form 

(4.97c) 

with (,1 a <C( I, i) phase factor of modulus unity. There are now two cases to 
consider. In the first case, \h 11 r) is simply the original state \h11 ) (this must 
necessarily occur if the energy level £ 11 is nondegeneratc), so that Eq. (4.97c) 
reads 

(4.97d) 

Under a reraying \h11 ) -+ \h 11 )(. with ( E <C(l. i), the phase ( 11 transforms as 
( 11 -+ ( 11 (()

2
, and so can be adjusted to be 

r _ ( · · · · / · 2 ) 2) I /2 
"" - 1.2 - 11.3) (1.2 + ·j (4.98a) 

which by Eq. (4.95c) brings Eq. (4.97d) into the form 

(4.98b) 

In the second case, \h 11 r) is linearly independent from lhn). In this case, by an 
appropriate <C( I, i) reraying of \h11 ) and/or !hnr), we can again adjust ( 11 to 
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satisfy Eq. (4.98a), so that Eq. (4.97c) becomes 

Ur/hn) = /h"r)ur (4.99a) 

Acting on Eq. (4.99a) with U7 from the left and u7 from the right, and using 
[_;·2 2 I r = u 7 = - , we get 

U r/h 11 r) = /h,) ur ( 4.99b) 

Hence defining the linearly independent states 

/h,;) = N--_ 1 [/hn)- /hnr)]i (4.99c) 

with N -t real normalization constants. we find (remembering that u7 i = - iu 7 ) 

(4.99d) 

Thus in a time-reversal-invariant system, we can always assume that an energy 
eigenstate basis { /h11 )} in standard ray representation convention obeys 
Eq. (4.99a), with /h 11 r) either equal to /h 11 ) or linearly independent of /h 11 ), and 
we can always choose a new basis (a standing wave basis) in which the energy 
cigcnstatcs are also eigenstates of U7 with eigenvalue ur. Since U1 anti
commutes with H 0 as well as with H, the analysis and conclusions of Eqs. 
(4.97) -(4.99) ~old equally well for the eigenstates {/h~0 ))} of the free-particle 
Hamiltonian Ho. 

Let us now consider the wave function (x/h) associated with a state /h) 
obeying 

Ur/h) = /h)ur (4.100a) 

Since Eqs. (2.59b) and (4.95b) imply that Ur acts similarly on /x), 

Ur/x) = /x)ur, (x/ Ur = ur(x/ (4.100b) 

we find 

ur(x/h) = (x/Ur/h) = (x/h)ur ( 4.1 OOc) 

which implies that (x/h) E C( 1. u7 ). In other words, in a quaternionic time
reversal-invariant system, we can always choose a complete set of energy 
eigenstates for which the coordinate representation wave functions are 
<C( I, u7 ). In the complex quantum mechanics specialization of this result, the 
wave functions are simultaneously <C(l,u 7 ) and <C(l,i), and hence are real. 
Thus our result is the quaternionic generalization of the familiar complex 
quantum mechanics statement that in a spinless, time-reversal-invariant 
system, the wave functions in the time-independent Schrodinger equation can 
always be chosen to be real. 

Let now 0 be any operator, and define 0 7 by 

(4.10la) 
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We proceed to study the matrix elements (h 11 IOih111 ) and (h;,o)IOih;,~l). Applying 
Eqs. (4.10la) and (4.99a), we get 

(h,IOihm) = (h,IU[lOrUrlhm) 

= (h,IU~Or Urlhm) = ur(h,riOrlh.nr)ur (4.101 b) 

and similarly. applying Eqs. ( 4.10 I a) and the free-particle analog of Eq. ( 4.99a) .. 
we get 

( (O)IOI (0))_. (/(0)10 I (0)). h11 /1 111 - UT 1117 T h
111

T Uy (4.10lc) 

Equations (4.10lb,c) give general relations, implied by time reversal invariancc, 
between a matrix element of 0 and a corresponding matrix clement of 0 7 . 

Suppose now that 0 is an operator for which we can prove that the nonv·an
ishing matrix clements (h,IOih111 ) are <C(L i). (8.¥ Lemma I. this will generally be 
the case for operators 0 that commute with H.) Then since ur anticommutes 
with i, Eq. (4.10lb) becomes 

(4.102a) 

Similarly, if 0 is an operator for which the nonvanishing matrix elements 
(1<,01 10ih;,~l) are <C(l. i) (as will be the case for operators 0 that commute with 
f/ 0), then Eq. (4.10lc) becomes 

(/ (0) lOll (OJ) - (/ (0) 10 'I (0) )* 
1, 1m - 1nT T1 1mT (4.102b) 

Equations(4.102a,b), although statements in quatcrnionic quantum mechanics, 
have the ([ ( L i) antiunitary form characteristic of time reversal invariance in 
complex quantum mechanics. As a concrete example, let us consider the case 
when 0 is the S-matrix, so that according to Eq. (4.92c), we have 

Sr = ST (4.103a) 

Since we will sec in Sees. 6.3 and 8.3 that matrix clements of the S-matrix in the 
5tandard Ho eigenstate basis analogous to Eq. (4.97a) arc <C(l.i), Eq. (4.102b) 
applies and gives 

(h( 0)1Sih(0)) = (h(01 iS+Ih(0))' = (h( 0)1Sih(0)) 
n m nr m7 m7 nT (4.103b) 

which has the same form as the standard complex quantum mechanics result for 
the symmetry of S-matrix elements impLied by time reversal invariance (see 
Merzbacher, 1970, Chap. 19; Sachs, 1987). 

We note finally that in the complex quantum mechanics specialization of the 
quaternionic Hamiltonian of Eq. (4.88), with V2 = V3 = 0. we have 

Ho = !Ho, I ""'2 Ho = --p 
2m 

li = IH. 

We can now take Ur as in Eq. (4.95b), with arbitrary -'.2 , 1. 3 , and have 

~ I ~ 

U7 HUi = -11. 
~ I ~ 

UrHol..r; = -Ho 

(4.104a) 

(4.104b) 
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which in terms of the Hermitian operators H and Ho becomes 

(4.104c) 

l~o make contact with the usual formulation of time reversal invariance in 
complex quantum mechanics, which involves an antiunitary time reversal 
operator, we define an operator T that acts on an arbitrary state I f) in 
quaternionic Hilbert space as 

(4.105a) 

Acting twice with T, we learn that 

(4.105b) 

and so T 2 =I. Combining Eqs. (4.104c) and (4.105a), we have 

T(Hif)) = UrHif)zir = HUrlf)ur = HT!f) (4.106a) 

which implies 

[H,T] =0 (4.106b) 

and, similarly, we get 

[Ho. T] = 0 (4.106c) 

From Eqs. (4.95c,d), we sec that the action ofT on momentum and orbital 
angular momentum eigenkets is 

Tip)= 1--p). Tl£. m) = If -m) (-I )111 (4.107a) 

Since J and K commute with the anti-self-adjoint translation and rotation 
generators J3i and L1 introduced in Chapter 3. U7 also commutes with p1 and 
L1. Hence the action ofT on the self-adjoint, complex linear momentum and 
angular momentum operators p;i) and Lii) is 

T p~')lf) = Ur(-firlf)i)ur = -(-fit)(Urlf)ur)i = -p)i)Til) 

TL~i)lf) = Ur(-l1lf)i)ur = -(-li)(Urlf)ur)i = -Lji)Tif) (4.107b) 

for arbitrary If); that is, 

Tp)i) = -p)i)T. (4.107c) 

Finally, under the quaternionic reraying I f) ---> ! f )w. we find 

Tl.l) ___, T(lf)w) = Tlf)urwur (4.108a) 

and so T acts linearly only for w E <C( I. u7 ), and in fact acts antilincarly for 
wE <C( I. i). Correspondingly, the inner product transforms under T as 
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(TjjTg) = ur(fiU~Urlg)ur= ur(flg)ur (4.108b) 

which as special cases gives 

(TjjTg) = (fjg), 

(TjjTg) = (fjg)*, 

(fig) E <C(1, ur) 

(fjg) E <C(L i) (4.108c) 

Thus when restricted to the <C( 1, i) Hilbert subspace, T has all the expected 
properties (Sachs, 1987) of the <C( 1, i) anti unitary operator used to describe time 
reversal symmetry in spinless complex quantum mechanics. 

4.7 TIME REVERSAL INVARIANCE WITH SPIN 

Let us next consider the form taken by the time reversal operator when spin, as 
formulated in Sec. 3.7, is present. The anti-self-adjoint rotation generator now lis 
] 1 = i 1 + Sr, with Sr the anti-self-adjoint spin operators constructed in Eqs. 
(3.91b,c). Since Ur commutes with Lr in the spin zero case, we expect Ur to 
commute correspondingly with Je when spin is present. This condition is not 
satisfied by the recipe for Ur given in Eq. (4.95b), which therefore must be 
modified. The modification that works is clear from the discussion of Sec. 3.7: 
Since Ja2 commutes with J£, and since I commutes with lr, the operator Ka 2 
also commutes with ] 1, and thus the time reversal operator Ur defined by 

Ur = (h J + J.3K)a2/(l.~ + ).~) 1 / 2 = CA-2 J + J.3K) ( ~ ~1 ) j(J.~ + A.~) 1 / 2 

(4.109a) 

commutes with PI, i 1, Sr, and le. Correspondingly, by the argument of Eqs. 
(4.107b,c), the complex antilinear operator T defined by 

Tlf) = lhlf)ur (4.109b) 

with ur still given by Eq. (4.95c), anticornmutes with the self-adjoint complex 
linear operators p;1 

l. L;1
), sy), and 1;1). Calculating the adjoint of l.h from Eq. 

(4.109a), we find 

( 4.11 Oa) 

giving for the square 

n2 rrll' 1 ur=urJr= (4.110b) 

Hence Eq. (4.109b) implies that 

(4.110c) 

in other words, T 2 = -1. Thus the restriction of T to the <C( 1, i) Hilbert 
subspace has the expected properties (Sachs, 1987) of the time reversal operator 
for a spin-1 /2 system. 
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Consider now a quaternionic system with total spin Hamiltonian H and with 
free-particle Hamiltonian H 0 . As discussed in Sec. 4.6, the system is time 
reversal invariant only when we have both 

U rHo U 7
1 = - 1-1 o (4.llla) 

and 

(4.lllb) 

The first of these conditions is satisfied by the free-particle Hamiltonian 

:0:2 
- p 

Ho = -1-
2m 

(4.lllc) 

with Ur as given in Eq. (4.109a). The second condition puts nontrivial restric
tions on the general spin Hamiltonian H constructed in Sec. 3.7. Using 

(4.112a) 

it is easy to sec that the most general H obeying Eq. (4.111 b), with Ur given by 
Eq. (4.109a), has the form 

H = I li 1 + (i.3 J- A.2K)a2 H 2 

3 
s ~ - v 

Ha = Ha + L_.,SIHaf· 
1-= I 

a= I. 2 (4.112b) 

with H~· formally real (i.e., commuting with I, J, and K), a spin scalar and an 
orbital angular momentum scalar [cf. Eq. (3.93b)], with H~ formally real, a spin 
scalar and an orbital angular momentum vector [cf. Eq. (3.93c)], and with [cf. 
Eq. (3.94d)] 

Hf = 11'{1
, 

H S _ -HST 
2 - 2 ' 

V Vj 
HII=-Hif• 

V VT 
H2r=H21· ( 4. 112c) 

Assuming now that we are given a spin Hamiltonian obeying Eq. (4.111 b), let 
us examine the consequences for the spectrum of energy eigenstates. Let lhn) be 
any energy eigenstate. in the standard ray representation 

(4.113a) 

and let us consider the matrix clement (hn I U rlh11 ), which is real, since U T is self-- -
adjoint. But now, making use of UrH = -HU7 , we get 

which since (11 11 1 U rlh 11 ) is real gives 

(4.113c) 
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Hence when £ 11 cjc 0, we conclude that 

(4.113d) 

in other words. the states lh11 ) and lhlh11 ) are orthogonal. Let us now define 
orthogonal states lhn, ±1) by 

( 4.114a) 

Then both states lhn, ±I) are If cigcnstates with eigenvalue En in the standard 
ray representation, 

Hlhn. 1) = Hlhn) = lhn. 1)iEn 

Hlh 11 , ~I)= HUrlh 11 )uri = ~UrHih11 )uri 

= ~Urlhn)iE11 ilri = Urlhn)uriiEn = lhn, ~I)iEn (4.114b) 

Making use of Eqs. (4,110b) and (4,114a), and of ilr = ~u7, we see that the 
states [h 11 • + 1) are related to one another by acting with Ur, 

Urlhn, I)= Urlh 11 ) = Urlhn)uriuri = lhn, ~!)uri 

Urlhn,~1) = U~lhn)U.ri= lhn,1)ur(~i) (4.114c) 

Thus any En cjc 0 eigenstate of a time-reversal-invariant spin Hamiltonian His a 
member of a degenerate pair obeying Eq. (4.114c), giving a quaternionic analog 
of the Kramers degeneracy familiar from complex quantum mechanics. 

Let us now derive the restrictions imposed by time reversal invariance on the 
coordinate representation wave functions associated with a pair of states 
lhn, ±I) obeying Eq~ ( 4.114c). Let lx, ± 1) be the product eigenstatcs of lx) with 
"up" and "down" s3 eigenspinors, 

lx. 1) = lx) (b), (4.115a) 

which are related to one another as follows when acted on by Ur of Eq. 
(4.109a), 

Urlx, 1) = lx)ur(~ ~i) ( ~) = lx) (~)uri= lx. ~1)uri 

Urlx,~1)=ix)ur(~ ~i)(~) =lx)(~)ur(~i)=lx,1)ur(~i) (4.115b) 

Equations ( 4.114c) and ( 4.115b) can be: compactly summarized as 

Urlhn, s) = lhn, -s)uris 

Urlx,s) = lx,-s)uris, s = ±1 (4.116a) 
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which, together with Eq. (4.110a) and the relations a7 = -u7 and {i,uT} = 0, 
imply that 

is ur(x. -slh11 , s') = (x. sl U~jh,. s') = (x, sl Urlh,. s') = (x, slh,, --s')u7 is' 

(4.116b) 

The constraints of Eq. (4.116b) can be rewritten as 

siur (x. -s[h11 • s') + s' (x, sih11 , -s')iur = 0 

which for the two cases s' = sand s' = -s give~ 

iur(x. -slh11 ,s) + (x, sih11 , -s)iur = 0 

iur(x. -slh11 , -s) - (x. sih,, s)iur = 0. 

which are easily solved to give 

s =±I 

( 4.116c) 

(4.117a) 

(x. -llh11 , I) = is1 (x. n) + d1 (x, n). (x. Ilh 11 • -I) = i.1·1 (x. n)- d1 (x. n) 

(x, -llh11 , -I)= s2(x.n) + id2(x,n). (x.llh11 .1) = s2(x.n)- id2(x.n) 

SJ.S2,d!,d2 E C(l.iur) (4.117b) 

As a check, we note that when Eq. (4.117b) is specialized to complex quantum 
mechanics, SJ, s2 , d1, d2 must all be real, since <C( I. i) n <C(l, iu 7 ) = IR. Hence 
Eq. ( 4.117b) reduces in the <C(l, i) limit to 

(4.117c) 

which [up to <C( I, i) rerayings] are the expected conditions on the energy eigen
functions implied by time reversal invariance for a spin-! /2 complex quantum 
mechanical system. 

As a second check, when the potentials in the Hamiltonian are spin inde
pendent, we have 

(x, llh11 • -I)= (x. -IIh11 , I)= 0 
(4.117d) 

(x, llh11 , I)= (x,-IIh, 1,-I) =s2(x.n) E <C(l,iur) 

Since i -I i2 (iu 7 )i
1 12 = i- 1 iur = uT, the second line of Eq. ( 4.117d) is equivalent to 

. 1/2( II/ 1)'1/2_.·-1/2( llh 1)·1/2 <C(l ) l X, 111 , l - l X,- 11 ,- l E , Uy (4.117e) 

So when the forces are spin independent we recover the result of Sec.4.6, that 
time reversal invariance in spin zero systems implies (for £ 11 j 0) that there is a 
<C( I, i) choice of ray representatives for which (xlh11 ) is <C( I. u1 ). 

4.8 THE QUATERNIONIC HARMONIC OSCILLATOR 

As a simple example of a system to which we can apply the results of Sec. 4.6, let 
us consider the one-dimensional quaternionic harmonic oscillator. (Essentially 



ONE-PARTICLE QUA'ITCM :vtECHM<ICS-GENERAL FORMALISM 123 

the same analysis also applies to the spherically symmetric three-dimensional 
harmonic oscillator.) Taking the mass m = 1/2, the coordinate representation 
k-Iamiltonian for a particle moving in one dimension in a quaternionic oscillator 
potential is simply 

-, 
- . d" - 2 

H(x) = -1--- + Vx 
dx2 

with V a quaternion imaginary constant, 

-
V= -V 

V = iVI + }Vfi: Vr1 E <C(!, i) 

(4.118a) 

(4.118b) 

Since the kinetic and potential energy terms of H both anticommute with 
uy =kVrJ/IVril· the Hamiltonian of Eq.(4.118a) is time reversal invariant. It 
remains so if we add as a constant term in the potential any real linear combi
nation of i and V, but time reversal invariancc is broken if we add a quaternion 
imaginary constant which is linearly independent from i and V, since then we 
can no longer find a uT which anticommutes with both the kinetic energy and 
the potential. 

Splitting the wave function f into symplectic components according to 
/_= fY. +J/(; and substituting into the time-independent Schrodinger equation 
Hf =fiE, we get the following coupled pair of complex equations forj;. and[p, 

(4.119a) 

When V(J vanishes, taking.ft3 = 0 solves the second line in Eq. ( 4.119a), and the 
first line then reduces to the usual complex quantum mechanics harmonic 
oscillator equation. When Vr1 is nonzero, we can solve the first line of Eq. 
(4.119a) forfiJ to get 

(4.119b) 

Substituting this into the second line of Eq. (4.119a), we find after a little 
algebra the following fourth-order differential equation forf~, 

Once this equation has been solved to determine the eigenfunction f;. and 
eigenvalue E, we can determineft1 from Eq.(4.119b). 
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Stationary State Methods 
and Phase Methods 

In this chapter we discuss a number of methods for handling stationary state 
problems in quaternionic quantum mechanics and then consider more generally 
methods in which the phase of the wave function plays a primary role. We first 
describe exact methods for reducing the anti-Hermitian quaternionic Hamilto
nian fi to a complex Hermitian Hamiltonian H for an equivalent complex 
quantum mechanics problem. We then develop stationary state perturbation 
theory, and as an application compute the leading approximation to the 
Hamiltonian phase operator fir We also give a quaternionic analog of the 
Rayleigh-Ritz variational principle. We proceed next to an extended discussion 
of the geometric phase in quaternionic quantum mechanics, in both the adia
batic and the nonadiabatic cases. Finally, we give the quaternionic general
ization of the eikonal or WKB approximation. 

5.1 REDUCTION OF /HI TO A COMPLEX HERMITIAN OPERATOR 

According to the spectral decomposition of Eq. (2.42b), H can be formally 
written as 

fr = Iii/l!j 

Iii= L /ht)i(htl 
f 

/HI= L jhp)Ep(htl ( 5.1) 
f 

with { /hr)} a complete set of energy cigenstates. The modulus opera tor /ill is 
quaternion Hermitian, and in general will still have quaternionic ~structure. The 
question we wish to examine here is under what circumstances /H/ reduces to a 
complex Hermitian operator, permitting the energy eigenvalue spectrum to be 
deduced from the complex eigenvalue problem specified by /H/. 

Rather than treating /HI directly, we will consider its square 

(5.2) 

124 
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taking for fi the general form given in Eq. (4.37b) (but with no time depen
dence), 

H= -I P+IV1(x)-'-JV2(x)+KV3(x) 
2m 

(5.3) 

Squaring Eq. (5.3) and using the quatcrnion algebra satisfied by r I and K, we 
find 

[ 
~2 ]2 -jj 2 :> J "'2 K "'2 -+ V1(x) +V2(x) + V3(x)·+- [-p, V3 (x)] -- [-p. V2(x)] 

2m 2m 2m 

(5.4) 

In general, Eq. (5.4) is a quatcrnion Hermitian operator and reduces to a 
complex <C( 1. I) Hermitian operator only when 

( 5. Sa) 

Since 

r[Jl, V(x)] = ~ { [pl-[,81. V(x)]l + 2[h, V(x)]p1} = '17~V(x) + 2l0~1 V(x)],Dr 

(5.5b) 

the commutators of Eq. (5.5a) vanish only when V2 (x) and V3(x) are 
constants. Thus only for constant V2 . V3 does the quaternionic energy eigen
value problem reduce, by considering jifl, to a complex Hermitian problem with 
Hamiltonian 

(.5.6) 

The energy eigcnstates for the Hamiltonian of Eq. (5.6) are clearly the same as 
those for the Schrodinger operator 

(5.7a) 

and specifically if 

( 5. 7b) 

then 

[
. (1)2 2 2] 112 

£1 = (Ep ) + V 2 + V 3 (5.7c) 
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The spectrum of Er differs from that of £~ 1 ) by the inclusion of a "mass gap" 
given by (V~ + V~) 1 1 2 . 

When V1 (as well as V2. 1) is a constant, the Hamiltonian of Eq. (5.3) is 
translation invariant, and so 

[fir, if]= 0, constant vl.2.3 (5.8) 

HBwever, since I does not commute with if, the momentum operator 
p~1 

=-!fir fails to commute with fi, giving a simple illustration of an issue 
raised in the momentum operator discussion of Sec. 3.1. 

-------·--

5.2 REDUCTION TO AN OPTICAL POTENTIAL 

We have seen in the preceding section that only in a very special case does the 
operator lifl reduce to a complex Hermitian operator without quaternionic 
structure. For a general if, a different strategy must be employed to reduce the 
quaternionic stationary state Schrodinger equation to a complex one. Let us 
work with the coordinate representation time-independent Schrodinger equa
tion of Eq. (4.36a), 

if(x) f(x) = f(x) iE, E 2: 0 ( 5. 9a) 

taking for if(x) the form given in Eq. (4.37a) (again with no time dependence). 
Rewriting fi(x) andf(x) in terms of symplectic components, as was done in the 
time-dependent case in Eqs. (2.64)-(2.65), we get 

if(x) = H~(x) +JHr1(x) 

HY.(x) = - -
1
-· 'V'~ + iV1 (x), 

2m · 

f(x) =f~(x) +i.i(l(x) 

Substituting Eq. (5.9b) into Eq. (5.9a), we have 

[H,(x) +JHr1(x)] [/~(x) +J/~(x)] = [/~(x) +Jfri(x)]iE 

(5.9b) 

( 5. 9c) 

and then resolving Eq. (5.9c) into symplectic components gives the pair of 
coupled complex equations 

!-!~ fcx - H(i /(1 = j~iE 

Hfi j, + H~ fr1 = f(1iE 

Let us now formally solve Eq. (5.10b) forf(i in terms offY., 

( 5.1 Oa) 

(5.10b) 

(5.11) 
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which when substituted into Eq. (5.10a) gives a Schrodinger-like equation for/~, 
which contains a nonlocal, energy-dependent "optical potential," 

Hror(E) f~ = Ef, 

Hror(E)- -iH, + iH(1(iE- Jr,_)- 1 H~ = H1 + Vapr(E) 

~2 I 
. Vx ( V (E x H 1 =-zH~=--+V1 x), opt )=H"E Hfl 

2m " + H1 
(5.12) 

Once Eq. (5.12) has been solved for/;, we can determinefp by using Eq. (5.11), 
which in the notation of Eq. (5.12) takes the form 

(5.I3) 

Equations (5.12) and (5.13) give the desired reduction of the quaternionic 
Schrodinger problem. We note that in a formal mathematical sense, the 
elimination off(; is justified by the fact that the operator H 1 is elliptic, and so 
for E 2:0 the resolvent (£ + H 1)-

1 exists (apart from possible isolated 
singularities connected with negative energy bound states of H 1, as discussed 
in C~apter 6) .. since Hj1 = H~, the optical potential V0p1(E) is complex 
Herm1t1an, that IS, 

I Hror(E) = Hror(E) (5.14a) 

However, substituting Eq. (5.9b) for H 11 , we see that V0p 1(E) has the operator 
structure 

(5.14b) 

which has a nonvanishing imaginary part because H 1, which contains the 
operator 7~, does not commute with V2.3(x). 

Instead of eliminating/~ in favor ofj~, as in Eq. (5.11), we can alternatively 
solve Eqs. (5.10a,b) by using Eq. (5.10a) to eliminate/~ in favor of/p, 

(5.15a) 

and then substituting into Eq. (5.10b) to get a Schrodingcr-like equation for JP, 

(5.15b) 

In this case the resolvent (E- H 1)-
1 has a branching ambiguity forE 2': 0, 

which we have dealt with in Eq. (5.15b) by specifying the principal value P, so as 
to make the effective Hamiltonian operator for .1(1 complex Hermitian. Irre-
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spective of the prescription used for ( E- H 1)-
1

, Eq. (5.15b) is satisfied by the f(1 
determined via Eq. (5.13) from an/~ satisfying Eq. (5.12), which we have seen 
has no branching ambiguity. To verify this, we calculate as follows: 

( 5 .15c) 

Let us now introduce the notation H;~)(E) for the effective Hamiltonian 
obtained from H 101 (E) by complex conjugating all explicit factors of i. while 
keeping E fixed, 

(5.16a) 

In this notation, the overall complex conjugate ll 101 (Er 1s g1ven, for general 
complex E. by 

(5.16b) 

and since Ein Eq. (5.15b) is real. the optical equation forfp reads 

-H~~~(-E)./(1 = Ef(i (5.16c) 

with the principal value prescription understood. The fact that the kinetic 
energy term -'\!~/2m enters the equation forfp with the opposite sign from the 
way it appears in the equation for f~ will have important consequences for 
scattering theory in quaternionic quantum mechanics. This subject will be 
discussed in considerable detail in Chapter 6. 

Let us now look at completeness of the energy eigenstates, and the time
dependent Schrodingcr equation, from the viewpoint of the optical potential 
equations. Let ht = (xlh1) be a complete set of energy eigenstates of Eq. 
(5.9a), and let I= (xlf(t)) be a general solution of the time-dependent 
quaternionic Schrodinger equation of Eq. (2.64). Then according to Eqs. 
(2.83a c), we have 

together with the expansion 

I= L hie ,r,rc, 
I 

(5.17a) 

(5.17b) 

with time-independent quaternionic coefficients C 1 . Applying the optical 
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potential analysis to Eq. (5.17a), we sec that the symplectic components hiY../I 
obey 

(5.17c) 

while their complex conjugates obey 

(5.17d) 

Resolving the expansion of the time-dependent solution f given in Eq. (5.17b) 
into symplectic components, we have 

.!~ = L(hbe_,E,rc~~- h7pe;rlrCrt;) 
f 

/tl = L(hlfle-;F,rch i- h;'l.e'Lrrclfl) 
I 

(5.17c) 

Differentiating with respect to time, and using Eqs. (5.17c,d), we now find that 
the time-dependent dynamics of/7 and/(1 is also simply describable in terms of 
the optical potential Hamiltonian, 

· () 1- "( I E' -iLrtc· I' E iE1tc ) -z 8t p = ~ - 1£fl re b + l~y ·le If! 
I 

= L[H)~)(-Ef)hme-iFrtc 1x + Hi~)(Er)h/xeiF,rcffl] 
f 

=H)~) ( -i:r) I;(h1pe iF., 1C 17 + h'fxe
1
E

11 C 1t1) 

= }[;~; ( -i :r)h 

(5.18a) 

(5.18b) 

Let us now examine the time reversal properties of Eqs. (5.18a,b). Taking 
their complex conjugates, and applying Eq. (5.16b), we get 

a ( ., ) . , H . c .* 
l 8( -t) f ct.= Htot l 8( -t) ./ "' --i·,(Q_)ffi = Hror(-i )t )f/1 (5.18c) 

u -t ( --t) 
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These have the same form as the original Schrodinger equations of Eqs. 
(5.18a.b), apart from the replacements of/~ by f~, ftl by /(;· and oj{)t by 
a 1 u(- t), provided that the condition 

(5.!9a) 

is satisfied. Thus time reversal for the effective Schrodinger equation is repre
sented by complex conjugation, just as it is for the ordinary Schrodinger 
equation with a local potential in the absence of spin or internal symmetry 
structure (see, e.g., Wigner, 1931, Chap. 26; Schiff, 1968, pp. 227 229). 
Comparing now with Eq. (5.12), we see that Eq. (5.19a) requires, in turn, the 
condition 

(5.19b) 

and from Eq. (5.!4b) we see that in the generic case with linearly independent 
V2 and V1• this condition is not satisfied. Consequently, the effective complex 
Schrodinger equations of Eqs. (5.12) and (5.16c) are time reversal violating 
(Adler, 1988). This result is in complete accord with the conclusion reached, on 
the basis of our analysis of time reversal invariance for the quaternionic Schr6-
dinger equation, in Sec. 4.6, and will be further discussed in Sec. 6.3. 

To conclude this section, we give the reduction to an optical potential in the 
case of the general spin-! /2 Hamiltonian 

(5.20a) 

introduced in Sec. 3. 7. This Hamiltonian acts on a two-component spinor wave 
function .1; which (remembering that ja2, not j, is now a rotational scalar) we 
split into symplectic components according to 

f(x) =.f~(x) +.fa2./(J(x) ( 5.20b) 

Substituting Eqs. (5.20a,b) into the time-independent Schrodinger equation 

ii(x) f(x) = f(x) iE (5.20c) 

and separating into symplectic components, we get 

H'Y.f~ +Ja2Htlia2fr1 =f'Y. iE 

Hcx)a2./(J +Ja2Htlf~ =ja2.f(1 iE = -iEfa2f(i (5.20d) 

Solving formally forja2 fr1 gives 

(5.20e) 

which when substituted back into the equation for/~ gives the optical potential 
equation 

Htot(E).f~ = Ef~, 
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Suppose now that we choo~c H ~ = iH 1, Hr1 = a2 Vp, in which case [cf. Eqs. 
(3.93a-c)] the Hamiltonian H(x) i~ not a rotational scalar, although with H 1 
and v11 spherically symmetric, H(x) commutes with the orbital angular 
momentum. In this case Eq. (5.20a) reduces in form to Eq. (5.9b), and the 
effective Schrodinger equation of Eq. (5.20f) reduces in form to Eq. (5.12). 
Therefore the optical potential equation for spin-0 (which is studied in detail in 
Chapter 6) also reappears as a nonrotationally invariant special case of the 
optical potential equation for spin-! /2. 

5.3 STATIONARY STATE PERTURBATION THEORY
INTRODUCTIONI 

Let us next develop the analog, in quatcrnionic quantum mechanics, of the 
standard Rayleigh- Schrodinger perturba1ion expansion for time-independent 
problems widely used in complex quantum mechanics. Let il0 and if be, 
respectively, the unperturbed and perturbed Hamiltonians, which differ by a 
perturbation V, which will be treated as an expansion parameter, 

- - -
H= H 0 + V, ( 5.21) 

We assume that we know the energy eigenstates lh~0 l) of the unperturbed 
problem. 

flolt/0 )) ,= lh(0))i£(O) n 11 11 (5.22a) 

and wish to find power series expansions in pqwers of V for the corresponding 
energy eigenstates lh 11 ) and eigenvalues E,, of H, 

(5.22b) 

Developing lh11 ) and E 11 in series expansions around lh~~) and£~, we have 

E - £'(0) £(1) £(2) 
n- n + n + 11 + ... ( 5.23) 

with lh~q)) and £~'!) of order ( V)'~. Substituting these expansions, together with 
Eq. (5.21), into Eq. (5.22b), and using Eq. (5.22a), we get 

Holh~ 1 )) + Vlh~0 )) = lh~0))iE~ 1 ) + ih~ 1 ))i£,~0 ) 

Holh(2l) + VIIJ( 1l) = lhl0l)if'(2) + lh(l;;i£l1l + 1tPl)i£l0l 
11 n n ·'n n 'n n n 

(5.24a) 

(5.24b) 

Our problem is to solve Eq. (5.24a) for E,Vl and lh~ 1 l), then to solve Eq. 
(5.24b) for £~2 ) and lh~2 l), and so forth. Initially, we will assume thftt the 
unperturbed energy levels £~0 ) are nondegeneratc, so that £~0 ) f £1 ) for 
n f P.; we will generalize to consider the degenerate case in Sec. 5.5. We also 
assume £~0 ) > 0 and reserve the exceptional case of zero energy states for 
discussion in Sec. 5.5. 



132 1\01\RELATIV!STIC QIJATERNIO:\JC QUAI\TUM MECHANICS 

To analyze Eq. (5.24a), we expand lh,(/)) on the basis provided by the 
complete set of unperturbed states 112;01 ), 

lh(ll) = """"lhroJ) (c(ll + ,·c(ll) 
n ~ f /Y. · f(l 

i 

( 5.25) 

where we have written the quatcrnionic expansion coefficient in symplectic 
form, with c)!1

11 E C(l,z'). Substituting Eq. (5.25) into Eq. (5.24a). we get 

lh(O))i£( 1)- VIIJ(Ol) = Hr1lli
1l)- lh( 1l)iE(O) 

n n 11 n n n 

= L lh)
01 )i£)01 

( c)~ 1 
+Jc);/)- L 112)01

) ( c~~~ +iC~;/)z£~0l 
I I 

= L lh)ol) [z( E)ol- Ef~oJ)c)~l + i( E)ol + E,rlol) JC);~~J (5.26) 
( 

Multiplying by (h~O) I from the left and using (h~o) 112~0 )) = 611 p then gives 

i£(1)- (IJ(O)I VIIJ(O)) = 2i£(0J,-c(1) 
n n n n · nfl (5.27) 

Introducing a compact notation for the matrix clement of V and splitting it into 
symplectic components, 

Eq. (5.27) separates into the two <C(l. i) equations 

E (!J- ·v n - -z nnY. 

(I) ( . (0) -1 
C 11 ~ = 2zE11 ) Vnnfl 

(5.28) 

(5.29a) 

( 5.29b) 

The expansion coefficient C~~) is undetermined by Eq. (5.26), since it appears 
multiplied by £~0 ) - £~0 ) = 0, and, in analogy with the convention employed in 
the complex case, we take it to be zero, 

d~l = 0 (5.29c) 

We next multiply Eq. (5.26) from the left by -(IJJ;;ll with m f n, giving 

(1Jl0liJ/iiJl01) _ V = V +J'V = -i(El01- E( 01)c(JI- i(E(o) + £(01) 1-clll m n mn mn'Y. . mn(-i m --' n m:x m n , m{J 

( 5. 30) 

which separates into the two <C(l,i) equations 

C (1)- '(£(0) (0))-] v 
mrx - l m - En mwx 

C(l) = -i(£(0) + £(0))-1 V 
m~ ·m n mn~ 

m ;len (5.31) 
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lPutting everything together, we thus have for the first-order wave function 

lh( I)) - " II (0)). (£(0) - £(0)) -I v "II (O))k(£"(0) £(0)) -I v 
11 - ~ 1m l m 11 mm + ~ 1m m + 11 11111(1 

mf11 111 

(5.32) 

Before proceeding further, we make several remarks on the results just obtained. 

(i) Using the trace operation (projection on the quaternion real part) defined 
in Eq. (1.22b), Eq. (5.29a) can be rewritten as 

(I)_ ( .- ) _ ·( "( (0)~-~ (0))) E 11 - tr -zV1111 - t1 -z h11 V h
11 (5.33) 

which shows clearly the a11alogy with the standard complex case. As a 
corollary of Eq. (5.33), if H(l.) is a one-parameter family of quaternionic 
Hamiltonians and { lhn (/.))} the corresponding family of eigenvectors 
obeying 

ll(i.)lh 11 (/.)) = lh 11 (A))iE 11 (i.) (5.34a) 

then applying our perturbation analysis with Ho = ll(A.) and 
if= H(i. + dl.) ~ H0 + dl.dH(j.)jd). immediately gives 

dE 11 (i.) ( . . dH(I.) . ) 
d). = tr -I (h 11 (1l) I di. !hn (A)) (5.34b) 

(ii) From Eq. (5.23), we find that the normalization of lh11 ) is 

(h lh) =I+ (h(0llh( 1l) + (h( 1ll!z(0l) n n n n n 11 

+ (h(O)Ih(2)) + (h(2)1h(O)) + (h(l)lh(l)) + 
nn nn 1111 ••• 

(5.35) 

where we have used 

(f lx) + (xlf) = (f IK) + (f lx) = 2tr(f I g) ( 5 . .36) 

But as a result of the condition of Eq. (5.29c) we have 

(h(Ollh(ll) = J"C(IJ 
/1 11 . 11 (i (5.37a) 

which implies that 

tr(fz(0llh( 1l) = 0 
!1 "' 

(5.37b) 

Similarly, in solving for the higher-order perturbations we will make the 
expanswn 

(5.38) 
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(iii) 

(iv) 

and will find that C~';l is undetermined for all q; imposing the condition 

q = 1, 2, ... (5.39a) 

then gives 

(h(0)lh(q)) = ,·c(q) 
11 n . n(i' (5.39b) 

Hence, assuming the condition of Eq. (5.39a), the normalization of lhn) is, 
through second order, 

( 5.40) 

Although the expansion coefficient C ~~~~ involves only energy differences 
£,\~) -- £,~0 ) as in the conventional comJ?lex perturbation expansion, the 
coefficient c,~;h contains energy sums £~,) + £~0 ) and so depends explicitly 
on the origin of the energy scale. This is an example of the fact, discussed 
already in Sec. 2.6, that the energy zero point has an intrinsic significance in 
quaternionic quantum mechanics. 

From the anti-Hermiticity of V we deduce important restrictions on the 
matrix elements V111m.(l introduced in Eq. (5.30), 

(5.41) 

that is (Adler, 1988), 

Vmm: = - V 1~nn' (5.42) 

In particular, Eq. (5.42) implies that V1111 ~ is pure <C( 1, i)-imaginary, and so 
£,~1 ) = -iV1111x is guaranteed to be real. Similarly, we will see in Sec. 5.5 that 
Eq. (5.42) guarantees that the second-order energy shift £~2 ) is real. 

5.4 A PERTURBATION THEORY APPLICATION-LEADING 
ORDER CALCULATION OF 1;:.,, J;:.,, K;:.,, AND IHI 

As an application of the methods of the preceding section, let us calculate the 
operators Iii.J{r Kit, and IHI to first order in the potential Vmnf3· From the 
definitions of these quantities for a general anti-self-adjoint operator A as given 
in Eqs. (2.42b,c), we have 

/H] = L lhn)En(hnl, (EA)it = L lhn)eA(hnl (5.43a) 
11 11 

with ( EA) /i any of I it• J if" or KH, and with e A the corresponding quaternion 
unit i,j. or k. Developing Eq. (5.43a) in a perturbation expansion to first order, 
we get 
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llll = L lh~0l)Ef,0 l(h~0 )1 
n 

+ L (lh~O))E~I)(h~O)I + lh~I))E~O)(h~O)I + lh,~Ol)E~O)(h~l)l) 
n 

(EA)if = L lh~0l)eA(h,~0 )1 + L(lh~1 ))eA(h~0 )1 + lh~0 l)eA(h~ 1 ll) (5A3b) 
n n 

Since we are interested primarily in the rotation of the quaternion unit I if rela
tive to Iii, induced by the intrinsically quaternionic part Vmn(i of the potential, 
we will siihpiify the calculation by assuming Vnma to be zero, According to Eq, 
(5.29a), the first-order energy shift E~1 ) then vanishes, and Eq, (5,32) for lh~ 1 )) 
simplifies to 

lh(l)) = '"""'lh(O))k(E(O) + E(0))-1 V (3 
n ~ m m n mn (5.44a) 

m 

with 

(5.44b) 

Substituting Eqs, (5.44a,b) into Eq, (5.43b), and performing a certain amount of 
algebra, the details of which we omit, we find 

(0) ~ (0) 

lfll = '"""lh(Ol)E(O)(h(O)I +'""'En Em lh(O))kV (h(o)l 
~ 11 n n ~ (0) (0) m mn(J n 

n m,nEn +Em 
·v 

I- = '"""'lh(O))i(h(O) I+ 2'"""' lh(O)) J mn(J (h(O) I 
H ~ 11 n ~ m (0) (0) n 

n m,n Em +En 

J- = '"""' lh(O) )J'(h(O) I ~ 2'"""' ltzlO)) iVmn2 (h(O) I 
H ~ n · n ~ m E(O) E(O) n 

n m.n 111 + n 

K- = '"""' lh(O)) k(h(O) I ~ 2 ,, I h(O)) i Vnm3 (h(O) I 
H ~ n 11 L, m E(O) (0) n 

n m.n m + En 
(5.45) 

Using these expressions, it can be immediately verified that the algebraic rela
tions 

( 5.46a) 

are satisfied to first order in V and that, similarly, 

I iii HI = I HII if = L lh~0l)iE~O) (h~O) I + L lh~~l)JVmn(J (h~O) I = flo+ V = fi 
n m.n 

(5.46b) 

To study Eq. (5.45) further for Iii and IHI, we formally evaluate the inter
mediate state sums to get o~erator expressions. This is done by substituting the 
identity (valid forE~~)+ En) > 0) 



136 1\01\RELATIVIST!C QUATER!'iiONIC Ql!ANTUM MECHANICS 

i ac ,(II} ,(II'• 
dse-s(E,, 1-L, ) 

' 0 
(5.47a) 

(0) (0) 
E 111 +En 

and using the spectral representations of I{
10

, jH0 j, and V [as in Eq. (5.46b)] to 
get 

IHI = L lh~0))£~0)(h~0)1 
11 

1X ( iiiJ ( ) ) f.lll) (O) 
+ d "II O)) -sL/, ··v E(O £(0) ··v '-s >" (l'n I s ~ 1m e lf mnfl 4 n - 4111 lJ mnfl ( ' 

() /)1./1 

(5.47b) 

Just as a check on the ari~hmetic, let us use the operator forms of Iii and IHI to 
calculate the product IiiiHI, 

IfiiHI = If1
0

1Hol + ;·:x. dse ,lifoiiif
0

[I
110 

V, lflol]e 
• 0 

= If!
11
1Ilol + /x dse_,fiol(lfioJV + Vlfloi)e 'lilo, 

.fo 
- -

=Ho-I- V ( 5.48a) 

where we have used the operator identity, 1 valid for Hermitian and positive 
definite A, 

( 5.48b) 

Let us now use the operator form of I11 to calculate its x to x' matrix element. 

(xii;!Ix') = (xiiJi
0
lx') + 2 .f)G ds / d 3 x" (xjc-'IH11 IIx") V(x")(x"le-'1 1111 1jx') 

(5.49a) 

1 To prove Eq. (5.4Hb). we take them ton matrix element of the left-hand side in the representation which 
diagonalizes A, giving 

A more general form of this rdentity. and an alternative method of proof. is as follows. Let A and C be 
operators ~uch that e--,IA Be- 1c appro~1ches ;:ero as.\ --f oc. Then 

B _- -c lA Bf! ~clx -
'0 
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To evaluate Eq. (5.49a) further, let us now assume that if0 is the free-particle 
kinetic energy operator, including a rest mass term2 J.l, 

='2 
- p 

[Hol=--+J.l 
2m 

from which we find by a calculation analogous to that of Eq. (4.79), 

(x[e-'liiol[x'l) = e-1"(x[e·'?!2m[xl') 

=e-lls l d3p (x[p)(p[e'P2/2m[xll) 

(5.49b) 

(5.49c) 

Substituting Eq. (5.49c), and its analog with ~t replaced by x', into Eq. (5.49a), 
we get 

(x[(I-- I- )[xl) = 2('!2_)3/ d3xll V(x") /x ds e-21''e-m[(.i'-.i''?-+(S''--?")2j/2s 
ll Ho 2n ./0 s3 

(5.49d) 

The integral overs in Eq. (5.49d) can be evaluated using the formula 3 

( 5.49e) 

with K2 ( z) the Bessel function of imaginary argument, which has the large-z and 
small-z behaviors 

( 5.49f) 

So we get the expression 

( 5.49g) 

Taking the absolute value of Eq. (5.49g) and using the Schwartz inequality 
together with the fact that K2 is a monotone decreasing function of its argu
ment, we get finally the upper bound 

2 Having a rest mass 11 is equivalent to including a constant potential V, = ill in the zeroth order Hamil
tonian. 
1 This follows from the integral (Gradshteyn and Ryzhik, 1965, Sec.3.471, #9) 
J;~ dx x' 1 e-(·;<+/l/,1 ~ 2(11/';)'1 2 K, (2J7f;), by the change of variable x = ,-t. 
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_ . 1 , pm 3 " I x 1 - -:1 ~~~ 2 2/ ·v-( ")' 
l(xi(IH-/l!)lx) 1 S::-1- dx ~ ~ 2 ~ ~ 2 K2(2/Jlmlx -xI) 

0 rr· (x- x") + (x 1 
- x") 

( 5.49h) 

Let us now use Eq. (5.49h) to calculate a bound on the norm of the Hilbert 
space vector (111- /iJ

0
)[x

1
). 

1) 2 I 3 1 2 (2pm
2
) 

2 

II (III- Iifo)lx II =. d x j(xi(III- Iilo)lx )I <:: ~ 

X./ d 3z I V(z)IK2(2yi,Urni.X'
1

- zl) 

x / d3lVI V(li")IK2(2yi,Urni.X'1
- 1vi)F(z, H, x

1
) (5.50a) 

with F(z, 1r, x 1
) the x-integral 

1 ;· 3 I F( z. w, X ) = d X 2 2 2 2 
. [(~X'-- Z) + (x1

- Z) ][(x- 1v) + (.\'1
- 1V) ] 

(5.50b) 

Combining the denominators in Eq. (5.50b) by using the Feynman identity 

I [ 1 d'Y. 

ah = .f o I a:x + h ( I - '-') ]2 
( 5.50c) 

we can complete the square and carry out the x-integral to get 

j ·I 1 
F( z. ll:, x ') = n2 dJ: 

2 
---==--------;;:--:-;= 

o [:x( 1- Y.)(i- 1v) + Y.(x'- Z) 2 + (1- Y.)(x'- 1v) 2]1 2 

(5.50d) 

which has the large-I.X''Ilimit4 

2 
' n F(z w x) "' --

. ' lx'l-. x l.t'l 
(5.50e) 

We can now use Eqs. (5.50a) and (5.50e) to estimate the largc-lx'l behavior of 
(III- ! 11 )lx'). We treat separately the cases p cjc 0 and p = 0. When p cjc 0 the 
argumen(ts or the K2 functions become infinite as lx'l -+ ::x:J, and so using the 
first formula of Eq. (5.49f), we get 

1 _ _ ·' 2 < P m 3 - ~ 3/2 7/2(/ )2(, 2vwn:/1)
2 

I, (Ill- Ino)lx) II cv n3 . d z[V(z)l lx'l (5.5la) 

4 Lquations (5.50b c) can be summarized by the statement that f(1r ;.~·'I large. 
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Hence when the rest mass J.1 is nonzero, the state vector (Iii- Iii )lx') vanishes 
exponentially as lx'l ---+ ex:. When J.1 = 0, the arguments of th~1 

K2 functions 
vanish. and so we begin by using the second formula of Eq. (5.491) to reduce Eq. 
(5.50a) to 

2 - -

II (1- -I- )lx') ll 2 <~;·d3z IV(z)lfd 3w IV(w)l F(z.w.x') (5.5lb) 
H lfo - n6 I~' ''12 I~' ~~2 . X-L.. X-\l 

which as l.t''l ---+ ex: gives the estimate 

(5.5lc) 

giving a power law vanishing of_the state vector (lr!- Iii )lx'). We conclude 
that when the spatial integral of I Vi is convergent. the state ~ector (Iii- I if )lx') 
vanishes strongly as l.t''l ---+ oo, or as stated in Sec. 3.1, I iflx) approaches Ifx) as 
1-¥1 ---+ ex:. 

As a final calculation using our perturbation theory formulas, let us substi
tute Eq. (5.47a) into the expressions for Jii and Kif in Eq. (5.45), giving the 
operator forms 

J- = J - 21"" ds e-!Ho'' I- V2e- iloi,· 
H flo Ho 

0 

( 5.52a) 

where v2.3 are the operators with matrix elements (h~) IV2.3Ih~O)) = v2.3mn. 
5 

Using these formulas, we can see Shat in the generic case J if and Kif, wh_ile 
acting as inversion operators for H, are not also inversion operators for H 0 . 

Explicitly calculating the anticommutators with fl0 , we get 

{Jii, flo}= 21CXJ dse-IHol'{lflol, V2}e-lifols = 2 V2 

{Kirflo} = 21"XJ dse-IHo',s{lflol, V3}e-,ifol' = 2V3 ( 5. 52b) 

where we have again used the identity of Eq. (5.48b). Hence the anti
commutators of Eq. (5.52b) are nonzero within the domain of support of the 
potential V. 

5.5 STATIONARY STATE PERTURBATION THEORY
SECOND-ORDER EXPANSION, TIHE DEGENERATE CASE, 
AND ZERO-ENERGY STATES1 

Let us now continue the process begun. in Sec. 5.3, by solving for the second
order energy and wave function shifts £,~2 ) and lh~2l). Introducing the expansion 
of Eq. (5.38), with q = 2, into Eq. (5.24b), and using the first-order results of 
Eqs. (5.25), (5.29a,b), and (5.31), we get 

' Thus V2.3 are the formally real components of V dell ned by the decomposition of V, as in Eqs. (2.11 a d), 
with respect to the left-acting algebra 11-1 • 1 1-1 . K 1-1 . 

(I ll' () 
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lh(O))i£(2) ~ V/h( 1)) + /h( 1))i£( 1) 
n n n n n 

= /h(O))i£(2) ~'"""' V/h(0))i(E(O) ~ £(0)) -
1 v 

11 "n ~ m m n mnY. 

mfn 

'"""' V-jh(O) )k (£(0) £(0)) -I V ~ ~ m ~m + n mnfJ 
m 

'"""'[h(O)) ·(£(0) (0)) -1 V V + ~ 111 l ~ 111 - En mn~ nncx 
mfn 

'"""' /I (O) )k (E(O) £(0))-
1 
V V + ~ 1m m + n mnfJ nnrx 

m 

= ll0 /h~2 l) ~ lh~2l)i£~0) 

= '"""'/h(0J) [i(E(o) ~ £(0l) c(
2J + k(E(o) + £(0l) c(

2l] (5.53) 
~ t t n f~ e n lf3 

f 

Projecting Eq. (5.53) onto (h~0 ) I and onto (h~O) /, [i # n, and separating into 
symplectic components, we get for the second-order perturbation coefficients 

£ (2) _ '"""' V ( , (OJ ~ £(0)) -
1 

V '"""'V* (£(0) £(0)) --
1 

V 
n ~ ~ nmz Em ~n mnrx + ~ nmfi m + ~~~ mnfi 

m}11 m 

(2) 1 
C fJ - (OJ VnnfJ Vnno: 

n (2En )
2 

I ['"""' V (E(O) £(0)) -1 V '"""' V* (£(0) £(0)) -1 V l + ~ ~ nmfJ m ~ n mn~ --~ nme< m + n mnfi 
2En mjn m 

c(2J = (E(ol- E(oJ)-1 [(E(o)- E(o))-1 v v 
Px f n f n fm nnrx 

'"""' V (£(0) £(0))-1 V '"""' V' (E(O) £(0))-1 V l ~ ~ Pm~ m ~ n mn~ ~ ~ PmfJ m + n mnfi 
mjn m 

c(2J = (E(oJ + £(oJ)--1 [(E(oJ + E(oJ)-1 v v €/3 £ n e ~n fnfJ nn:x 

+ L Vemp(£~) ~ £~0)) - 1 
Vmncx ~ L V£m:x( £~) + £~0)) -\ Vmn/il (5.54) 

mJn m 

As promised, the energy shift £~2 ) is real by virtue of the anti-Hermiticity 
conditions of Eq. (5.42). 

Up to this point we have assumed nondegenerate energy levels, so that 
vanishing energy denominators do not appear in Eqs. (5.32) and (5.54). Let us 
now turn to the degenerate case in which the level £~0) is D-fold degenerate. For 
the time being we will assume that £~0 ) > 0; the case of a degenerate zero-energy 
state is exceptional and will be treated separately. The zeroth-order eigenfunc
tions now obey 
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a= 1, ... ,D (5.55a) 

and in the presence of the perturbation V we expect the degeneracy to be lifted 
(or partially lifted), with new eigenfunctions \h 11J and eigenvalues En" given by 

\hnJ = L \h~~~l)Cha + \h~:,l) + \h~~l) + ... 
h 

En =E,(,O)+E
11
(I)+E,(,2l+ ... , a=l, ... ,D 

o a a 
( 5.55b) 

In wntmg Eq. (5.55b), we have incorporated the fact that the zeroth-order 
parts of the new eigenfunctions are in general linear combinations of the 
original zeroth-order basis. Substituting Eq. (5.55b) into the Schrodinger 
equation 

(5.56a) 

we get in zeroth and first order 

( 5.56b) 

(5.56c) 

and similarly in higher orders. Using Eq. (5.55a), the zeroth-order equation of 
Eq. (5.56b) becomes 

(5.57a) 

which implies that 

[i, Coal= 0 (5.57b) 

and thus the expansion coefficients Cha lie m the <C(l,i) subspace of the 
. 1 b 6 quaternton a ge ra. 

Projecting now Eq. (5.56c) onto (h,~0 ll, we get 
I 

and introducing symplectic components according to 

(h~~)lh~:/) = (h~~)lh~:/)" + J(h~~)lh~;,l)/1 
(h~c;)l V\h,~~)) = Vn,nha + JVn,nhfi 

(5.58a) 

(5.58b) 

''The reasoning here is identical to that employed in Sec. 3.5, where we concluded that symmetries of ii 
lead to a complex CC (I. i). and not a quaternionic. group representation problem, with zero-energy states as 
the exceptional case in which quaternionic symmetry representations are permitted. 
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we see that the q 1, i) part (h~O) lh~ 1 )) 
11 

of the ftrst-order wave function is unde
termined by Eq. (5.58a), and in ~nal'bgy with Eq. (5.29c) will be taken to be zero, 

( 5.58c) 

The <C( 1, i) projection of Eq. ( 5.58a) determines the first-order energy shifts £( 1) 
no 

through 

L ( -i Vn, nb11) C ha = C caE,\;,) 
h 

( 5.59) 

showing that E,r,;/ and Cha, a= 1, ... , D, arc, respectively, the eigenvalues and 
eigenvectors of the <C(l, i) matrix -iVn,np, which by Eq. (5.42) is complex 
Hermitian. The spectral theory for complex Hermitian operators now assures us 
that we can always find a set of coefficients Cha that correspond to D ortho
normalized eigenvectors of Eq. (5.59), with the consequence that in the rede
fined basis 

( 5.60) 

the perturbation V has matrix elements with vanishing off-diagonal 'Y. compo
nents, 

"C* u C "C* C ·E(l) ~ ·E-(1) = ~ dh Y """' 7. ca = ~ db dal ' 110 = "hal 110 
(5.6la) 

c.d d 

On the new basis, the generalization of the condition of Eq. (5.58c) to higher 
orders takes the form 

a, c = 1, ... , D 
q = 1, 2, ... . 

(5.61 b) 

We can now carry out the entire perturbation theory analysis through Eq. 
(5.54), using fi~O) as the zeroth-order basis. Referring to Eqs. (5.32) and (5.54), 
we see that po'tentially vanishing ener~? denominators are always associated 
with (i) an intermediate state factor (£ 11°)- £~0)r·l V"""""' with nh f. na, and/or 
(ii) an attempt to calculate an expansion coefficient C~q~· Hence the conditions of 
Eq s. ( 5.61 a, b) are precisely the ones needed to guaran t~e that no vanishing energy 
denominators are encountered in the perturbation expansion for the degenerate 
case. The crucial point is that although we are dealing with a general quaternionic 
perturbation V, the needed zeroth-order basis rediagonalization for £~0) f. 0 
involves only a q 1, i) eigenvalue problem, with the same structure as in standard 
complex quantum mechanics. 

Let us ftnally turn to the exceptional case in which there is a degenerate 
(or nondegenerate) zero energy level. Labeling the zeroth-order eigenstates so 
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that this level corresponds to n = 0, Eq. (5.55a) becomes 

a= 1, ... ,D ( 5.62) 

The prior analysis of Eqs. (5.55b)-(5.57a) is unchanged, but Eq. (5.57a) now 
reads 0 = 0, and so gives no condition on the expansion coefficients C hu, which 
can therefore be quaternion valued. In Eq. (5.58a), the entire matrix element 
(hb~) ihb~)) is undetermined (not just its IY. symplectic component), and so Eqs. 
(5.58c) and (5.61 b) are now replaced by 

a,c=l, .... D. q = 1, 2,... (5.63) 

Since the C ha are quaternionic, there is no virtue in splitting Eq. (5.58a) into 
symplectic components, and so Eq. (5.59) is replaced by 

( 5.64a) 

which is just the eigenvalue problem for the D x D quaternion anti-self-adjoint 
matrix Vo 01 . The spectral analysis of Sec. 2.3 now assures us that we can find a ' ) 

set of quatcrnionic coefficients Cha that correspond to D orthonormalized 
eigenvectors of Eq. (5.64a), so that on the redefined basis 

(5.64b) 

the perturbation Vis diagonal and <C(L i) (and has nonnegative eigenvalues, 
which are the first-order energy shifts Eb1 

l), ,, 

(5.65a) 

from which follows 

(5.65b) 

Referring now to Eqs. (5.32) and (5.54), we see that the additional dangerous 
energy denominators associated with the zero-energy states are always associated 
with (i) an intermediate state factor (2Eb0

))-
1 V0"0" 11 , and/or (ii) an attempt to 

calculate an expansion coefficient C~qj1 . Hence the conditions of Eqs. (5.63) 
and (5.65b) just suffice to guarantee that these additional vanishing 
denominator~ arc not encountered in the perturbation expansion. 
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5.6 VARIATIONAL PRINCIPLES! 

We proceed next to formulate variational principles for the stationary state 
problem in quaternionic quantum mechanics. Consider first the functional 

w (I/.))=_ tr((flillf)i) 
1 . (fif) (5.66a) 

Varying the state If), and using Eq. (5.36), we get 

bwJ(I f))=_ 2tr[(6(fi)iflf)i] + 2tr[(6(fl)if)]tr((flllll)i) 

U If) Uifl 
-2 { .. [- ... tr((fiHif)i)j} 

=(flf)tr (o(fl) Hif)z-if) (fif) (5.66b) 

But tr[(6(fl)lg)] = 0 for all6(fl implies, taking 6(fl equal to a real multiple of 
(gl, that I g) = 0, and so the necessary and sufficient condition for 1}1 1 (if)) to be 
stationary is 

iii!').= 11.) tr((flillf)i) 
. I . Ulf) (5.67a) 

which, multiplying by -i from the right, becomes 

fill)= If) tr((()~l()i) (-i) (5.67b) 

Equation (5.67b) can be rewritten as 

f!lf) = lf)zE (5.67c) 

with E the real (but not necessarily positive) constant given by 

E = -tr((fiHif)i) = 1}1 (I/")) 
(flf) I . 

(5.67d) 

In other words, 1}1 1 is stationary for wave functions If) which satisfy the time
independent Schrodinger equation of Eq. (5.67c), and the stationary value of 1}1 

is the eigenvalue E. The functional W 1 is invariant under the change of ray 
representative 

lfl ___, IIX · 1(1 = 1, ( E <C (I, i) (5.67e) 

while it reverses sign under the change of ray representative 

lfl ___, lfliC 1(1 = 1, (E<C(1,i) (5.67f) 

corresponding to the fact that E in Eqs. (5.67c,d) can have either sign. 
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Although the functional 1}1 1 is stationary at solutions of the time-dependent 
Schrodinger equation, it evidently does not give a minimum principle. To 
obtain a minimum principle, which is a direct analog of the Rayleigh-Ritz 
variational principle in the complex case, we consider the positive definite 
functional 

(/.I fi21 ~') (ifl.f)) 1(i11./')) 
w2(lf)) = (-if2)r = . (-.fl.f) .J -

(flf) 
( 5.68a) 

which is independent of the ray representative used for If). Varying the state 
If), we get 

~ . 2 { ' [ ~2 (fi-H
2
If)]} aw2(IJ))=(flf)tr (()(.II) -H lf)-lf) (flf) (5.68b) 

which vanishes if and only if 

(5.68c) 

with 

E 2 = (f I - fi 
2
1 f) = 1}1 (I /')) 

(flf) 2 ' 
(5.68d) 

Introducing the energy eigenfunction expansion of If), as in Eqs. (5.17a,b), we 
have 

(5.68e) 

with Eo the smallest eigenvalue of IHI. Equality in Eq. (5.68e) holds only when 
If) = lho)w, lwl = 1, with lho) the eigenstate with energy eigenvalue Eo. 

5.7 THE ADIABATIC APPROXIMATION AND THE GEOMETRIC 
PHASE 1 

Let us consider next the case in which the Hamiltonian if depends on a set of 
external parameters, which we collectively denote by the vector R, 

(5.69a) 

For fixed R we suppose that we know the unit normalized energy eigenstates 
lhn ( R)) and energy eigenvalues En ( R) that satisfy the time-independent Schro
dinger equation in standard form, 

(5.69b) 
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We assume throughout the following discussion that the energy cigenstates 
lhn) are non-degenerate. Let us now consider the situation in which the 
external parameters R arc specified, slowly varying functions R( t) of the time 
t, so that time development is governed by the time-dependent Schrodinger 
equation 

a - ~ 
dt lf(t)) = -H(R(t))if(t)) (5.70a) 

We wish to follow the time evolution of a state that is initially in a definite 
energy eigenstate of the instantaneous Hamiltonian at time t = 0, 

if(O)) = ihN(R(O))) (5.70b) 

Since the states lh,,(R(t))) form a complete set at time t, we use them as an 
expansion basis for lf(t)), writing 

lf(t)) = L lh"(R(t)))L'-iJ;;duEn(R(u))C,(t), (5.71) 
n 

with C n(t) a quatcrnion-valued expansion coefficient. Substituting Eq. (5.71) 
into Eq. (5.70a) and using Eq. (5.69b), we get 

L ( fi.(t) · '\} Rihn(R(t))) )l' 'l; du£u(R(u))C 11 (t) 
n 

+ L lhn(R(t)))L'- i J;; du£n(R(u)) [ -ZEn(R(t))Cn(t) + Cn(t)] 
11 

= -- L lhn(R(t)))iEn(R(t))e-i.f~ duLn(R(u)) Cn(t) (5.72) 
n 

where the dot (as in Sec. 4.1) denotes time differentiation d/ dt. Canceling 
the terms proportional to En on the left and right of Eq. (5.72), and using 
the orthonormality of the instantaneous energy eigenstates, Eq. (5.72) 
becomes 

Cm(t) =- L e;.J;; du£n,(R(u)) (hm(R(t))iJi.(t). '\J Rlhn(R(t)))L'-i};; dulcn(R(u)) Cn(t) 
n 

( 5. 73) 

To proceed with the analysis, let us now assume that the energy EN is bounded 
away from zero; the case of vanishing EN is exceptional and will be discussed 
separately. Introducing symplectic decompositions for all quaternionic quan
tities, Eq. (5.73) takes the form 
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C·, ( ) ·c· ( ) _ "'"""'>'J' du[Em(R(u))-E 11 (R(u))] 
nn t +.1 mfi t --~ C 0 

(I 

X (h 111 (R(t))IR(t) · \)Rih 11 (R(t)))o: [ C11o;(t) + JCnfi(t)] 

"'"""' ; rr du[Em(R(u))+En(R(u))i 
- ~e Jo 

11 

14f7 

X j(hm(R(t))IR(t). VIdh/l(R(t))) fi [ c,,(t) + JCn[i(t)] (5.74) 

Let us now make a systematic approximation based on regarding R/IRI as a 
small parameter. Because of the initial condition for C11(0) in Eq. (5.71), we 
clearly have 

C mcx << I, 

Ctvf3 <t: I 

C111 f3 « I mf.N 
(5.75) 

and so to leading order the term CNrx dominates the sum over n on the right of 
Eq. (5.74). Integrating Eq. (5.74) fos the small coefficients CNfi and 
C 111rx,fi• m f. N, we get to leading order in R, 

CNp(t) ~ [e-2i.J;.du/:;y~(u))- 1] (ht,·(R(t))IR(t). VRihN(R(t)))[i + O((R)2) 
21EN(R(t)) 

{ 
I rr du[E,(R(u))-E:.;(R(u))] l 'l 

- e .Jo - r 
C.m(t) ~ ~ ~ ' (h 111 (R(t))IR(t) · VRihN(R(t)))cx 

i[E 111 (R(t))- EN(R(t))] . 

+ O((R) 2
) 

{ 
-i /

0
'' du[E 11,(R(u))+E,v(R(u))] ll e . - > 

Cmfi(t) ~ . ~ ~ J (hm(R(t))IR(t) · VRihN(R(t)))fi 
1[E111 (R(t)) + EN(R(t))] 

From Eq. (5.76), we see that the effective expansion parameter is, in fact, 

all m) I 
m =;ic N~ IE E I' 

m + N 

(5.76) 

(5.77) 

with LN the characteristic length scale of variation of lhN(R(t))). The adiabatic 
approximation consists in assuming that ~ « 1, so that the small coefficients 
CNfi and C 111!'J.fi• m f. N can be neg;lected. In this limit the system r~mains in the 
parameter-evolved version lhN(R(t))) of the original state lh,y(R(O))), up to 
phase factors, 

( 5" 78) 



148 NONRELATIVISTIC Ql:ATERNIO"'IC QL'ANTUM MECHANICS 

with exp[-iJ;; duEN(R(u))] the usual dynamical phase and with CN:x(t) an addi
tional <C(l, i) phase factor obeying [cL Eq. (5.74)] 

( 5. 79) 

Writing 

,, ( ) ,., ·(t) 
L .'Vex { = (' I,\ (5.80a) 

Eq. (5.79) can be rewritten directly as an equation for "/N, 

( 5.80b) 

Since by use of Eq. (5.36) we have 

' ' 

0 = R · VR 1 = R · '~:fR(hN(R)Ihiv(R)) 
' . 

= (hrv(R)IR · VRihrv(R)) + (R · VR(hv(R)I)IhN(R)) 

= 2tr(hy(R)IR · "JRihN(R)). (5.80c) 

the matrix clement (hN(R)jR · VRihN(R)) is quaternion imaginary. Conse
quently. its Y. symplectic component is <C( I, i)-imaginary, and correspondingly 
?'.v, as given by Eq. (5.80b), is real. The change in the phase 'IN over a closed 
orbit is called the geometric or Berry's phase; its existence and properties in the 
complex quantum mechanics case were first established in an important paper 
by Berry (1984), which has inspired a large subsequent literature reviewed in 
Wilczek and Shapcrc (1988). The main point to emerge from our analysis here 
is that in quaternionic quantum mechanics, the geometric phase for positive 
E.v is still a <C( I, i) phase, not a quaternionic phase. Not only do Eqs. (5.78)
(5.80a,b) have the same structure as in the complex case, but the residual 
rcraying invariancc of the time-independent Schrodinger equation of Eq. 
(5.69b) is 

(5.8la) 

with ¢n ( R) real, which is the complex <C( I, i) reraying freedom assumed m 
Berry's analysis. Under the reraying of Eq. (5.8la), YN transforms as 

(5.8lb) 

Thus although y N is not invariant, the integral of Ytv over a closed orbit on 
which ¢N is continuous is a reraying invariant, and so has an intrinsic physical 
or geometric significance 7 ; hence the name geometric phase. 

In the preceding discussion, we have assumed that the energy level EN is 
strictly positive. Let us now consider the exceptional case in which there is an 

-
7 More precisely, since e2

"' -- 1. it is the residue modulo 2n or the closed orbit integral § dt·i_\ that has an 
intrinsic significance. 
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energy level E 0 ( R) that vanishes (or remains negligibly small) for all R. In this 
case, there is a vanishing denominator proportional to 2Eo(R(t)) in Eq. (5.76) 
for Cop (t), and so we are not justified in assuming that C op·is small. Returning 
to Eq. (5.73), we have 

Co(t) =- (ho(R(t))IR(t) · '\iRiho(R(t)))C()(t) 

- L(ho(R(t))IR(t) · ·\}Rih,(R(t)))e i~:CtuE"(R(u))C 11 (t) (5.82a) 
nfO 

The analysis of Eqs. (5.73)-(5.77) remains valid for C,(t). n cjc 0. and so in the 
adiabatic approximation these coefficients can be neglected. The equation for 
C 0 then becomes 

Co(t) = -(ho(R(t))IR(t) · '\!Riho(R(t)))Co(t) (5.82b) 

which can be integrated in the form 

(5.83a) 

with T1 the operator that orders later times to the left, and with ~· 0 the imaginary 
quaternion 

(5.83b) 

As we shall show in detail in Eq. (5.9la). Eqs. (5.83a,b) determine C 0 (t) to be a 
quatcrnion of unit magnitude, ICo(t)l = I. Thus in the exceptional case of a 
level of vanishing energy. there is a quatcrnionic adiabatic phase, which corn:
sponds to the fact that the zero energy eigenvalue equation 

ii(R)Iho(R)) = o (5.84a) 

IS invariant under a quaternionic [as opposed to a <L(l. i)] ray representative 
lransforma tion 

lwl = I (5.84b) 

Although Eq. (5.84b) is not an invariance of Eq. (5.83a). we will sec in the 
following section that the trace of the closed orbit intcgra1,8 

( 5.84c) 

is invariant under quatcrnionic ray representative transformations, and hence 
has an intrinsic, geometric significance. 

' I wi'h to thank E. Witten for 'ugge"ing this formulation. and for a helpful conversaLion. 
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5.8 THE NONADIABATIC GEOMETRIC PHASE1 

Before demonstrating that Eq. (5.84c) is a reraying invariant, we generalize 
along lines suggested in standard quantum mechanics by Aharonov and 
Anandan ( 1990),9 by showing that an analogous integral is naturally asso
ciated with any closed ray orbit that corresponds to the motion of a state in 
quaternionic Hilbert space. Let lf(t)) be a unit-normalized state in quater
nionic Hilbert space parameterized by t but that does not need to obey a 
quaternionic Schrodinger equation, from which we form the quantity 

d . 
q(t) = -(f(tll dt If (t)) 

Since, by now familiar reasoning, 

(5.85a) 

0 = :r I = :r (f(t)\f(t)) = (! (f(t)l) \f(t)) + (f(t)l :r lf(t)) = -[q(t) + q(t)] 

(5.85b) 

q(t) is quaternion imaginary. Let us proceed to consider the effect of a general 
time-dependent change of ray representative for the state lf(t)), 

if(t)) ___, lf(t)) wr(t), lwr(t)l =I (5.86a) 

which is an invariance of the ray orbit swept out by If( t)). but which induces on 
q(t) the transformation 

"This construction is quite distinct from another geometric construct related to quantum evolution 
proposed by the same authors (Anandan and Ahamnov, 1987). which also has a quatermonic general
i;ation, as follows. Let [((r)) obey a Schr6dinger equation 

D -
01

1((r)) = -l!(r)!f(r)) 

which implies for the second time derivative 

n' I. iJH(r)l. - 'I iJr2 ((f))= --Til j(r))-,- H(r)" ((r)) 

Then. Taylor expanding. we find 

(f(r)lf(r+dr))- 1-dr(f(I)IH(r)lf(l)) 

1 , [ . iJlf(r) . - , l 
+'J(dr)" -(!(1)1 a/1 f(r)) + (f(i)lll(l)"lf(l)) + 

and thtls. since ( f (r)lll(r)l f (r)) and ( f (r) Ofi(i)jiJr[ f (r)) are imaginary quaternions. we have 

Here 6.£2 (r) is defined by 

and is invariant under arbitrary quatemionic rerayings lf(r)) _, lf(r))c•J1 (r). :I•J11 • I. 
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(5.86b) 

We will now show that under the transformation of Eq. (5.86b), the time
ordered integral 

(5.86c) 

obeys the simple transformation law 

r' ' ' A(t, 0)---> A 1(L 0) = T1eJo '"'1 (u) = (1)1 (t)A(t, O)wt(O) (5.86d) 

To see this, we consider the differential equation obeyed by A(t, 0), 

d 
dt A(t, 0) = q(t)A(t, 0) (5.87a) 

which together with the boundary condition 

A(O, 0) == I (5.87b) 

completely determines A ( t, 0). The corresponding differential equation satisfied 
by A 1(t,O) is, from the left-hand side of Eq. (5.86d), 

d I I I 
dtA (t,O) = q (t)A (t,O) (5.88a) 

But differentiating the right-hand side of Eq. (5.86d), substituting Eq. (5.87a), 
and using Eqs. (2.55b) and (5.86b), we gel 

d (d ) d ~fi!!Jj(t)A(t,O)w1 (0) = dtwt(t) A(t,O)w1(0) +w1(t) dtA(t,O)wj(O) 

= [ -iiJt (t) :r w1(t) + w1(t)q(t)w1 (t)] oy(t)A(t, O)w1(0) 

= q1(t)ciJt(t)A(t, O)w1 (0) (5.88b) 

Thus A 1(t,O) and w1(t)A(t,O)w1(0) obey the same differential equation, and 
since they also obey the same boundary condition 

A 1(0,0) =I= w1(0)A(O,O)wt(O) (5.88c) 

they are equal, establishing Eq. (5.86d). 
Let us now examine the implications of requiring continuity over a closed 

cycle. Let us suppose that the state l.f(t)) undergoes a cyclic evolution of any 
sort, such that it is defined on the interval 0 < t <::: r, and that l.f(O)) and lf(r)) 
arc states in the same ray, that is, 

If( r)) = lf(O) )oJ, l~vl = I (5.89a) 

We wish to study topological or geometric properties of this cyclic evolution 
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and therefore require that allowed ray representative transformations be 
continuous over the cycle, so that 

(5.89b) 

According to Eqs. (5.86c,d), the time-ordered integral A( r, 0) transforms under 
such a continuous ray representative transformation as 

( 5.90a) 

which is just a quatcrnion automorphism transformation, and consequently the 
trace 

(5.90b) 

is a reraying invariant with intrinsic geometric significance. Equation (5.90b) 
gives the quaternionic analog of the nonadiabatic geometric phase of Aharonov 
and Anandan (! 987). When the state If( t)) is the zero-energy state lho ( R( t)), 
q(t) reduces to y0 (t) of Eq. (5.83b), and Eq. (5.90b) reduces to Eq. (5.84c). To 
express the invariant of Eq. (5.90b) in terms of a phase angle. we note that since 
q(t) is an imaginary quaternion, we have 

d 2 d . d 
dtjA(t.O)j = dtA(t,O)A(t.O)+A(t,O)dtA(t.O) 

= q(t)A(t. O)A(t. 0) + A(t, O)q(t)A(t. 0) 

= A(t, O)[q(t) + q(t)]A(t, 0) = 0 (5.9la) 

and so IA(t. 0)1 has the constant value of unity. [The fact that A(t, 0) is a unit 
quaternion is also an immediate consequence of the Riemann sum interpreta
tion of the time-ordered integral in Eq. (5.86c). together with Eq. (1.5e).] Using 
Eqs. (1.27c-e) to rewrite A(r.O) in polar form, 

A(r,O) = ec(rO)O(r.O) 

e(r, 0) = -e(r, 0) 

O<B(r,O):S:n (5.9lb) 

we see that trA(r,O) = cosB(r.O), and so the angle O(r,O) is the geometric 
invariant connected to the cyclic evolution of the state If( t)). 

From Eq. (5.90a), we see that we can always find a continuous ray repre
sentative transformation w1 ( t) that transforms A ( r, 0) to be <C( I, i); simply 
choose w1 (r) = w1 (0) to satisfy 

c'(r, 0) = c:u1 (O)e(r, O)wj(O) = i (5.9!c) 

and we have 

A'(r,O) = ciJj(O)A(r,O)w1 (0) = e'fi(rO) (5.9ld) 
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Let us now ask whether it is possible to make a ray representative transformation, 
continuous over the cycle, that makes q' ( t) everywhere <C( I, i). We will show that 
in general the answer is in the negative: a transformation can always be found 
1hat transforms q'(t) to be <C(Li), but this transformation may have a sign-flip 
discontinuity m1 ___, -w1 over a closed orbit of lf(t)). Hence the quaternionic 
geometric phase of Eq. (5.90b) is topologically distinct from its <C(l, i) counter
part. To show this, we adopt the following canonical form for uJj(t): 

wr(t) ={[I - iw 13 (t)l 211
/ 2 + )w11 (t) }e'rf'(r) 

wfl(t) E <C( l.i). iw11 (t)i < I. ¢(1) E IR (5.92a) 

We will term a transformation of the form of Eq. (5.92a), but with cjJ(t) = 0, a 
restricted ray representative transformation, and will show that by making a 
restricted transformation we can always make the symplectic component q#(t) 
vanish, so that q 1(t) = q~(t) E <C(l. i). 

To demonstrate this, we write 

W = Wy_ + jw f!, q =, q y_ + jq (I 

w~ fJ E <C( I, i), qY,fJ E <C( l.i). w~ = w: :::> 0, q: = -q~ (5.92b) 

and substitute into Eq. (5.86b), giving (again using a dot to denote time differ
entiation) 

Equating q(1 to zero and dividing by w;, we get 

2 
W (! * W(J __ _ d (W(J) ~- O qp+-2qfJ-2-q~. --
co(/. Wy dt w~ 

and so defining 

Eq. (5.92d) takes the form 

~ C(t) = q{JC(t)
2

- 2qcxC(t) + qfl 

(5.92c) 

(5.92d) 

(5.92e) 

(5.92f) 

which is a Riccati equation. Provided that qrx and qfJ are not singular (which will 
be true when the trajectory of lf(t)) is sufficiently smooth), given any <C(l, i) 
initial condition C(O), Eq. (5.92f) can be integrated to give a <C( I, i) solution 
C(t) for alit> 0. Since the inversion of Eq. (5.92e) is 

C(t) 
[I lw 

1

2]1/2 _ I 
Wrx = - (I -[I+ IC(t)l2]l/2 

(5.92g) 
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any <C( I, i) solution C(t) of Eq. (5.92f) maps into a <C( I. I) solution w 11 satisfying 
the inequality ioJ 11 1 <::: I, and gives a restricted transformation 

I 
uJ/ (t) = 2 1 '2 [I +JC(t)] 

[I+ IC(t)l l I 

(5.92h) 

When the condition of Eqs. (5.92d,f) for the vanishing of q(1 is satisfied, the 
expression for q~ in Eq. (5.92c) can be simplified as follows. Substituting 

(5.93a) 

we get 

(5.93b) 

Using Eq. (5.92d) and its complex conjugate to eliminate the time-derivative 
terms, and simplifying algebraically using the first equality of Eq. (5.93a), then 
g1ves 

(5.93c) 

Let us now require continuity over a cycle, which for restricted transforma
tions with the form of Eq. (5.92h), and with bounded 10 C(O), is equivalent to 

C(O) = C(r) ( 5. 94a) 

We shall show that we can always find a solution C(t) of the differential equa
tion Eq. (5.92f), which obeys the periodic boundary condition of Eq. (5.94a). 
We invoke the property of the Riccati equation (sec Ince, 1956) that, given any 
three particular solutions C 1(t), C 2(t), C 3(t), the general solution C(t) obeys 

that is 

C(t)- C2(t) = D C3(t)- C2(t) 
C(t)- C J(t) C3(t)- C 1 (t) 

C(t) = C2(t)- Dr(t)CI(t). 
I - Dr( t) . 

(5.94b) 

(5.94c) 

with D a constant of integration. Imposing the periodicity condition of Eq. (5.94a) 
on Eq. (5.94c), we find that D obeys a quadratic equation, which always has roots 
over <C( I, i), and therefore a <C(l, i) solution C(t) can always be found that obeys 
Eq. (5.94a). However, since the denominator 1 - Dr(t) in Eq. (5.94c) can vanish, 

10 If Cis everywhere infinite, then Eq. (5.92h) becomes rD1 (t) ~ j, which cannot transform a gene•·a] q(t) to 
a q'(t) which is <t:(l. i). Hence Cis bounded at one point, at least. on the cycle, which we are free to choose 
as the origin. 
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we must address the possibility that C(t) can have singularities. When the coeffi
cients q{J(t), qf3(t), and q'X(t) appearing in Eq. (5.92f) are rPgular, the theory of the 
Riccati equation (Ince, 1956) states that the only singularities of the solution C(t) 
are poles. Let t0 be a point where C(t) has a singularity of the form 

C(t) = R 
11 
+ o((t- to)-n+l) 

( t- to) 
(5.94d) 

and let the behavior of qp ( t) near to be 

( 5.94e) 

Then substituting into Eq. (5.92f), we learn that 

d , * , 2 11 R S * R
2 

. 
0=--C(t)+q1!C(t) + ... =---~1 + 2 +iesssmgular 

dt · ( t - to)" f- ( t - to) n-m 

(5.94f) 

which implies that 

-RS* = n == m + I (5.94g) 

From Eq. (5.92h), we see that near t0 , the behavior of oy(t) is 

. C(t) . R (It- tol)
11 

wt (t) ::::o' IC(tll == JIRI t- to (5.94h) 

which flips in sign at to when 11 is odd. We conclude that starting from a general 
quaternionic q( t), we can achieve a transformed q' ( t) that is <C( I, i) by a restricted 
ray representative transformation that is continuous over the cycle, apart from 
some finite number of sign flips w1 --. -w/" Let us now include a right-multiplied 
phase euf,(t) in w1 , as in Eq. (5.92a). If the number of sign flips in the restricted 
transformation is even, they can all be compensated by giving ¢(t) a discontinuity 
of an odd multiple of nat the t-value corresponding to each sign flip, while pre
serving the continuity condition ¢(0) = ¢(r). If the number of sign flips in the 
restricted transformation is odd, all but one can be compensated in this manner. 11 

11 Let us check that a discontinuity of nrr in cp(t). and an order n pole in C(t). produce discontinuities of the 
same form in q'(t). According to Eq. (5.86b). including a factor e"b(r) in w1 changes q'(t) by -idr/1/dt, and 
so a discontinuity of ±nrr in rjJ(t) at I= to changes q'(t) by ctinrr/5(1- to)- To calculate the contribution of 
an order n pole in C(t) to q'(t). we use Eqs. (5.93c) and (5.94d·-g). and regard a pole at to on the real/ axis 
as the limit of a complex pole at to 'fie that approaches the real I axis. [From !nee (1956) we know that 
there is a complex extension of the Riccati equation, with enough analyticity to justify this argument.] Then 
we get for real I near lo, 

w·'(r)q1t(tl - qr)qj1(r)J 

---2
1 

[( R' . )"S(t-lo'fic)"'- _( ___ R __ -.,S'(t- to±ic)"' I o((r-. lo)m-IH')] 
t- to 'f 1r. t -- 111 ± re) 

=--
2

1 n[ 1 
-

1 
-]"0(!)-='Finrr/5(1-lo)+regular. 

I - to 'f If. I - to ± IE 

r' ' 
Note that in evaluating eJo duq,(«). only the residue modulo 2 of ±n is significant in the preceding formulas. 
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We conclude, then, that we can achieve q~ = 0 by a ray representative transfor
mation that is continuous, or that has a single sign f1ip, over the cycle, 12 

5.9 THE QUATERNIONIC WKB APPROXIMATION 

As our final topic under the heading of "phase methods," let us develop the 
quaternionic analog of the WKB or eikonal approximation. Consider the one
dimensional Schrodinger equation 

i/f(x) = f(x) iE, E>O (5.95a) 

with 
. 2 - -z d -

H = -2 - d 2 + V(x), 
m x 

V(x) = V-,:(x) + )V1;(x) 

V~(x) = iV1 (x), (5.95b) 

Let us represent the wave functionf(x) in eikonal form by writing (for arbitrary 
lower limit x0 ) 

J
'\ 

f(x) = P1t' •o 
dfu(f) 

(5.96a) 

with P1 a path-ordering operation that orders larger x values to the left, and 
with u( l) a general quaternion of the form 

ux(t) = uo(t) + iu1 (£), up ( £) = u2 ( £) - iu3 (£) 

(5.96b) 

with u0 .12 .3 real. From Eq. (5.96a) we find for the first derivative off(x), 

and for the second derivative, 

dj -
-d- = u(x)j 

X 

[
du 2l . dx + u(x) f 

(5.97a) 

(5.97b) 

The WKB or cikonal approximation consists in assuming that u(x) is slowly 
varying, so that the du/dx term in Eq. (5.97b) can be neglected relative to the 
u(x) 2 term. Making this approximation, the Schrodinger equation of Eqs. 
(5.95a,b) becomes 

(5.97c) 

which is now an algebraic equation rather than a differential equation. 

12 Just before this book went to press. we learned of a paper by Levay (1990) that reaches conclusions 
similar to those of this section, using topological methods_ See also Levay ( 1991 )-
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We now must find four real equations to determine the four real components 
of u(x). It is useful to introduce the notation 

i 2 - . 
--- u(x) + V(x) = h~(x) +JhrJ(x) 

2m 
i 2 2 

h~(x) =-2m [u~(x) - lu~(x)l l + v~(x) 

i 2 2 2 . I = -- [uo(x) - u1 (x) - lurl(x)l ] + zV1 (x) + -uo(x)u1 (x) 
2m m 

hp(x) = -
1 

u11 (x)[u,(x) + u:(x)] + V~(x) 
2m 

so that Eq. (5.97c) becomes 

(5.98a) 

(5.98b) 

The first equation for the u's is obtained by equating the magnitudes of the left
and right-hand sides of Eq. (5.98b), which gives [using Eqs. (1.5e) and (1.26). 
and factoring out If ll 

(5.99a) 

The second equation is obtained by multiplying byf -l from the left and taking 
the trace, giving 

h0 = tr[f- 1(ho + ih1 +Jhr1)f] = triE = 0 (5.99b) 

which comparing with Eq. (5.98a) implies that 

uo(x)u1 (x) = 0 (5.99c) 

In other words, uc; = u0 + iu 1 is either pure real or pure imaginary, a result 
familiar from the WKB approximation in complex quantum mechanics. To get 
the remaining two equations, we substitute/= f, + Jfp and take the CJ. symplectic 
component of Eq. (5.98b), giving 

(5.100a) 

h~ = iE + hpr (5.100b) 

with 

(5.100c) 

A differential equation determining r can now be obtained as follows. Differ
entiating Eq. (5.100c) with respect to x, we get 

dr I df# iii df~ 
dx T -d.; - J; dx 

(5.10la) 
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But rewriting Eq. (5.97a) in terms of symplectic components gives 

from which we calculate 

I df# h df~ * 2 ( * -f -d -
1
.2 -- = u# + u# r + ucx - u~)r 

. ~ x . ~ dx 

(5.101 b) 

(5.10lc) 

and hence Eq. (5.10la) yields a Riccati equation for r [with a structure very 
similar to that of Eq. (5.92f)] 

dr * 2 ( , 
-d = u# + uflr + uY.- u~)r 

X 
(5.102) 

Equations (5.100b) and (5.102) together give a nonlinear complex first-order 
differential equation involving the u's, which is equivalent to two real first-order 
differential equations, thus giving the third and fourth equations needed to 
determine the u's. 13 These equations are needed only in the quaternionic case 
vf! ic 0; in the complex quantum mechanics limit where v# = 0, it is consistent 
to take u# = hf! = 0, in which case Eq. (5.100b) becomes the algebraic equation 

hrx ~ i£ (5.103) 

which then implies Eqs. (5.99a) and (5.99b,c). Comparing with Eq. (5.98a), we 
see that Eq. (5.103) reduces to the usual equation for the wave number familiar 
from the complex quantum mechanics WKB approximation. 

11 As we have noted. Eq. (5.99c) implies that there arc two distinct types of WKB solution: one with 
u0 ~ 0. u1 t 0 and one with u1 = 0. u0 f 0. Finding connection formulas between regions supporting the 
solutions of the two types. in analogy with the WK 8 connection formulas in complex quantum mechanics, 
will require a further analysis. which we have not undertaken. 



6 

Scatterins) Theory 
and Bound States 

We proceed in this chapter to discuss scattering theory and related aspects of the 
bound-state problem in quaternionic quantum mechanics. We begin with a 
detailed discussion of a simple one-dimensional example, the delta function 
potential model. From this model will emerge the result (Adler, 1988) that will 
be the principal theme of this and the succeeding two chapters: with the stan
dard ray representative choice of Sec. 4.2, for short-range potentials the 
asymptotic scattering states and the S-matrix in quatcrnionic quantum 
mechanics are always complex <C( I, z). This result is extended in succeeding 
sections to general three-dimensional short-range potentials. We find that, 
although the S-matrix remains complex, it exhibits certain features character
istic of the underlying quaternionic dynamics. These are, first, that the scatter
ing for generic local potentials is time reversal violating, and second, that bound 
states present in the complex quantum mechanics limit reappear in the quater
nionic scattering problem as scattering resonances (which, however, can move 
below physical threshold, and thus remain as stable bound states, when nonzero 
rest masses are included in the Hamiltonian). We conclude the chapter with 
discussions of analyticity properties in quaternionic quantum mechanics and of 
general features of one-dimensional scattering. 

6.1 ONE-DIMENSIONAL SCATTERING AND BOUND 
STATES-THE DELTA FUNCTION POTENTIAL MODEL 

The simplest quaternionic model for studying scattering and bound states is the 
delta function potential, with the coordinate representation Hamiltonian 

. d2 - / 
H(x) =- -

2 
d 0 + b(x)(V~ +JV1i) = Ha(x) + JHp(x) m x~ · 

i d 2 

H~(x) = - 2m dx2 + 6(x) V,, Hp(x) = o(x) VfJ 

( 6.1) 

where Vu 3 are constants. With the standard ray representative choice of 
Sec. 4.2, the time-independent Schrodinger equation for the wave function 

f=f~ +/ff! is 

159 
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ii(x) [ f~ (x) +Jiri( x)] = [ f~ (x) + J/jJ(x)] iE, ( 6.2a) 

giving a pair of coupled complex equations for the symplectic components 1~ 11 
[cf. Eqs. (5.10a,b)] 

- 2~ ;~2 f~(x) + b(x) [v,j~(O)- Vj;/jJ(o)J = iEf~(x) 

-
2

i dd
2

2 fi;(x) + 6(x) [v1Jf~(O) + V~ffi(O)] = iE(p(x) 
m x · 

(6.2b) 

For a delta function potential, the exterior scattering region is the entire region 
x cjc 0, in which Eq. (6.2b) reduces to 

. d2 
l . ( . ( -

2111 
dx2 fx x) = iEfx x) 

. d2 

2~ dx2 f(J(x) = iE(j!(x) 

with the general solutions 

fcx(x) = Carf'1" + CY.· e -ipx 

fil(x) = Cfl+eP' + Cfi e I'' 

p = (2rnE) 112 

( 6.3) 

( 6.4a) 

We see from Eq. (6.4a) that. because of' the sign reversal of the kinetic energy 
term in theft1 equation relative to the f~ equation, the intrinsically quaternionic 
or ffl part of the wave function has no running wave solutions! For the prob
ability density of Eq. (4.61) to be asymptotically bounded, the exponentially 
growing terms in Eq. (6.4a) must be excluded, and so the most general exterior 
solution compatible with boundedncss is 

f . (v) = c· ('ljJX + c· 0 -ljn 
. 'Y. """' ''Y. ~ "1- 1.:- • 

f~(x) = C~, eipx + C~_e-ipx, 
' . 

fj1(x) = C fJeP', 

1/l(x) = C(ie-P'. 

x<O 

X> 0 (6.4b) 

From Eq. (6.4b) we sec that the asymptotic wave function is complex <C( I, i), 
with the intrinsically quaternionic effects confined to an exponentially decaying 
near zone piece Jft1(x) of the total wave function. 

To complete the solution of the Schrodinger equation for all x, we integrate 
Eq. (6.2b) over an infinitesimal interval surrounding x = 0 to get the junction 
conditions 

ol 
i d 

-
2111 

dx f~(x) + Vxf~(O) -~ Vj;f{J(O) = 0 

i d . ( 
-2 -d fp x) m x 

o· 
0" 

+ Vp /~(0) + V~fj1(0) = 0 
() 

( 6.5a) 

( 6.5b) 
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Let us begin by looking for bound-state solutions. To have a bound state. the 
wave function must fall off fast enough at infinity so as to be normalizablie, 
which according to Eq. (6.4b) requires 

Cx_
1
_ = Cx- = C~, 1 = C~_ = 0 (6.6) 

or in other words, f~(x) = 0. The junction condition of Eq. (6.5a) then becomes 

( 6.7) 

and sb a bound-state solution with fti cjc 0 is possible only in the complex 
quantum mechanics limit Vp = 0. As usual, continuity of the wave function 
reqmres 

and thus the general form of a bound-state solution will be 

f~(x) = 0. 

The junction condition of Eq. (6.5b) then becomes 

p - + V·t == 0 
rn 

( 6.8) 

(6.9) 

(6.10) 

and so we recover the familiar complex quantum theory result that there are no 
bound states if V1 > 0, and a single bound state if V 1 < 0. The constant C 11 is 
determined by the normalization condition 

to be 

I 2 cf! = P; 

(6.lla) 

(6.llb) 

where we have chosen an arbitrary C( I, .i) phase to be unity. At first sight it may 
seem paradoxical that, in the complex quantum mechanics limit of Eq. (6.2a), 
the bound-state solution appears in the intrinsically quaternionic fr1 part of the 
wave function. This is, however, just a consequence of our convention that the 
ray representative should always be chosen so that the energy E is positive, as 
can be seen as follows. When Vp and f~ are zero, Eq. (6.2a) for general 
V~(x) = iV1 (x) becomes 

[ 
1 d

2 l i -2m dx2 + VI (x) Jfri(x) = Jfri(x)iE E>O ( 6.12a) 

Making a change of ray representative by multiplying by -k from the right, this 
becomes a complex Schrodingcr equation with reversed sign of the energy 
eigenvalue and with complex conjugate wave functionfp(x), 
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[ 
1 d

2 l - 2m dx2 +VI (x) f/J(x) = -Efj1(x) (6.12b) 

Conversely, any complex bound-state eigenfunction obeying Eq. (6.12b) can be 
converted to a quaternionic bound state eigenfunction obeying Eq. (6.12a) by 
multiplication by k from the right, which from the quaternionic quantum 
mechanics point of view is just a change of ray representative. 

Let us next determine the scattering solutions for the delta function potential 
model. Imposing boundedness of the wave function atx = ±CXJ as in Eq. (6.4b), 
and assuming an incoming wave of unit amplitude e'1n incident from the left, 
together with outgoing waves, we have for the wave function in the regions 
x < 0 and x > 0, 

( 6.13) 

with C ~' ~~, C 11 , Cj1 complex constants. Continuity off~.fl (x) at x = 0 gives the 
two equatiOns 

c~ = 1 + c~ 

cjl = cfl ( 6.14) 

and the junction conditions of Eqs. (6.5a,b) then give two further equations 
determining the coefficients C xfl, 

i 
-

2
m [ip(l + C,J- ip(I- C~)J + V~(I + Cy)- VpCfi = 0 

2~ [-pCfl- pCfJ] + V11 (I + Cx) + v:c 11 = 0 ( 6.15) 

Solving Eqs. (6.15) for C~r1 and using the expressions for Vy fJ in Eq. (6.1 ), we 
get 

iC c - -~--
(/. - 1!.. + iC 

m 
1!.. 

C' =I+ Crx = m 
~ 1!.. + iC 

m 

p 
D =-+VI 

m 
( 6.16) 

As already anticipated. the quaternionic part of the wave function decays 
exponentially outside the region of support of the potential, while the outgoing 
reflected and transmitted waves arc contained entirely in the <C( I, i) part of the 
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wave function. The reflection and transmission coefficients R and T, given by 

c2 
I 2 

R = c xI == ( 12)2 + c2 
\1)1 

(6.17a) 

obey 

R+T=l (6.17b) 

and thus the C( I. i) S-matrix clements C~ and C~ exhaust the unitarity sum 
rule. In Sec. 6.6, we will describe the extension of this scattering analysis to 
general one-dimensional potentials. 

A curious feature of the bound-state solution of Eqs. (6.9)-(6.11) is that it is 
present only when Vr1 = 0 and disappears from the spectrum when Vp ic 0. 
Where docs this solution go? To answer this question let us examine the beha
vior of the scattering solution of Eq. (6. 1 6) in the neighborhood of the bound
state momentum 

( 6.18) 

determined by Eq. (6.10). When p ==ph the denominator D in Eq. (6.16) 
vanishes, and provided that I Vpl 2 f. 0, the term C becomes infinite. From Eq. 
(6.17a), we see that this has the consequence that the reflection coefficient R 
becomes unity, and the transmission coefficient T vanishes. For p in the neigh
borhood of Ph, so that D = (p- Pn)/rn is small but nonzero, we find from Eqs. 
(6.16) and (6.17a) that 

( 6.19) 

with the approximation leading to Eq. (6.19) valid provided that 
I VII« I Vlil 2 /IDI, which is equivalent to IP- Pnl « ll. Thus for v(3 f. 0 the 
scattering solution exhibits a resonance at p =Ph with width proportional to 
IVrJI 2

. This resonance is clearly a transmuted version of the bound state that 
disappeared from the spectrum for nonzero V/3. When Vf3 = 0. there is no 
momentum interval around Ph in which Eq. (6.19) is valid, and returning to Eq. 
( 6.16) we find the nonresonant behavior 

2 
R= vi 

(12)2 + v2 · 
m I 

(6.20) 

characteristic of scattering from a delta function potential in complex quantum 
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mechanics. To summarize, the quaternionic delta function model of Eq. (6.1) 
exhibits a scattering resonance for nonzero Vfl. associated with the bound-state 
solution that is present for vanishing v11 . A natural interpretation for this 
behavior is as follows: Since a quaternionic bound-state solution has E > 0, 
when rest masses are zero it is immersed in the continuum of scattering solu
tions. Hence it can survive as a true bound state only in the limit of vanishing 
coupling to the continuum solutions, that is, in the delta function model, only 
when Vfi = 0. When Vfi f. 0 the bound state becomes unstable against decay 
into continuum solutions, and then manifests itself as a scattering resonance. 
This interpretation will be reinforced by the results for the three-dimensional 
case obtained in subsequent sections. 

An interesting variant of the delta function model is obtained by adding a 
rest mass term J.l > 0 to the kinetic energy term, so that Eq. (6.1) is replaced by 

(6.21) 

As we shall see in Chapter I 0, a rest mass term with J.l = m automatically 
appears in the kinetic energy when the q uaternionic Schrodinger equation is 
obtained as the non-relativistic limit of a relativistic quaternionic wave equa
tion. The x f. 0 equations now become 

. d" 
l ~ j' ( ;· ( . ( - 2m dx2 . ~ x) + ij.l '1. x) = iEf'J. x) 

i d 2 

~2 -
1 

, t:11(x)- if.lf{l(x) = iEJ11(x) 
m ex-

( 6.22) 

with the general solution hwing one of two possible forms, depending on 
whether E 2_> J.l or 0 ::; E ::; J.l, 

(6.23a) 

f . (x)- C ePx + C (,-px . ~ - 2+ '1.-

I I 

fiJ(X) = c(Ji-Cp X+ cfl_e p X 

p = [2m(J.l _ £)]112, p' =[2m(£+ J.l)]l/2 (6.23b) 

We see that for the case E 2_> J.l of energy above the rest mass threshold, the 
bounde

1
9}erm in thefi1 part of the wave function always decays at least as fast as 

e - 2 (1171') ' lxl, which when J.l = rn is e - 2mlxl. The junction conditions at x = 0 are 
independent of J.l and so are still given by Eqs. (6.5a,b). The solution of the 
variant model proceeds in a straightforward manner from Eqs. (6.21) and 
(6.5a,b) and we state only the results, which depend crucially on whether the 
J.l = 0 bound-state energy E/J ~ m VT is larger or smaller than 2p: (i) If E;, is 
larger than 211, there are no bound-state solutions with E S:: J.l. For V11 ~ 0, there 
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,, ' 

is a bound state of the form f~ = 0. ff! lX e -p '''I at p~ = -rn VI, corresponding 
to an energy r_· = Eh- fl >fl. For V11 cjc 0, this bound state disappears from the 
spectrum, but there is a corresponding scattering resonance at a scattering 
energy E = !:1, - fl· Thus the situation in this case is entirely analogous to that 
for fl = 0. (ii) If £ 1, is smaller than 2fl, the energy E1, - fl lies below the conti
nuum threshold at E =fl. There is then no scattering resonance, but a bound 
~;tate can occur forE::; fl. with a wave function of the form given in Eq. (6.23b), 
and with the bound-state energy obtained as the root of the equation I 

Writing this equation as 

p } = [2rn(fl =J= E) ]I 12 

p' 
( 6.24a) 

(6.24b) 

we sec that in case (ii), and when I V(JI ~~ I VII, a bound state occurs at very 
nearly the complex quantum mechanics value of p. We conclude from this 
analysis that when a rest mass is present and when the bound-state energies in 
the complex quantum mechanics limit are much smaller than the rest mass, then 
the quatcrnionic solution and its complex quantum mechanics limit have quali
tatively similar behavior: The quaternionic solution still has a stable bound 
state, with a small energy shift given by Eq. (6.24b). and the quaternionic 
component of the wave function decays rapidly on the length scale set by the 
binding energy. We will return to these points again in Sec. 6.4. 

6.2 SPHERICALLY SYMMETRIC POTENTIALS 

An important class of three-dimensional potentials, which lead to an effectively 
one-dimensional scattering problem. are the spherically symmetric potentials for 
which H(x) has the form 

H(x) = H~(x) + JH{I(x) 

Hx(x) =-
2
:
11 
V~ + V~(r), Hfl(x) = V{l(r) 

Vx(r) = iVI (r). Vjl(r) = v2 (r) - iV3(r) ( 6.25) 

1 Fmthet analysis of this case gives the follo\\ing results. For v11 = 0. the F.< I' bound state has the form 

! 11 c 0. /, ·x e Pl•l for 0 S: l m Vf S: I'· and the t"orm .1; - 0. ! 11 -x e -;/h for I' S: ~ m v; S: 211. For v11 j 0, 

there is an /:" < 11 bound-st,~te solution of the form r, ~ c ,e _,, ,, . /(; = c fie p' '' • with fixed ratio c rd c ,, 
provided that t,V11 1 is restricted by h S: a(a +- 1). with h= 1 (m/!1)1VIi1, 2 and a=~ (m/!1) 1

'
2 V1. 

For a corrc-;ponding analysis of the one-dimensional delta function potential in the setnlrelativistic \\ave 
equation. where there is always one stablc bound state. sec subsection (iii) in Sec. 11.7. 
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with Vu-3 functions only of r = lxl. We note that no rest mass term is included 
in the model studied in this section. Substituting Eq. (6.25) into Eqs. (5.10a,b), 
we get the pair of coupled complex equations for the symplectic components of 
the wave function, 

~-2
1 

'\l~fcx(x) + Va(r)f;(x) ~ V(J(r)fi;(x) = iEf~(x) 
m 

-
2

1 
'\}~fi!(x) + V[i(r)f~(x) + V~(r)[fi(x) = iEf[!(x) m . (6.26) 

The angular momentum analysis for Eq. (6.26) can clearly be carried out using 
only the standard complex (as opposed to quaternionic) representations of the 
rotation group, in agreement with the conclusion reached on general grounds in 
Sec. 3.5. Expanding 

oc f u (r) 
f . ( ) ~ ~ cx,(!£m1 y ((J ) 
. ex.(! X = L L r £ml ' qJ 

f~O 1111'~-f 

(6.27a) 

and using (Rodberg and Thaler, 1967) 

v~ L
2 

1 a ( 2 a) 
~-~--~--- r-

2m ~ 2mr 2 2mr 2 Dr Dr 
(6.27b) 

with [ = x x ( ~i'\Jx) the standard <C( I, i) self-adjoint angular momentum 
operator, we get for the radial equations in the f., mp partial wave 

·[P.(£+1) I d
2

] 
~z 2mr 2 ~2m dr 2 Uf!im1 (r) 

(6.28) 

Let us now assume that the potentials Vcx,fi (r) vanish outside a finite radius 
r = r0 . In the exterior region r > r0 , the radial equations become 

(6.29a) 

(6.29b) 

To solve Eqs. (6.29a,b) we make the change of variable 

p = pr, p = (2m£) If2 ( 6. 30) 
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yielding 

d
2 

[ R(£+1)] 
dp2 Urx£mp + 1 - -{_-,2- Urxfmp = 0 

d
2 

[ £(£+1)] -- Uf3£m - 1 + ---- Uj!fm = 0 dp2 f p2 f 
( 6. 31) 

these have the general sol uti on 

( 6. 32) 

with )t(P) and ne(P), respectively, the spherical Bessel and Neumann function. 
To study the asymptotic behavior of Eq. (6.32) for large p or r, we use the 
relations 

(6.33) 

where the spherical Hankel functions h~i,2) (p) have the asymptotic behavior 

( 6.34) 

Hence for large r, 

(6.35) 

and again we see that only the ~(I, i) part of the quaternionic wave function 
has asymptotic running wave solutions. Just as before, if we require the wave 
function to be bounded at infinity, then the intrinsically quaternionic part of 
the wave function is confined to a near zone piece that decays exponentially as 

-pr e . 
Let us next examine the occurrence of bound states in the spherically 

symmetric case. We consider first the complex quantum mechanics limit 
v1! = 0, in which case the Urxtm

1 
and u,~em1 equations decouple, giving, with 

U(r) = 2m V1 (r), 

[ 
d2 £(£+1) 2 ] 

- dr 2 + r 2 - p + U(r) Urxfmp(r) = 0 (6.36a) 

[ 
d2 £(£+1) 2 l 

- dr 2 + r 2 + p + U(r) Uf3£m,(r) = 0 (6.36b) 

Equation (6.36a) is just the usual partial wave scattering equat!~n for the 
potential V1 (r), and has two linearly independent solutions. Let u/ (r) be the 
solution that is regular at r = 0, normalized to have the asymptotic behavior 
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111() .( II!..) u; r '"sm pr- 2n.+o1 (6.37a) 

with Cit the scattering phase shift, and let u;2
) (r) be the linearly independent 

solution with the asymptotic behavior 

(6.37b) 

The general solution of Eq. (6.36a) for u~tm1 is then 

() -- c· (IJ(') c· (2l( ·) Uu.fm 1 r -- • I Uf I -j- 2Uf I (6.38) 

and from Eqs. (6.37a,b) it is evident that normalizability requires 
cl = c2 = UyJm/(r) = 0. Equation (6.36b) is just the usual bound-state equation 
for the potential V1 (r), and if there is a complex quantum theory bound state 
uih) (r) with energy -Eh = -pV2m. then Eq. (6.36b) has a solutior, 

( 6. 39) 

for p2 
= p;. 

Let us next consider the case when v1! cjc 0. Outside the range of the poten
tials Vy_ 13 (r), the solutions have the form given in Eq. (6.32), with the large-r 
asymptotic behavior of Eq. (6.35). Normalizability at r = ex; clearly imposes the 
three conditions 

C,x-+fm 1 = 0 

C,_ fmr = 0 

cf!+l'mr == 0 (6.40a) 

in addition to which we have the usual requirements of regularity at r = 0. 2 

( ) 
f t-1 

Ucxfmr r ~ r ' ,1 (·).HI '(!fmt I ~ I ' r---+ 0 (6.40b) 

The jive boundary conditions of Eqs. (6.40a,b) arc one more than the j(JUr 
boundary conditions expected for a two-component Sturm Liouville system, 
and so for generic v1! cjc 0 there will be no bound-state solutions. There may, 
however, be special potentials Vj!(r) for which the five conditions of Eqs. 
(6.40a,b) degenerate to four, permitting a bound state to occur. Let us investi
gate this possibility to lowest order in a perturbation expansion in v1!(r), start
ing from the zeroth-order sol uti on 

u(O) (r) = 0 
Ct.tmp ' 

' f. b lc "' l(fTr)l (·)~O 'h I I Near r = 0, Eqs. (6.36a,b) or U:~..flfm, ecome _- p + ~,.~2 j u:x.fU 1111 1 ,......., • wit rcgu ar so utions 

u,_fitm1 (r) ~,.I+ I and irregular solutions u"_fiim, (•·) ~ ,.-/. 
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For this purpose, we rewrite Eq. (6.28) in the form 

(6.42a) 

( 6.42b) 

From Eqs. (6.42a,b), we see that in a power series expansion in Vp, the eigen
value / and the eigenfunction up1m

1 
arc even in Vp, while the eigenfunction 

u~tm, is odd in Vp. The leading correction u~~~~ to Eq. (6.41), which is first order 
in v13 , thus satisfies the inhomogeneous differential equation (in which p is 
understood to be set equal to Ph) 

( 6.4 3) 

To solve Eq. (6.43), we employ a Green's function G(r, r') that obeys 

( 6.44) 

giving (again with p understood to be equal to Ph) 

u(l) (r) = Cu(l)(r)- 2mi1x dr'G(r r')V'(r')u(h)(r') 
ctfm1 f ' (J f 

0 
( 6.45) 

where we have included an arbitrary multiple of the regular solution of the 
homogeneous differential equation associated with Eq. (6.43). 

We now briefly recapitulate the standard procedure (see Rodberg and Thaler, 
1967, Sees. 4.14.2) for explicitly constructing the Green's function G(r,r'). We 
start from the differential equation satisf1ed by u;J)) (r), 

[ 
d2 £(£+1) ,, l (!) -- + - p' + U(r) u (r) = 0 dr 2 r 2 f 

(6.46a) 

(6.46b) 

Multiplying Eq. (6.46b) by u)1l (r), and Eq. (6.46a) by ui2
) (r), and subtracting, 

we get 

with W(r) the Wronskian 

d 
- W(r) = 0 
dr 

(6.47a) 

(6.47b) 
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hence W(r) is in fact a constant W. 
Consider now the differential operator of Fqs. (6.46a,b) acting on 

O(r- r 1)u),
1
l(r 1)u}

2
l(r) -1- O(r 1

- r)u) 1l(r)u)2l(r 1
), with O(x) the Heaviside step 

function [O(x) = I for x > 0; O(x) =~ 0 for x 50; dO(x)jdx = 6(x)], 

[- :.

2

2 + £(£1 ~~ I)- p 2 + U(r)] [o(r- r 1)u) 1J(r 1)u)2)(r) + O(r 1
- r)u) 1l(r)u)2l(r 1J] 

d [ 1 ( J) 1 d (2) 1 d (I) (2) I l =-- O(r-r)u (r)-u. (r)+O(r -r)-u (r)u (r) 
dr 1 dr 1 dr 1 1 

IP(£+1) 2 l[ I (I)' (2) I (I) (2) I] + l r2 - p + U(r) O(r- r )uf (r )u1 (r) + O(r - r)uf (r)u1 (r ) 

= (5(r- r 1
) W (6.48) 

From Eq. (6.48) we conclude that the Green's function G(r, r 1
) can be 

constructed as 

G(r,r 1
) = w- 1 [o(r-- r')u) 1l(r 1)u)2l(r)+O(r 1

- r)ur)(r)u)2l(r 1
)] 

= W- 1u)1)(r<Ju)2)(r>) ( 6.49) 

with r <(r>) the smaller (larger) of r, r1
• Finally, since W is a constant, it can be 

evaluated in the limit of large r using the asymptotic forms of Eqs. (6.37a,b), 
giving W = p. 

Let us now return to Eq. (6.45), which, using the explicit form of G(r, r1
), 

becomes 

(I) (I) 2mij"JO 1 (1) (2) * 1 (h) 1 u . (r) = Cu (r) -- dr u (r<)u (r>)V (r )u (r) 
cxtm1 f p 

0 
f P (! I 

(6.50) 

and which [recalling Eqs, (6.37a,b)] gives in the large-r limit 

(6.5la) 

with 

(6,51 b) 

Hence the first-order correction to u~em, (r) will be normalizablc only if 
C = C 1 = 0, The constant C was arbitrary, and so can be freely chosen to be 
zero, whereas the requirement C 1 = 0 gives a (;ondition that must be satisfied 
by v13 (r) for the bound state to persist for nonzero (but infinitesimally small) 
Vfi. This condition will be modified in form by higher-order corrections in 
V/3, 

Although we could now discuss scattering using the partial wave equations of 
Eq. (6.28), we will instead give a more general treatment of scattering, valid for 
nonspherically symmetric potentials, in the next section. When this treatment is 
specialized back to the spherically symmetric case, we will find in Sec. 6.4 that, 
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to the v1! = 0 bound state u;") (r), there corresponds a scattering resonance with 
width proportional, at leading order in Vp, to IC'I2

. This conforms to the 
interpretation given in the preceding section: Since the VI! = 0 bound state lies 
immersed in a positive energy continuum, for VI! cjc 0 it in general becomes a 
finite-width scattering resonance. It can survive as a bound state for v1! f 0 only 
for those special potentials obeying the condition that the resonance width 
vanishes 3 or, as discussed in Sees. 6.1 and 6.4, if a rest mass is included that is 
sufficiently large to raise the threshold for the continuum part of the spectrum 
above the bound -state energy. 

6.3 GENERAL THREE-DIMENSIONAL POTENTIALS: THE 
S-MATRIX IS C:(1, i), BUT TIME REVERSAL VIOLATING 

W c turn now to a discussion of scattering by a general three-dimensional 
quatcrnionic potential, which we assume to be of compact support but not 
necessarily spherically symmetric. Thus we take the coordinate representation 
Hamiltonian to have the form of Eq. (5.9b), 

H(x) = H~(x) +jHI!(x) 

( ) l ~2 ) ) ) H~ x =-
2

m Vx + V>:(x, Hp(x = Vp(x 

Va(x) = iV1 (x), Vp(x) = V2(x)- iV3(x) ( 6.52) 

with Vu.3 (x) vanishing outside a finite radius r = r0 . The Schrodingcr cq ua
tion, when expressed in terms of symplectic components of the quaternionic 
wave function, then takes the form ofEqs. (5.10a,b), 

H~f~- H(Jfp =f; zE 

Hp .f~ + H~ f{J = f{l iE 

Outside the range of the potentials, Eq. (6.53) simplifies to 

( v~ + p 2
) .1~ = o 

( v~ - p2) fP = o, 

with the general solution 

p = (2mE)If2 

./~=.I df.lrx(fi)eippx 

./(3 = .I df.lp ( p)epp·x 

( 6. 53) 

(6.54) 

( 6. 55) 

where df.la ( p), dJ.lfi ( p) arc <C( I, i) integration measures associated with the unit 

' Although C' = 0 can be satisfied for nonvanishing potentials Vfi(r). it is possible that when higher-order 
corrections in VH(•·) are summed. the requirement thai the resonance width vanish will be satisifed only by 
vfi = o. 
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vector p. Again, we sec that fr; has asymptotically no propagating wave sol u
tions, but only ones that grow or decay cxponcntially4

; assuming boundedness 
of the wave function, then the parts of./iJ that grow exponentially in spherical 
coordinates [cf. Eq. (6.35)] must vanish, and consequently, fi1 must decay at 
spatial infinity. Thus the asymptotic scattering states for the Hamiltonian of Eq. 
( 6. 52) lie entirely in the <C( I, i) part j~ of the wave function. 5 

This being the case, it is natural to eliminate[fJ from the scattering problem 
by the methods of formal scattering theory, as was done in Eqs. (5.11 )- (5.14) of 
Sec. 5.2. As we saw in Eq. (5.12), the symplectic component/~ obeys the effec
tive wave equation 

[H1 + Vapr(E)j j~ = Ej~ (6.56a) 

with 

(6.56b) 

and with the optical potential Vapr (E) given by 

) * I Vopr(E = V fJ V11 
E -t H1 

(6.56c) 

It will be useful in what follows to introduce a notation that singles out the 
kinetic term in H 1 by writing 

I ~2 
Ho = --2 \7 x• m ~ 

V10,(E) = V1 + Vapr(E) 

so that Eq. (6.56a) takes the equivalent form 

[Ho + Vrar(E)JfiX = Ef~ 

4 This is a direct consequence of the fact that \7.~- /is an elliptic operator. 

(6.57a) 

( 6.57b) 

5 An alternative, formal derivation for the fact that the asymptotic scattering wave function is It: (I. i) is as 

fo!lows. Let I Ia) be the asymptotic part of the wave function, that satisfies 

with 

~2 

- ' p IHo1 =- --
2m 

Since I and I Hoi commute. Lemma 2 of Sec. 3.6 implies that we can take the states I/;,) to be eigenstates of 
I and lifo I sepamtely, w that 

lifo!! Ia) = I /,)E, t: 2> 0, II J, l - I /,) i 

But since (xl/ ~ i(xl. we fmd 

i(xl j;,) ~ (x!II };,) = (xl j;,)i 

and so the asymptotic coordinate space wave function (xi/~) is IC (I, i). 
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Since V101 (E) is Hermitian [as follows from Eq. (5.14a)], Eq. (6.57b) defines a 
standard complex quantum mechanics scattering problem, albeit with nonlocal 
potential. Thus, letting/;,· (x) be the incident plane wave 

f :. ( ) - I ,il >: 
fl X - 3 '2 c . 

(2n:) I 
I ~I I '2 p = (2m£) 1 ( 6.58) 

we can define a corresponding outgoing wave scattering solution I; by the 
Lippmann Schwinger equation (with 8 _ _, 0-,-) 

· +- - ', __ _I_ __ V E -1 
f p- - fp + E H t- . . ror ( ) f 11 

" - I) - IE 
(6.59) 

In terms off;, the solution to the original quaternionic scattering problem is 
[from Eq. (5.13)] 

f~(x) =fii(x) 

frJ(x) =-if d 3c1(xl(£ + Ho + V1 )- 1ix 1
) v1J(x 1).J; (x 1

) ( 6.60) 

Because V1 vanishes for r > r0 , the asymptotic behavior of the kernel 
(xi (E + H 0 + V1) - 1lx 1

) is the same as the asymptotic behavior of the noninter
acting kernel (xl(£ + ll0 ) -

11x 1
), which is readily calculated in momentum 

representation, 

(6.61) 

Hence 

-p; ?1 
"( .2me (d3 .I P''.r'/1¥1 I ·-t( I frJ x) ~ -[-4 -~-~-1 "j .\ e VrJ(X )f- X) x---->oc n x P 

(6.62) 

showing explicitly thatfi1 decays exponentially as exp( -pi.X'I) at infinity. 
Let us now introduce a <C( I. i) transition matrix from the state with initial 

momentum jJ to the state with fmal momentum if by the definition 

T,ffi = ((ql Vror(E)Ift) = / d 3xd3x 1/'q(x)(xl V, 01 (E)Ix 1)f;(x 1
) 

lifl = lfli = (2mE) 112 (6.63) 

We will show in Sec. 7.2 that the squared matrix elements IT c;pl 2 give the tran
sition probability per unit time via the usual golden rule formula. Introducing 
the <C( I. i) scattering or S-matrix through the customary definition 

( 6.64) 
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the usual complex quantum mechanics scattering theory discussion (Merzba
cher, 1970) of unitarity of the S-matrix and of the optical theorem now follows 
from Eqs. (6.59), (6.63), and (6.64) without modification. We have thus 
demonstrated that with our standard choice of ray representatives, in nonrela
tivistic quaternionic quantum mechanics with finite range potentials, the 
S-matrix is always complex <C( I, i); there are no quaternionic phases in the far 
zone outgoing scattered wave. Implications of this result for possible experi
mental signatures of quaternionic quantum mechanics will be discussed in 
Sec. 14.2. 

There are. however, characteristic quaternionic effects that appear in the 
complex S-matrix. One of these, already noted in Sec. 5.2, is the appearance of 
time reversal violation. From Eqs. (5.14b) and (6.57a), we get 

V (E) r/er""(E) + Vodd(E) ror ' = r ror ror 
I 

V"''""(E) = V V V V V ror I + 2 E +HI 2 + 3 E +HI 3 

odd(. r I I ] v "'' E) = i V3 v2 - v2 V3 
E+H1 E+H1 

( 6.65) 

with V ~~~;·n and V ~~~~1 , respectively, even and odd under <C( I, i) complex conju
gation, which functions as the time reversal operation for the effective Schro
dinger equation. Taking the (xl ... lx') matrix element of the time reversal 
violating potential v~~1:1 , we have 

(6.66) 

which is nonzero in general, and as anticipated in Sec. 4.6, vanishes everywhere 
only when V2(x) and V3(x) are linearly dependent (which in fact is the case in 
the delta function example solved explicitly in Sec. 6.1 ). Thus we see that in 
quaternionic scattering theory, the underlying quaternionic structure is reflected 
in the complex S-matrix by the appearance of time-reversal-violating effects. 
Specifically. in the generic case we expect the failure of the reciprocity relation 

(6.67a) 

the derivation of which [Merzbacher, 1970, Eqs. ( 4.103 b) and (7 .69d)] requires 
invariance of the scattering potential under time reversal. To see explicitly that 
Eq. (6.67a) is violated, we use Eq. (6.64) to rewrite it as 

(6.67b) 

and then test this relation in the Born approximation, that is, to leading order in 
V101 • From Eqs. (6.59) and (6.63) we have 

Born J d3 d3 '!'*. )( I v (E) I ') r· ( ') Tifl) = X x. q·(X X ror X . f) x ( 6.67c) 

On substituting Eqs. (6.5S). (6.65), and (6.66). and using the fact that the kernel 
(xl(£ + H 1 )-

11x') is symmetric in x and x' because H 1 is time reversal invariant, 
Eq. (6.67c) becomes 
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(6.67d) 

which is in general nonzero. 
Further characteristic quaternionic effects appearing in the complex S

matrix- -the presence of bound-state-associated scattering resonances, and of 
altered complex analyticity properties--are the subject of the next two sections. 

6.4 BOUND-STATE-ASSOCIATED SCATTERING 
RESONANCES 

The optical potential defined in Eqs. (5.12) and (6.56c) contains the inverse of 
the operator E + H1; hence for each complex quantum mechanics bound state 
V'" satisfying 

(6.68a) 

there will be an isolated singularity in the optical potential of the form 

V(1(x )t/1 h (x )t/1/, (x') VII (x') . 
(x] Vopr(E)!x') = +terms nonsmgular atE= Eh 

E- Eh 

(6.68b) 

with the explicit form of the nonsingular terms given in Eq. (6.89). The singular 
term is Hermitian and so does not invalidate the S-matrix construction and 
unitary argument of the preceding section, but we wish to explore here its 
detailed consequences for the scattering problem. To simplify our work, we 
assume once more that the potential components Vu.3 arc spherically symmet
ric, permitting a partial wave analysis. We assume that the bound state t/Jh has 
angular dependence Y11111 ( 0. cp). so that we can write 

u)h)(r) 
t/Jh = --- Yr 1111 (0. cp) 

r 
( 6.69) 

Substituting Eqs. (6.68b) and (6.69) into Eq. (6.57b), and introducing the partial 
wave expansion of Eq. (6.27a), we find that the contribution of the singular 
term in Vopr to the radial Schrodinger equation for U~£m, (r) is 

[ 
d2 f.(£+ I) 2 I . -1 . - - * . ]h) • 

- dr2 + r 2 - P + L(1) u~1 1111 (1) - 2mC V 13 (1 )ur (1) 

C = - E ~ Eh .fox dr'u)"l*(r') VrJ(r')u~im1 (r') ( 6. 70) 

where we have followed the notation of Eq. (6.36) in writing U(r) =2m V1 (r). If 
the driving term on the right-hand sildc of Eq. ~6.70) were zero, the solution to 
Eq. (6.70) would be ux11111 (r) = ui

1
)(r), with u) 1 

the regular scattering solution 
arising from the potential U(r), which we introduced in Sec. 6.2. In the presence 
of the driving term, Eq. (6.70) can be integrated using the Green's function 
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G(r, r') defined in Eq. (6.44) and constructed explicitly in Eq. (6.49), giving 

Uxt 1111 (r) = u) 1)(r) + ~-:x: dr'G(r,r')2mCV(;(r'Juib)(r') 
.o 

( 6. 71) 

Substituting Eq. (6.71) back into the expression for C in Eq. (6.70), we obtain 

with 

K1 = ~ ~-x dr'u)h)*(r') Vr1(r')u) 1l(r') 
.o 

K2 = -2m f:x: dr'dr"u)h)*(r') v1!(r')G(r', r")u)h)(r") V~(r") 
.fo 

Equation (6.72a) can be solved immediately for C, giving 

(6.72a) 

(6.72b) 

( 6. 73) 

which when substituted back into Eq. (6.71) gives an explicit formula for 
u~r1111 (r). To identify the scattering phase shift. as modified by the singular term 
in Eq. (6.68b), we take the large-r asymptotic limit of Eq. (6.71). Making use of 
Eqs. (6.37a,b) and (6.49), we get 

with 

Uxrm, (r) ~ sin(pr ~ ~n£ + br) + Dcos (pr ~ ~nP + (5t) 

sin( pr ~ ~ nP + 61 + ll1) 

cos ll1 

tan ll1 = D 

D = 2
m C fcc dr 1 u~ 1 )(r') V~(r')u)h)(r') 
P .lo 

(6.74a) 

(6.74b) 

Since u) 1
l satisfies the real differential equation of Eq. [R.46a) and. is asympto

tically real [cf. Eq. (6.37a)], it is real for all r; replacing u/ (r') by uj'l* (r') in Eq. 
(6.72b), we see that the quantity D defined in Eq. (6.74b) is equal to 
~(2mC/p)JG. Hence combining Eq. (6.73) with Eq. (6.74b), we find that the 
modification ll1 in the phase shift is given by 

r 
tanllr = 2 (£, ~E) (6.75) 

Therefore as a consequence of the bound state in the v11 = 0 system, the corre
sponding scattering partial wave in the V~ cjc 0 system exhibits a resonance at 
energy Eh + K2 , with the resonance width r quadratic, to leading order, in the 
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q uatcrnionic part of the potential. Comparing with the discussion of the bound
state problem in Sec. 6.2, we sec that C' of Eq. (6.51 b) is proportional to K\ at 
p c= Ph, and so, as already noted, the condition for the persistence of the bound 
state at nonvanishing v1! is just the vanishing of the width of the corresponding 
scattering resonance. 

The fact that the resonance energy is at £ 1, + K2, rather than E/J, reflects the 
fact that the quaternionic dynamics shifts the energy eigenvalue associated with 
the bound state by a term that in leading order is quadratic in Vf!· Consistent 
with this interpretation, the formula bE== K 2 for this shift can alternatively be 
derived by using lowest order stationary state perturbation theory, as follows. 
As we have seen in detail earlier, to zeroth order in v1! the bound-state quater
nionic wave function has the form f~ = 0, f(i = lj;h. Hence the leading correction 
to the bound-state energy can be obtained directly by applying lowest-order 
perturbation theory to the effective optical potential Schrodinger equation forf(! 
given in Eq. (5.15b). 

( 6. 76) 

with P, we recall, denoting the principal value. Treating the second term in the 
bracket as a perturbation, and expanding Eq. (6.76) around the zeroth order 
solution of Eq. (6.68a), we get for the leading-order energy shift 

liE=;· d 3x'd 3 x"t/J/,(x')(x'1Hr!~-~ll(!lx")l/lt,(x") 
. Eb- HI 

=-2m j d1x'd3 x"t/J/,(x') Vr!(r')(x'IP( -'\1~- + U(r)- p~) -IIx") 

x V~(r")tj;/J(x 11 ) (6.77) 

Now the f, m partial wave of the kernel (x'IP( -'\1~ + U(r)- p~)- 1 ix") IS JUSt 
G(r', r") times Yrm 1 (0', (p

1
) Yfm (G", rp")/(r'r 11

), evaluated at p = Ph-6 So substi
tuting Eq. (6.69) into Eq. (6.77), we get 

bE= -2m 1:x. dr' dr"u~h)• (r') Vf!(r')G(r', r") V(J(r")u~b) (r") = K2 
() 

as asserted. 

(6.78) 

Just as was done for the delta function model of Sec. 6.1, we can create a 
variant of the general three-dimensional scattering model by adding a rest mass 
J..l > 0 to the kinetic energy, so that Eq. (6.52) is modified to read 

''The most general radial Green's function which is regular at r = 0 has the form 

with i. determined by the large-r boundary conditions. From Eqs. (6.37a.b), we see that for large r. 
12)() ±. (!J() ±•(1,_lnf,o·) d • '( ·) d · 1 · · · u; r w 1 r ~ r ,. · . an so 1. ~ -'-z -1 ·correspon s, rcspect1ve y, to an outgotng (mgomg) 

wave at infmi ty. Hence the kernel (xi(- \7 ~ + U( r) - / :;c ie) -I \x ') corresponds to the radial Green's 
function with i. c~ ±-i, and so the principal value kernel, which is the average of the outgoing and ingoing 
wave kernels, corresponds to i. = 0. which is the prescription used for G(r. r 1

) in Eq. (6.49). 
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H(x) = H"'(x) +;Hf!(x) 

H~(x) = {- 2~1 V~ + J.1) + Vx(x) = i[HI (x) + pj 

H11 (x) = Vfi(x) ( 6. 79) 

with Vx 11 (x) expressed in terms of V12 .3(x) as before. Equation (6.53) is 
unchanged in form, but Eq. (6.54), which held outside the range of the poten
tials Vx fJ ( x), is replaced by 

[v~ +2m(E- p)].f~ = o 
[v~-2m(E+p)]f(1 =o ( 6.80) 

with the general solution now having one of two possible forms, depending on 
whether E 2: p or 0 <:: E <:: p, 

./~ = J dpx(fi)eipp 'C 

f(J = ./ df.lrJ(fi)eP'r ¥ 

p = [2m ( E - J.l) 11; 2, 

./~ = .I dpx (p)ePP '( 

.Iii = j df.lrJ(fi)eP'I'" 

p = [2m(p- £)]1/2. 

(6.8la) 

p' =[2m(£+ p)]If2 

(6.81 b) 

p' =[2m(£+ p)]I/2 

We see that fi; has no propagating wave solutions for any E, while .f~ has 
propagating wave solutions only when E 2: p; in other words, p is the threshold 
for the continuum part of the spectrum. For energies above p, the asymptoti
cally bounded part of[11 decays at least as fast as 

(6.8lc) 

which when p = m becomes 

e -2mr (6.8ld) 

The effective Schrodinger equation obeyed by./~ is obtained by making the 
substitution H1 ----> H1 + J.1 in Eq. (5.12), giving 

Hopi ( £) fx = Efrx 

Hop 1(E) = H1 + J.1 + Voflr(E) 

Vopr(E) = H 1j l H H11 
E+p+ I 

( 6.82) 
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Repeating the analysis of Eqs. (6.68) (6.75) with Vopr given by Eq. (6.82), we 
now find that for each complex quantum mechanics bound state obeying Eq. 
(6.68a) (note that Eh still denotes the J.l =, 0 bound-state energy!), there is a 
corresponding scattering resonance at £,. == E/;- J.1 + K2. If£" 2: 2j.1- K2, the 
resonance energy will be above the scattering threshold at E = J.l, and the 
analysis of the p cjc 0 variant completely parallels that of the J.1 = 0 case. If 
Eh <; 2J.l - K2 , the apparent resonance lies below the continuum threshold. 
indicating the persistence of the bound state for some range of nonzero quatcr
nionic potentials v11 . 

7 In particular. if £" is much smaller than 2J.1, a small 
quatcrnionic perturbation v13 leaves the b9und state stable, but with its energy 
shifted by an amount proportional to I v11 1

2
, while the q uaternionic parts of the 

wave function decay [according to Eqs. (6.8lc.d)] on a length scale much smaller 
than the bound-state radius. Since in both atoms and nuclei the binding energy 
is much smaller than the rest masses, adding a small quaternionic potential to 
these systems will not destabilize them. 8 Specifically, the hydrogen atom. with a 
small quatcrnionic perturbing potential added, remains stable. 

6.5 ANALYTICITY PROPERTIES 

Although the scattering amplitude T4l of Eq. (6.63) has been defined thus far 
only for physical (i.e., real number) values of the scattering momenta q and jJ, it 
is natural to consider its analytic continuation to complex energy and momen
tum values. In standard complex quantum mechanics, the study of the analyti
city properties of the scattering amplitude is a well-developed subject9 leading to 
such important applications as dispersion relations for the forward and 
nonforward scattering amplitudes. We consider here analogous analyticity 
properties of the scattering amplitude in quaternionic quantum mechanics, 
confining ourselves to the simplest (but physically very important) case of the 
forward scattering amplitude TFfl for finite range spherically symmetric poten
tials. By rotational invariance, Tpy; cannot depend on the orientation of jJ, and 
so we can write 

Tfli' = T(E) (6.83a) 

with E =//2m the energy variable. What we wish to study is the analytic 
continuation of T( E) from real, positive E values into the complex E plane. 
From the defining equation Eq. (6.63) we have [usingfft-(x) =f-

1
y(x)] 

withfi implicitly defined by Eq. (6.59). It is useful to reexpress Eq. (6.59) as an 

7 The results obtained in this case in the delta function model of Sec. 6.1 suggest the conjecture that v11 is 
anti binding, in the sense that the bound state persists only within a domain of the form Q( v11 ) <:, F(- V 1 ), 

with Q a quadratic functional of V1r and Fa positive functional of - V 1 that vanishes linearly as -- V 1 

approaches zero. 

'This conclusion is also reached via a decaying state analysis in Sec. 7.3. It is reinforced by the ana]y,;is of 
the semirelativistic wave equation given in Sec. 11.7. where we shall see that bound-state-associated scat· 
tcring resonances do not occur. 
9 See, for example, Goldberger and Watson (1964) and De Alfaro and Regge (1965). 
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explicit expression for[ J, by multiplying through by E- Ho + ic to get 

[E- Ho- Vror(E) + ic:lf; = (E- Ho + ic:)f)J = [E- Ho- Vrar(E) + ir.lf;y 

+ Vrot (E) fF ( 6.84a) 

and then multiplying by the resolvent operator [E -· Ho- V101 (E) + ier 1 to yield 

f; = f;-; + E - H o - ~tot ( £) + ic Vrat (E) fj; ( 6.84b) 

Taken together, Eqs. (6.83b) and (6.84b) give an explicit formula for the 
forward scattering amplitude T( E), which we will use to study its analyticity 
properties. 

It will be useful, for comparative purposes, to introduce the outgoing wave 
scattering solutionf~7 and forward scattering amplitude T1 (E) associated with 
the Hamiltonian H1 

1 
H 0 + V1, and given explicitly by 

( 6.85) 

We will begin by studying the analyticity properties of T1 (E), and then apply 
analogous reasoning to the study of T(E). Referring back to Eq. (6.58), we see 
that the free-particle wave functions f±f) (x) appearing in Eq. (6.85) can be 
written as 

f . ( ) _ I ±i(2mE) 112p .. 'i' 
. # x - (2n)3/2 e ( 6.86) 

and so f±Jf can be continued to be analytic in the complex E plane, 
0 ::; j Ej < oc, 0 < arg E < 2n, apart from a cut that we take to run from 0 to oc 
along the positive real E axis. According to Eq. (6.85), the analyticity domain of 
T1 (£)is at least the intersection of the analyticity domain off ±f) with that of the 
resolvent ( E- H 1 + ie) --I, provided there are no convergence problems (which 
is assured for finite range potentials, and more generally can be proved9 from the 
outgoing wave boundary condition on the resolvent). To study the analyticity 
properties of the resolvent, we introduce a complete set of continuum energy 
eigenstates 10 1/J, and bound-state energy eigenstates 1/1 h of the Hamiltonian H 1, 
which obey 

H11/Jc = E,t/Jn 

Hit/lb = -Eht/Jh, 

t5(x- x') = L 1/Jb(x)t/Ji,(x') + L 1/J,(x)t/1; (x') 
h c 

(6.87a) 

( 6.87b) 

10 We could take the states ,Y, to be the outgoing wave states/ t,; with real jJ, or equally well, ingoing wave 
states/ !11• 
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gJVmg 

(6.88) 

We concludefrom Eq. (6.88) that the matrix element (xi ( E- H 1 + icr 1lx') of the 
resolvent operator is analytic in the E plane, apart from simple poles at the bound
state energies - Eh and a cut along the positive real E axis. Since this domain 
contains the analyticity domain of/±11, it is also the analyticity domain of T 1 (E). 

We now apply the same reasoning to Eqs. (6.83b) and (6.84b) for T(E). From 
these equations, the analyticity domain ofT( E) is at least the intersection of the 
analyticity domain of f±F with that of the resolvent [E- Ho - V101 ( E) + iiT 1 

and of the effective potential V101 (E) = V1 + V0p1(E). Considering first the 
optical potential Vopr(E), by using the resolvent expansion of Eq. (6.88), we get 
from Eq. (6.56c) 

( 6. 89) 

from which we conclude that the matrix element of Vopr (E) is analytic in the E 
plane, apart from poles at E = Eh and a cut along the negative real E axis. We 
consider next the resolvent [E- Ho- V101 (E) + icr 1

• We cannot generalize the 
spectral argument of Eq. (6.88) to this operator because the eigenvalues of 
Ho + V101 (E) are themselves functions of the parameter E, with a priori 
unknown analyticity properties. However, we can still get useful information for 
general complex values of E =, Rc E + i Irn £, including real values, by using Eq. 
(6.56c), together with V~ = V fl' to write 

D E-Ho-V101 (E)+ic=DR+iDI 

i Re£ + H1 i 
DR = Re E- H 1 -- V fl 2 2 V11 = DR 

(Re£+HI) +(lm£) 

D1 =c+ImE[l+V1 
1
2 2 V13 =DJ 

(RcE+ HI) + (ImE) 
(6.90) 

As we have seen, the operator D acts on the complex <C( I, i) Hilbert space 
spanned by the asymptotic scattering states. We will now show that for 
Im E > 0, the operator D can never vanish. Suppose, to the contrary, that there 
is a nonvanishing state ldo) such that Dido) = 0. Then, using the complex inner 
product introduced in Sec. 2.1, we have 

which, since DR and D 1 arc <C( I. i) Hermitian, implies 

(doiDR ldo)c = (doiD R I do)~ = 0 

(doiDJido)c = (doiDMo)~· = 0 

(6.9la) 

(6.91 b) 
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But since 

1 .c 

v1 2 , 2 v1J = [(£ + HJ)~ 1 v13 ]' [(£+HI) 1 v11 ] (6.9lc) 
(ReE+HJ) +(!mE) 

for Im£> 0 the operator D1 is positive definite, and thus Eq. (6.9lb) implies 
that I do) is a null state, contradicting our assumption. Hence for lm E > 0, D 
cannot vanish, and the resolvent D~ 1 exists. We conclude that the full resolvent 
can be extended to an analytic function of E in the upper half E plane, and since 
this is included in the analyticity domains of.f±p and V101 (E), it is the minimum 
analyticity domain of T(E). Thus in the quaternionic scattering problem, we get 
upper half E plane analyticity for the forward scattering amplitude T( E), but [as 
a result of the (£ + E, r I terms in Eq. (6.89)]not II the full cut plane analyticity 
characteristic of the complex quantum mechanics scattering amplitude T1 ( £). 
From the upper half plane analyticity of T(E) there follows the usual Kramers · 
Kronig dispersion rclations9

; hence scattering in quaternionic quantum 
mechanics, although time reversal violating, is still causal. 

As a concrete illustration of the preceding general results, we return to the 
delta function model of Sec. 6.1. From Eq. (6.13), we sec that the forward scat
tering amplitude here is the transmission amplitude C~, which according to Eq. 
(6.16) can be written as 

( p)2 p v c' = n; +n; I 

" (£) 2 + £ ( 1 + i) v + z( v2 + v2 + V2) m m I I 2 3 

The denominator in Eq. (6.92) can be factored into the form 

with 

1 
-(p- Pr)(P- P-) 
m2 

PJ_ =1m(/,~ + 0.-,) 

)., =-VI+ [Vt+2(V~ + V~)j 112 

L = - V1 - [ Vt + 2( V~ + V~) ] 1 12 

Hence as a function of E =//2m, Eq. (6.92) becomes 

(6.92) 

(6.93a) 

(6.93b) 

( 6. 94) 

with P a fourth order polynomial whose form is inessential to determining the 
analyticity properties. In addition to the expected E plane cut along the positive 
real axis, Eq. (6.94) has simple poles on the first sheet atE= p:j2m. From Eq. 
(6. 93b) we have 

11 0ur nrgumcnts do not preclude the po"ibility that the analyticity domain of T(E) can be larger than the 
upper half plane. In the delta function example of Eqs. (6.92) (6.95), the actual nnalyticity domain is the 
entire plane, apart from a Vf:' branch cut from 0 to '>0. and two simple poles in the lower half plane. 
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(6.95) 

where in the final line we have denoted V1 /I V11 by sgn( V1) and have written 
Eh = j m V~. Hence for nonzero v11 , there is upper half plane analyticity in £. 
but singularities are actually present in th(: lower half E plane 11 and clearly 
correspond physically to the bound state and its associated scattering resonance. 
As v11 --+ 0, these singularities move to the real axis, giving the larger analyticity 
domain expected in the complex quantum mechanics case. 12 

6 .. 6 GENERAL ONE-DIMENSIONAL SCATTERING 

We turn finally to a discussion of one-dimensional scattering with a general 
quaternionic potential of compact support, following in part the work of Davies 
and McKellar (1989a, 1989b, 1992). The coordinate representation Hamiltonian 
of Eq. (6.1) is now replaced by 

12 We have attempted to tind a quaternionic generalization of the Jost function construction, which is central 
to the proof of partial wave dispersion relatiom and Levinson's theorem in the complex case. However, we 
have not succeeded, for reasons we now explain, in the the context of the f = 0 partial wave equations. Let us 
define Ufi(r) = 2mV11(r). u,(r) = u,oo(r). Ufi(r) = u1mo(r), so that Eqs. (6.42a,b) for P = 0 become 

Defining a Green's functton H( p: r. r') by 

r d' ] l~d,.2 -t/-tU(r) H(p;r.r')~J(r~r') 

wtth the boundary conditions that His regular at r = 0 and bounded (~ e _,,)at r = x. we can formally 
solve for u11 • giving an integrodifferential equation for u, (the optical potential equation), 

r- !_l
1

,- p2 -t U(r)] u,(r) = -U(1(r) /'"" dr' H( p: r. r')Ufi(r')u,(r') l <11 - Jo 

We now define two standard solutions u, =I (p. r) and u, ~ ¢(p.1·) of this equation, as follows. The 
solution f(p.r) is regular at r = 0 and is asymptotic toe ,,,. -+- F(p)e 11". at r =ex;, while the solution 
r/J(p. r) obeys the r = 0 boundary conditions (wrth the prime denoting d/ dr) ¢( p. 0) = 0. ¢ 1 ( p. 0) = 1. We 
now revrew certain elements of the usual Jost functiOn analysis and show where they fail. or do not have an 
obvious proof. in the quaternionic case. (i) In the complex case, 11\(p. r) is an even. entire function of p. In 
the quaternionic case.¢( p. r) is not even in p because H(p: 1·. r') is not even in p. To show that ¢(p, r) is an 
entire function in the complex case. one uses the fact that since both boundary conditions are imposed at 
r = 0. one can get an integral equation for ¢(p. r) involving only rjl(p. r') t(,r 0 S r1 <: r. By iterating this 
equation. one can then majorize ¢(p.r) and prove analyticity. This proof does not obviously extend to the 
quaternionic case. because of the optical potential term in the intcgrodifferential equation. (ii) In the 
complex case. I (p. r)' ~ l( -p' ,I'). In the quaternionic case, this faib because the integrodifferential equa
tion contains explicit factors of i in the optical potential term. (iii) ln the complex case. the Wronskian 
W( f (--p r). f ( p. r)) = f( p. r) f 1 

( -p.r)- f' ( p. r) I ( --p.r) ts r-independent. In the quaternionic case. the 
optical potential term spoils the standard proof that dWjdr = 0. 

Evidently. new methods will be needed to deduce the partial wave analyticity properties of the quater
nionic case. 
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. d2 
- l 

H(x) =-~2 d 2 + V:x(x) +j Vp(x) 
111 X 

Va(x) = iV1 (x), VrJ(x) = V2(x)- iV3(x) (6.96a) 

and using a prime to denote d/dx, Eq. (6.2b) for the symplectic components 
becomes 

i 

2~ f~ + V11f~ + V~fi1 = iEfi1 (6.96b) 

It is convenient now to rewrite Eq. (6.96b) as a first-order differential equation 
for a four-component wave function :F, constructed as follows from .frt..(l and 
I •/ 
• :X ,(1' 

[/
. ·t·' I j . "'- l ~ p 

:F _ ~ f~ + if~/P 
- 2 ffi +f(;/P 

fi1 -f(i/P 

(6.97a) 

Outside the range of the potentials, where f~.fi have the general form of Eq. 
(6.4a), the wave function :F takes the form 

(6.97b) 

In the region where the potentials are nonzero, the second-order equations of 
Eq. (6.96b) imply that :F obeys the first-order differential equation 

:F'(x) = A(x):F(x) ( 6.97c) 

with A(x) the 4 x 4 matrix 

(
A B*) 

A(x) = iB C 

I n1 c = 2. p(TJ- h2)- i p (iE- V~)(TJ + h2) 

B=
111

(T1 +h2)Vf! 
p 

(6.97d) 

Here we have used r 1, r2 , r 3 to denote the usual 2 x 2 Pauli matrices [cf. Eq. 
(1.3Ic)], 
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(
0 -i) 

12 = i 0 , (6.97e) 

Equation (6.97c) can be immediately integrated to give 

:F(x) = T(x, x'):F(x') ( 6.98a) 

with 

T( ') p f', duA(11) x, x = ee ' (6.98b) 

and with P1, as in Eq. (5.96a), a path-ordering operation that orders larger x 
values to the left. 

An important role in the subsequent analysis is played by the probability 
conservation equation of Eq. (4.64), which in the one-dimensional context 
becomes 

ap !!____ . - o 
at+ ax J- (6.99a) 

Since, for a stationary state, p = ll is time independent, Eq. (6.99a) [together 
with Eq. (4.61)] reduces to the continuity equation 

-2mj =lif' -l' if= constant (6.99b) 

Rewriting Eq. (6.99b) in terms of the four-component wave function :F, we get 

:Ft M:F =constant (6.99c) 

with M the 4 x 4 matrix introduced by Davies and McKellar (1989a), 

M= (~ ,~) (6.99d) 

where 0 denotes the 2 x 2 null matrix 02 [ cf. Eq. (11.65d)]. Evaluating the left
hand side of Eq. (6.99c) at x and at x', we have 

:Ft (x)M:F(x) = Jd (x')M:F(x') (6.100a) 

which on substituting Eq. (6.98a) becomes 

:Ft (x') Tl (x, x')MT(x, x') :F(x') = :Ft (x')M:F(x') (6.100b) 

Since M and Tt MT are self-adjoint, and since :F(x') is arbitrary, Eq. (6.100b) 
implies that T(x,x') obeys the conservation condition 

Tt (x, x')MT(x, x') = M (6.100c) 

An alternative form of Eq. (6.100c) is obtained by differentiating with respect to 
x and using 
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gJVmg 

'){) T(x. x') = A(x)T(x. x') 
(X 

Ai (x)M + MA(x) = 0 

(6.100d) 

(6.100e) 

The validity of Eq. (6.100e) can be verified by direct computation using the 
formulas for A(x) and Min Eqs. (6.97d) and (6.99d). _ 

Let us now suppose that the quaternionic potential V(x) is nonzero only in 
the interval a<::: x <::: b, so that outside this interval :F(x) has the free propaga
tion form of Eq. (6.97b ). Let us consider the scattering problem for a wave of 
unit amplitude incident from the left. so that for x <::: a and x 2: h the asymp
totically bounded wave function :F(x) has the form [cf. Eq. (6.13)] 

:F(x) = 

r 

e ip(x--a) j 
rL e --ip(<-a) 

r' ep(t-a) , 
/_ 

0 

x<a 

r 

t~_e'I

0
~x-h) j, 

:F(x) = 
1 -p(x-/J) 

t L e 

x2:b (6.10la) 

with r 1., r~, t~_, t~ complex amplitudes to be determined. Substituting Eq. 
(6.10la) into 

:F (b) = T( h, a) :F (a) (6.101 b) 

we get 

(6.10lc) 

from which we can solve for the ret1ection and transmission amplitudes r L and 
tL in terms of the matrix clements Ttm = Tfm(b, a), 

(6.10ld) 

Let us next consider the scattering problem for a wave of unit amplitude inci
dent from the right. In this case, for x <::: a and x 2: b the asymptotically 
bounded wave function has the form 
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F(x) = 

F(x) = 

0 
--ljJ(x-a) 

tR e · 
t~ ep(x-a) 

0 

l 
ip(x-/J) -

rR e 
-ljJ(t-h) e . 

0 
r' e -p(<:-h) 

R 

x:S:a 
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(6.102a) 

with rR, r~, tR, t~ a second set of complex amplitudes to be determined. It is 
now convenient to rewrite Eq. (6.10lb) as 

F(a) = T -I (b, a) F(b) (6.102b) 

which when multiplied by M from the left becomes, by use of Eq. (6.100c), 

MF(a) = MT- 1(b,a)F(b) = T 1 (b,a)MF(b) ( 6.1 02c) 

Substituting Eq. (6.99d) forM and Eq. (6.102a) into Eq. (6.102c), we get 

-tR _ j -J l 0 j l i'R j 
i~R - T (b, a) -~~ (6.102d) 

from which we can again solve for the reflection and transmission amplitudes rR 

and tR in terms of the matrix clements T;,, 

( 6.1 02e) 

Equations (6.10ld) and (6.102e), together with Eq. (6.98b) evaluated for 
x = h, x' =a, determine the scattering amplitudes (i.e., the S-matrix elements) 
for a general one-dimensional scattering potential. The unitarity constraints on 
these amplitudes are an immediate consequence of Eq. (6.1 OOa) as specialized to 
x == h, x 1 = a, 

(6.103a) 

Substituting Eq. (6.10la) into Eq. (6.103a) gives 

I= lrd +ltd (6.103b) 
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while substituting Eq. (6.102a) into Eq. (6.103a), we get 

(6.103c) 

When V(x) is a constant for a < x < h, corresponding to a quaternionic 
square well or barrier, the differential equation of Eq. (6.97c) can be integrated 
in terms of elementary functions to give a closed form expression for the 
matrix elements Trm(b, a). This calculation is carried out in Davies and 
McKellar (1989a), to which the reader is referred for detailed formulas and 
numerical results. Even in as simple a case as the square well, the analytic 
formulas for the reflection and transmission amplitudes are quite complicated. 
In two subsequent papers, Davies and McKellar (1989b, 1992) studied the 
reflection and transmission coefficients numerically for compound barriers 
consisting of two or three square well barriers in succession and found the 
following two interesting regularities: (i) When the potentiui V~(x) has an x
independent phase, the left and right transmission amplitudes are equal in 
magnitude and phase, 

(6.104a) 

which, by Eqs. (6.1 03b,c), implies that the corresponding reflection amplitudes 
are equal in magnitude, 

(6.104b) 

(ii) Even when the phase of v11 changes from barrier to barrier, the left and right 
transmission and reflection coefficients are equal in magnitude, 

( 6.1 04c) 

In the remainder of this section, we formulate and prove a generalized version 
of these results. 

To do this, we first consider the modified scattering problem obtained by 
adjoining to the original scattering potenti,al V in the interval (a, b) two zero 
potential regions in intervals (a, a) and (b, h). Defining reflection and transm~s
sion coefficients h, rR, it, and tR with respect to the extended interval (a, b), 
and using the fact tha! :F(x) has the free-particle form of Eq. (6.97b) in the 
intervals (a, a) and ( b, b), an elementary calculation shows that 

r L _ 2ip(ii-a) 
" - e ' 
rL 

1? = e2ip(h-h) 
rR 

: L = :R = e ip(il-a+h--h) 

lL lR 

Now let us consider the limit in which 

p(a-a)»l, p(b- b)» I 

(6.105a) 

(6.105b) 

so that the points a and b are in the asymptotic scattering region, where the 
exponentially decreasing fr1 parts of the wave function are negligibly small. In 
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the asymptotic region, the probability current j can be approximated by its f~ 
'b . 11 Th . h contn ut10n. - at IS, we ave 

(6.106a) 

with 9(x) the two-component column vector formed from the upper two 
components of F(x), 

9 = ~ [f~- if~/pl 
2 f. +if"' I . ~ .• Y. p 

and Eq. (6.100a) then implies 13 

(6.106b) 

(6.106c) 

Let us next invoke the fact that the dynamics off~ is governed by the optical 
potential Schrodinger equation 

[
·_ -

2
1 

d
1

2

2 
+ V1 + Vopr(E)l f~ = Ef~, 

m ex 

Since Eq. (6.1 07 a) is a linear differe9-tial equation, there must be a linear matrix 
relation between the values of 9 at b and ;it a, 

' .. 
9(b) = W(b, a)9(a) (6.107b) 

with W the 2 x 2 matrix 

w(b, a) = (6.107c) 

Substituting Eq. (6.107,b) into Eq. (6.106c)., and using the fact that 9(a) is arbi
trary, we find that W(b. a) obeys the conservation condition 

(6.107d) 

The scattering problem for waves of unit amplitude incident from the left or 
right on the interval (a, b) can now be expressed in terms of the matrix W, by 

"Actually. as noted to me by A. 1. Davies. Eqs. (6.106a) and (6.106c) are exact for all il <::a and h ::> h, 
because !"rom Eqs. (6.97b) and (6.99c.d) we see that fr1 contributes to the probability current only through 
the pmduct of the exponentially growing and decreasing wave function components. which is zero to the 
left and to the right of the scattering potential. Thus we could let a~ a. h ~ h and make the argument 
directly in terms of the original Jnterval (a. h). However. the extension to (a, h) is needed for the compound 
scattering d1scussion of Eqs. (6.110a -d). and the analysis as given in the text also applies to the case in 
which the potential has a rapidly vanishing tail extending outside the interval (a. h). 
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proceeding in analogy with Eqs. (6.1 0 I )-(6.1 03), giving 

[ lL J ' , [ J ] 
0 

= W(b,a) 
1
\ , (6.!07e) 

together with the unitarity constraints following from Eq. (6.106c), 

1 = lrd +lid, (6.107f) 

Substituting Eq. (6.107c) into Eq. (6.107e), a little algebra gives formulas for 
the reflection and transmission amplitudes in terms of the matrix elements of 
w14 

' 

, w;l 
rR=--

W~I 
detW 

(6.!08a) 

where det denotes the determinant. Substituting Eq. (6.107c) into Eq. (6.107d), 
the current conservation condition on W gives the three independent equations 

I WIII 2 = I + I W211 2 

I W22\
2 

= l +I W!2\
2 

w~~ W12 

W] 1 w22 
(6.108b) 

Taking the absolute value squared of the third of these equations, and substi
tuting the first two, we get 

IWIII 2 
--I 

IWIII2 

14 One can also determmc r·R· iR without using the unitarity relation of Eq. (6.107d). by solving 

[Ptl] .. [0] I = W(h.a) iR 

wh1ch gives 

(6.!08c) 

These can be converted to the form of Eq. (6.108a) by using Eqs. (6.!0Hb--d) but are more general. since 
they appl 0 even in the presence of absorption. when Eq. (6.107d) does not hold. 
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which implies that 

(6.108d) 

Hence from Eq. (6.108a), we get 

(6.108e) 

which by Eq. (6.105a) further implies that 

(6.108f) 

We also note that equating the determinants of the left- and right-hand sides of 
Eq. (6.107d) gives 

(6.108g) 

and so the factors det Wand det W * in Eq. (6.1 OS a) are simply complex phases. 
The results of Eqs. (6.1 08e,f) are completely general; let us now consider 

the further consequences of assuming that V2 (x) and V3(x) are linearly 
dependent [or equivalently, that Vf3(x) has a constant complex phase], so that 
by the analysis of Sec. 4.6, there is a time reversal invariance. In this case, as 
discussed in Sec. 6.3, the optical potentia.! is real, which has the consequence 
that the linearly_ independent solutions f~ of Eq. (6.107a) can be chosen to be 
real. Hence W(h. il) must map real solutions Cr_:Jsp(x- il), sjnp(x- il) fr:Jr x s; a 
into real linear combinations of cosp(x- h), sinp(x- b) for x .2: h, which 
translates into the conditions [with T denoting the transpose, as in Eq. (2.6c)] 

(: yw(b,il) (:)=real 

i( ~I Yw(b,il) (:)=real 

(: Y W(h.il)i( ~I)= real 

(~~r w(h,aJ(~ 1 ) =real (6.109a) 

Substituting Eq. (6.1 07c), these conditions are readily seen to be equivalent to 

(6.109b) 

Hence comparing with Eq. (6.1 OS a), we see that time reversal in variance implies 

(6.109c) 

which by Eq. (6.1 05a) further implies 

( 6.1 09d) 
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Note that since in an S-matrix notation we have 

tL = (piSip), 

tR =(-piS!- p), 

Eq. (6.109d) is equivalent to 

rL = (-piSip) 

rR =(piS!- p) 

(piSip) = (-piSI-p) 

( 6.1 09c) 

(6.109f) 

which agrees with the general result of Eq. ( 4.1 03b) for the symmetry of 
S-matrix dements implied by time reversal in variance. 1 

As a final application of the two-component formalism, let us consider two 
one-dimensional scattcrers (I) and (2), which are located far enough apart so 
that each is in the asymptotic scattering region of the other. In this case, 16 the 
compound scattering produced when a beam traverses both scatterers is de
scribed by the product of the 2 x 2 transfer matrices W, 

(6.110a) 

so that by Eqs. (6.108a) and (6.1 08b ), the compound left transmission coeffi
cient is given by 

det wC 1ldet wC2) 

det wCIJ det wC2l ( w(IJ wc2J)-I = I + __ 2_1 __ 12_ 
wCIJ w(2J wciJ w(2) 

22 22 22 22 

(6.110b) 

corresponding to the expected sum of multiple reflection contributions of all 

15 Time reversal gives no relation between r1. and r" because Eq. (4.103b). for reflection, yields simply the 
tautologies (PISI -- p) = (p~S!- p) and ( -piSip) --- (-p)Sip) Note that unitarily of the S-mal!n requires 

(pjS 1ip)(piSip) -f (piS'I- p)(-pjSjp) --I 

(- pIs I i p )( p! Sl - p) ' (- pIs i I - p) ( -pI Sj - p) = I 

(piS'jp)(p!SI- p) + (piS 1!- p)( -p/S'/ - p) -~ 0 

which by Eq. ( 6. I 09e) becomes 

I 12 12 I 
1
11, T lrL = . 

in agreement with Eqs. (6.!05a) and (6.108a). 

"' If the scatterers are close enough together so that the exponentially decaying fr1 wave function compo
nents of one arc nonnegligible at the other, then the compound scattering must be calculated using the 
4 x 4 transfer matrix T. via T\ 12 ) = T(l) T( 2 l. 
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orders. When the order of the scatterers (I) and (2) is inverted, we correspond
ingly get 

(6.110c) 

and thus the ratio 1~ 2 ) /t~21 ) is given by 

(6.110d) 

Application of these, and other results of this section, to experimental searches 
for quaternionic quantum mechanics effects will be discussed in Sec. 14.2. 17 

17 Since the derivation of Eqs. (6.!!0b,c,d) does not require unitarily (cf. the remarks in footnote 14 
earlier). they remain valid in the presence of absorption (i.e., when IF1.1 2 --t-lr1l <I. IFRI2 + liRI' < 1). 



7 

Methods for 
Time Development 

In this chapter we develop methods, both exact and approximate, for time
dependent problems (Adler, 1988). which complement the methods for station
ary-state problems given in Chapter 5 and their application to scattering theory 
in Chapter 6. We begin by giving the general equations for time-dependent 
perturbation theory in quaternionic quantum mechanics. By making an appro
priate choice of initial conditions, these equations arc applied successively to the 
problems of scattering theory and of decaying state theory. We next discuss the 
use of the interaction and Heisenberg pictures, particularly in the context of the 
quaternionic forced harmonic oscillator. We conclude by briefly discussing the 
usc of quaternionic quantum mechanics as a model for time reversal violation in 
elementary particle physics (Adler, 1986a,b ). 

7.1 TIME-DEPENDENT PERTURBATION THEORY1 

We wish now to study the time-dependent Schrodinger equation 

;t lf(t)) = -Hif(t)) (7 .I) 

under the assumption that the Hamiltonian fi can be split into two terms 

- - -
H = H 0 + V (7.2) 

where fl0 is a time-independent Hamiltonian and Vis a perturbation. We take 
as known a complete set 1 {In)} of energy cigenstates of Ho in the canonical ray 
representation of Sec. 4.2, so that we have 

Holn) = ln)iEn, E11 :::> 0 (7.3a) 

1 Note that in discus,ing stationary-state pci·turbation theory in Sees. 5.3 5.5. we used the notation f/!;,0)) for 
what we arc now calling: In). EJ,O! for what we arc now calling£,, and ! 11, ten what we are now calling /o. 

194 
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or in spectral form 

H 0 = IoHo 

lo = L ln)i(nl 
11 

Ho = IHol = L ln)En(nl, E11 ;::> 0 (7.3b) 
ll 

lfwe were to approximate Hin Eq. (7.1) by H0 , the general solution for 1/(t)) 
would be 

1/(t)) = L ln)e-iE,rc" (7 .4a) 
11 

with the C11 quaternionic constants. Henc1~ when Vis included, it is natural to 
expand the solution lf(t)) of Eq. (7.1) in the form 

lf(t)j = Llnje if~" 1 C11 (t) (7.4b) 
11 

with the C 11 (t) now time-dependent qua ternionic coefficients. To derive the 
equation of motion for C11 (t), we substitute Eq. (7.4b) into the left- and right
hand sides of Eq. (7.1), giving 

:t if(t)) = ;;.= l£)e-iE,r [ -iEtCp(t) + ~ Cp(t)J 

-Hif(t)) = L l£)e-iE11 (-iEp)C1(t)- L C'l£)e-iA'r'Cr(t) (7.5) 
I I 

which when equated and multiplied from the left by eit:nr (nl give 

~ Cn(t) =- LeiEnt(niVI£)e-iErrct(t) 
i 

Defining [as in Eq. (5.30)] 

the anti-Hermiticity of V implies the restriction 

(7.6) 

(7 7a) 

(7. 7b) 

Equation (7.6), which is exact, is the basK equation of time-dependent pertur
bation theory in quaternionic quantum mechanics2

; evidently, by iteration it can 
be used to d~velop a perturbation expansion for C11 (t) to all orders in the 
perturbation V. 

2 We note that there is an obvious structural simi]a,·ity between Eq. (7.6) and Eq. (5.73), whi~h gives the 
time development of the C's when the "perturbation" is an adiabatic variation of the Hamiltonian. 
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As is by now familiar, it is convenient to rewrite Eq. (7.6) as a pair of coupled 
complex equations for the symplectic components of C/1" Writing 

(7.8) 

and substituting into Eq. (7.6), we get 

!!_C (t) = _ ""[v ei(En-EtJrc (t) _ V* ei(Hn+Er)tc (tJ] dt n~ L nh fa nf (! P(! 
p 

(7.9a) 

(7 .9b) 

The occurrence of the energy sum £ 11 + £ 1 in the terms proportional to Vn[j! and 
V~tf! is again a reminder of the fact that the energy zero point has an intrinsic 
significance in quaternionic quantum mechanics. When expressed in terms of 
symplectic components, the anti-Hermiticity condition of Eq. (7 .7b) becomes 
[cf. Eqs. (5.41)-(5.42) of Sec. 5.3] 

(7.10) 

Equations (7.9a,b) and (7.1 0) are the form of the time-dependent perturbation 
theory equations that we will use in our subsequent analysis. 

7.2 SCATTERING THEORY AND THE T-MATRIX 

As our first application of Eqs. (7.9a,b) and (7.10), we will discuss scattering 
theory in quaternionic quantum mechanics from a time-dependent point of 
view. This will allow us to relate the transition probability per unit time to 
the transition matrix element defined earlier in Eq. (6.63). For the application 
to scattering theory, we take l!0 of Eq. (7.2) to be the kinetic term in Eq. 
(4.37b), 

- I ~2 
Ho = -2mp (7.11) 

and V to be a time-independent scattering potential. Applying the analysis of 
Eqs. (6.54)-(6.55) to the eigenvalue equation 

(xiHoln) = -
2

1 
(-\l~)(xln) = (xln)iE m . (7.12) 

we learn that the bounded unperturbed (i.e., free-particle) wave functions (xin) 
arc <C( I, i). As a consequence, we have 

(xllo = L (xln) i(nl = i L (xln) (nl = i(xl (7.13) 
n 
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and so the spectral representation of Eq. (7. 3 b) reduces to 

Ho = IoHo 

Io =I. 
"'2 p 

Ho '= -~ 
2m 
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(7 .14) 

Taking the incident wave to be a particular energy eigenstate Is), the appro
priate initial condition for the scattering problem is 

lf(t)) ______, is)e-ib,r 
t ---> -00 

or in terms of the expansion coefficients C11 ~_ 1;(t), 

Cs ~ ---> 

C 11 ~ ___, o, 
c,, j! ---> 0' 

1 
11 f s } as t ---> - oc 
all 11 

(7.15a) 

(7.15b) 

Thus to discuss scattering theory within the time-dependent framework, we 
must solve the time evolution equations of Eqs. (7.9a,b) subject to the initial 
conditions of Eq. (7.15b ). Fallowing the method (Merzbacher, 1970) used to 
solve the analogous problem in complex quantum mechanics, we make the 
assumption 

e--i(E11 +E,)t HI 

C (t)- -T 
nfl - mfl _ '(E' + E ) + . l 11 s L 

(7 .16) 

with T11 .1x.fl time-independent coefficients, called the trans1t10n matri.x 
elements, which are to be determined, and with the limit c ---> o+ to be taken 
at the end of the calculation. Equation (7 .16) automatically satisfies the initial 
condition of Eq. (7.15b), while substituting Eq. (7.16) into Eqs. (7.9a,b) and 
setting u to zero (Merzbacher, 1970, p. 491 ), the time dependence completely 
cancels out and we get the following coupled equations for the transition 
matrix elements, 

T _ V _ " Vnb Tr.,a _ " V~Pf3 Ttsfl 
"-'~ - ns~ ~ '(E' E) -1 · ~ '(E + E) · l ~- -L l .,. '· -£ f .\ {' f .I 

_ " Vnif3Tin " V~r~ h,(l 
Tn.,fi - Vnsfi - ~ '(E _ l; ) -1- + ~ .(E +E) _ . 

f l 1 os 8 i I f o.1 £ 
(7.17) 

The fact that there is no time dependence in Eq. (7 .17) is an a posteriori verifi
cation of the consistency of the assumption of Eq. (7.16). 

Before proceeding further with the discussion of Eq. (7.17), let us use Eq. 
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(7.16) to compute the transition probability per unit time into the various final 
states, assuming £, > 0, 3 

2c 2 ~~ 

(E £) 2 2
jT,"ril e 

,, + ·' +c 
---> 2ni5(E11 + E,)jT111fij

2 = 0 
e--->0' 

(7.18) 

Hence the transition probability per unit time to the intrinsically quaternionic 
part of the final state wave function vanishes, while the transition probability 
per unit time to the <C( I, i) part of the final state wave function has the usual 
golden rule form in terms of the transition matrix element T11s~· These results are 
in complete accord with the time-independent analysis of scattering given in 
Chapter 6, where we concluded that the outgoing scattered wave and the 
S-matrix are both <C( I, i). 

We now resume the analysis of Eq. (7.17). Since there are no transitions to 
the /5-symplectic components, it is natural to formally eliminate T11, 11 in terms of 
T11 ,,.

4 To do this most expeditiously, let us choose the unperturbed eigenstates 
jn) so that the wave functions (xjn) are real, 5 which implies that 

1 The delta function in Eq. (7. 18) arises as follows. Let/(~:. x) ~c 2~:/ (x2 ·I 1) ). Then for x cJ 0. I ( ~:. x), =:'o . 0, 

while for < ~ 0, I (1:. x), .-:[,/'c. !Vloreover. L"'x /'(1:. x)dx -c 2 Jr'('j (1:, x)dx = 4{1~ duj[t/ -t- Ij ccc 2n, and so 
lim /(1.x) = 2nb(x). 

/,---+(}I 

In concluding that ii(E11 r E,) ~ 0. we have used the assumpt10n that E, > 0. In the exceptional case of a 
zero energy initial state, Eq. (7.18) becomes 

d I • )'2 2 '( I 12 dr ("(1(1 1 ~- 7W E11 ) T, 11 (1. 

which do not vanish since £ 11 = 0 can be in the spectrum. In using these formulas, one must r·emember that 
for a contrnuom test function </J( E), 

r· ;·O ] ;·x ] ./o dl:'o(E)q,(E) =. "dE,j(E)¢(1;') = 2. x dEo(E)¢(E) = 2¢(0) 

4 The manipulations of Eqs. (7.19) -(7.26) in this section, and of Eqs. (7.37) (7.39b) in the following 
section, repeat in the current context the principal elements of the optical potential reduction developed in 
Sec. 5.2. This repetition could be avoided by formulating the scattering and decay problems directly as 
time-dependent problems within complex quantum mechanics, using the effective [: (I. i) time-dependent 
Schriidinger equation of Eq. (5.18a) for the dynamics of the ~-symplectic component of the wave function. 
5 This is possible because the kinetic Hamiltonian flo is time reveC'al invanant. An incident plane wave is 
then a <C( I. i) superposition of incident standing wave states 1.1); switching to a standing wave basis causes 
no problem since Eq. (7.17) is Q~ (I. i) linear in ;.1). 
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(7.19a) 

or equivalently, 

(7.19b) 

As a consequence of Eq. (7.19a), the symplectic and real components of V 
defined by Eq. (7.8) on a In) basis agree with those defined by Eqs. (4.37a,b) on 
a coordinate basis, and so we can consistently write 

V = Vx + JV/1• Vrx = JV1, V11 = V2 - JV3 

(xi Vrx.fllx') = 63(x- x') Vrxfl(x), (nl V~./11£) = Vnta,fl 

and we can define complex conjugate operators 

which obey 

(xi v~/llx') = 63(x -· x') v~.fl(x) 

(nl v~./11£) = v~£:cfl 

We can then define column vectors Vecx, Vt/1, v;cx, v;11 by 

vfrx = v~ 1£)' v;rx = V~l£) 

VP/1 = V11!£), v;/1 = vw) 

Vnh: = (nl V~rx, v~b = (nl v;~ 

Vnffl = (nl Vtfl, v;,tfl = (nl v;fl 

(7.20a) 

(7.20b) 

(7.20c) 

(7.2la) 

and can similarly define column vectors T~rx and Tf/1 related to the transition 
matrix elements by 

Tnf(l = (n I Tf/1 (7.21 b) 

Then, factoring (nl away from the left, Eq. (7.17) can be rewritten as a column 
vector equation 
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(7.22) 

where we have assumed E, > 0, which implies that E1 + E, is nonvanishing, 
permitting us to ignorc6 the infinitesimal -1: in the energy denominator 
i(Ep + E,)- 1:. We can express Eq. (7.22) even more compactly by observing 
that 

(7 .23) 

and similarly for the second energy denominator i(E1 + E,), which again with 
use of Eqs. (7.2la,b) permits us to rewrite Eq. (7.22) in the operator form 

, I * I , 
7 \N = V,w - VN T,w - VII r,./1 

J .J JI(H0 -E,)+t J I(lf0 +E,). 
(7.24a) 

I " * I 
T,/3 = V,p- VII I(Ho- E,) + ~: 1,rx + V rx I(Ho + E,) T,ll (7.24b) 

We can now carry out the elimination of T,1111 by solving Eq. (7.24b) for T, 11 , 

g1vmg 

--
1
--T,11 =--I 

1 I v,11- v11 
1 

. r,y] 
I(Ho + E,) H0 + V1 + E, l I(Ho- Ec,) + f, 

(7.25a) 

which when substituted into Eq. (7.24a) gives, after multiplying by -I and 
regrouping terms, 

* I 
-IT,~= -IV,~+ VII H V E V,ll 

0 + I+ s 

+ ~-IVrx + V~ I · V11] , I _(-IT, 2 ) l H0 + V1 + E, E, - Flo + h 
(7 .25b) 

But referring back to Eqs. (6.56b,c) and (6.57a), we sec that 

. I 
-IVY+ V~ VII= Vror(E,) 

Ilo + V1 + E, 
(7 .26) 

and so the column vector equation of Eq. (7.25b) reads 

(7 27) 

6 Alternatively. one could drop the 1: everywhere and simply replace ~o·, by E, t i1: or r;, + !1:, as appro· 
priate. at the end or the calculation. 
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For comparison, we note that in the present notation the Lippmann -Schwinger 
equation for If~) reads [cf Eq. (6.59)] 

(7 .28) 

Multiplying Eq. (7.28) from the left by V101 (E,), we get 

Vror(E,)Ift) = Vror(E,)is) + Vror(E,) E.,_ ~0 + h Vror(E<)!f;-) (7 .29) 

which reproduces Eq. (7.27) with the identification 

(7 .30a) 

When projected on a general state (nl from the left, Eq. (7.30a) gives 

(7 .30b) 

which is equivalent to Eq. (6.63). This completes the demonstration that the 
transition matrix element of Eq. (6.63) gives the transition probability per unit 
time via the golden rule formula of Eq. (7 .18). 

7.3 DECAY THEORY FOR H0 ENERGY EIGENSTATES1 

We turn next to an analysis of the decaying state problem in quaternionic 
quantum mechanics. We assume that for times t < 0, the system Hamiltonian 
is fl0 and that at t = 0 a perturbation V is switched on. We do not now 
assume that Vis local in the coordinate representation; the only properties of 
V assumed in the subsequent analysis are that it is anti-Hermitian and that (for 
t > 0) it is time independent. We also do not now make any specialized 
assumptions about the form of flo [as was done in Eq. (7 .II) of the preceding 
section]. We assume that for times t < 0 the system is in an energy eigenstate 
of fl0 , and we wish to follow the nontrivial time evolution induced by turning 
on the perturbation. We will allow in the analysis for the possibility that the 
initial state is a degenerate energy eigenstate of fl0 . Thus we assume that flo 
has a group of D orthonormal degenerate eigenstates {lsa)}, obeying 

flolsa) = isa)iE,, a== l, ... , D, E.,.> 0 (7.31) 

with the initial system state a particular member isA) of this group. The set _9f 
states {su} 1pay be distinguished by some quantum number respected by Ho 
from other H 0-eigenstates of the same energy; in the classic decay situation, this 
quantum number is not conserved by the perturbation V. The dynamical 
problem is then to solve Eqs. (7.9a,b) fort> 0, with the t = 0 initial condition 

C.\a>: (0) = baA 

Cncx(O) = 0, 

Cnfi (0) = 0, 

n tf_ {Sa} 

all n (7.32) 
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As an equivalent way of imposing the initial conditions, we can add a delta 
function c'5(t) to the equation for dC,,jdt, changing Eq. (7.9a) to 

d C' () _ "[v i(£;1 --E~Jrc () v· i(f,~~+E;Irc ( )] , "() (7.33 ) -d ~m t - - ~ n{~f' h t - nF(ie. i:fi t +Om-Au t 
t j 

and then solve the problem in the extended domain -::x:: < t < oc subject to the 
boundary conditions 

t < 0. all n (7 .34) 

This extension of the time domain is convenient because it permits the usc of 
Fourier techniques. Introducing Fourier transforms with respect to t by 

Eqs. (7.9b) and (7.33) become 

(E + i1:- En)Cn:;_(E) = -iL [vnt:xCfY.(E) + V~1(1Cf!i(E)] + b,sA 

f 

(E + i~: + En)C1111 (E) = iLrvnf/iCt~(E)- v~bcr1J(Ic')] 
I 

(7.35a) 

(7.35b) 

(7.35c) 

(7.36a) 

(7.36b) 

As we shall see shortly, by replacing E byE+ ie on the left of Eqs. (7.36a,b), we 
assure7 that Cm_(E) and Cnfi(E) are analytic in the upper half E complex plane. 
This analyticity implies that when t is negative, we can close the E integration 
contours in Eqs. (7.35a,b) in the upper half E plane without encircling singula
rities of C11 ~.fl(£), yielding C 11(l.fi(t) = 0 for t < 0. Thus the initial condition of 
Eq. (7.34) is automatically incorporated in Eqs. (7.35a c) and (7.36a,b). To 
solve Eqs. (7.36a,b), we follow the now familiar procedure of first eliminating 
the /)-symplectic components. Defining matrices Io, Ho. Vx. Vii· V~. v; by 

(lo) 11t = ir) nf' 

( V(j_)"t = Vnh:, 

(Vri)"t = v"tfi· 

(Ho)nf = Enb111 

(V;)nf = v~{cx 

(V~)nr = V~tfi 

Eq. (7.36b) for c,11 (E) can be rewritten as 

J~(E + ic + Ifo + iV~) 11 rCtfi(E) = iL(Vfi) 11pCtx(E) 
I f 

(7.37) 

(7.38a) 

-This slalemcnl holds. at least. 1n the Wt:i<skopr Wigncr approximation used later to solve Eqs. (7.36a,b). 
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which can be immediately solved to give 

(7.38b) 

Then substituting Eq. (7.38b) back into Eq. (7.36a), we get the following equa
tion determining C11 ~ (E), 

(E + ir:- E11 )C11a(E) = L Vror(E + i8) 111Ct.~(E) + 6"·'A 
f 

where [in the matrix notation of Eq. (7.37)] 

(7.39a) 

(7 .39b) 

which (when specialized to -lo veL = lo v~ = VI) is precisely the same structure 
encountered in Eqs. (6.56c) and (6.57a) earlier. 

From this point on, the analysis is the same as the usual discussion of the 
decay problem (Merzbacher, 1970, Chap. 18) in complex quantum mechanics, 
with V101 playing the role of the perturbing potential. For weak perturbations V, 
ilt suffices to solve Eq. (7.39a) to order V~01 ; to achieve this, we observe that the 
C11)s for n Ft {su} are of order V101 , whereas those for n E {su} can be of order 
unity. Hence, solving for the former in terms of the latter. we get, for n Ft {sa}, 

CnCL(E) = L(E +it:- E11 r 1 V101 (E + ic) 11 ,h Cw,(E) + O(V;01 ) 

b 

which when substituted back into Eq. (7.39a) gives, for n =sa, 

L [(£ + ic- E,)6ah- V101 (E + ic)sash 
h 

(7 .40a) 

- L Vror(E + ic)sat(E + h:- Et)- 1 Vror(E + ie)flh] C- 1,.a(E) =baA 
fl(t{s,} 

(7 .40b) 

Using the familiar formula 

I p . - E ----=-----mo(E- r) 
E + ic - Ee E - Ep 

(7.41) 

with P denoting the principal value, it is customary to rewrite Eq. (7.40b) in 
terms of mass and decay matrices Mah(E) and rah(E) defined as follows, 

p 
Mah(E) = V101 (E + iR),a·'h + L Vror(E + i&) 50 t E _ E V10r(E + ic)fsh 

£1f'{.'c} t 

rah(E) = 2n L Vwr(E + itkf6(E- E£) Vror(E + ie)g,h 
f\t"{s,} 

(7 .42a) 
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gJVmg 

(7 .42b) 

Equation (7.42b) gives a set of simultaneous equations for the coefficients 
Cwx (E). In general, the coefficient matrix ( E + ic - E,) I_- M( E) +~I'( E) is a 
very complicated function of E, but since (for small V) the dominant term 
is ( E + ir; - E,) I, the solution C,hrx (E) will be small unless E ::::::; E,. This 
motivates the Weisskopf-Wigner (1930) approximation of replacing M( E) 
and r( E) by their values at E = E,, reducing the coefficient matrix to a 
linear function of E. Since from Eq. (7.39b) we see that V101 (E) has no 
branch cut for positive E, we can drop the i£ in Eq. (7.42a) when E = E,, 
and use the complex Hermiticity of V101 (E) to replace V101 (EJ",r by V101 (E,)~,a· 
Then in the Weisskopf-Wigner approximation, Eq. (7.42b) becomes 

Yah= I'ah(E,) = 2n L V10r(E,);,a6(E,- Et) Vwr(£.,)f,
1
, 

f\t'{l<} 

(7 .43a) 

(7.43b) 

(7 .43c) 

Since Yab is a positive definite matrix, when !mE> 0 we have, for arbitrary 
complex vh, 

(7 .43d) 

= (Im E +c) L lval
2 

+ ~ L v:rah vh > 0; 
a a,b 

hence for E in the upper half plane the matrix coefficient of C,"'Y.(E) in Eq. 
(7.43a) has no null vectors, and thus Eq. (7.43a) is guaranteed to give a solu
tion for C,arx(E) which is upper half plane analytic. Since iV~ is complex 
Hermitian, (E + ic + Ho + iV~)- 1 and V101 (E +is) are upper half plane an
alytic, and so Eqs. (7.40a) and (7.38b) determine solutions for Cnrx(E), n r:i {sa} 
and CnfJ( E) which are upper half plane analytic. Thus Eqs. (7.43a-c), (7.40a), 
and (7.38b) give, in the Weisskopf-Wigner approximation, and working to 
accuracy v7ol' the solution to the decaying state problem in quaternionic 
quantum mechanics. 

As an instructive application of our results, let us verify the unitarity sum 
rule to order V2

, for the case in which the group of states {fsa)} contains only a 
single state fs). The sum rule to be checked is 
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I= (f(O)if(O)) = (f(O)!ellre-Hrlf(O)) = (f(t)lf(t)) 

= .L [ic~>:(r)l 2 + 1Ct1i(t)l
2

] 
f 

= 1Cn(t)l
2 + L 1Ct~(t)l 2 + L ICtfi(t)l

2 

fc;ls f 
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(7 .44) 

To verify perturbative unitarity, we must evaluate each of the three terms on 
the right-hand side of Eq. (7.44) to order i/ 2 and check that their sum is 
unity. 

We begin with the first term on the nght of Eq. (7.44). When D = I, the 
indices a and b can be dropped, and Eq. (7.43a) becomes 

with (to order V2
) 

C (£) = E + i~: -- E - m + _z_ ··· ( . )-] 
SX .\ 2 I 

I'= 2n L I Vt,~'1 2 6(E, - £ 1 ) 

fjs 

(7 .45a) 

(7 .45b) 

Substituting Eq. (7.45a) for Cn(E) into Eq. (7.35a) and (fort> 0) closing the 
integration contour down, we get 

(7 .46a) 

gJVmg 

(7 .46b) 

Turning next to the second term on the right of Eq. (7.44), substituting Eq. 
(7.45a) into Eq. (7.40a) gives, for/: Is, 

-iV. -
C (£) - ..,.------- f.~> 0 ( V 2 ) 

h - (E+ie-Ep)(E+ic- E,) + (7.47a) 

Substituting Eq. (7.47a) into Eq. (7.35a) and closing the integration contour 
down gives 

(7.47b) 

Hence the seco, ::\term on the right of Eq. (7.44) is 

(7.47c) 

When the set of states f! forms a continuum around s, we can make the golden 
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rule approximation (Merzbacher, 1970, pp. 479 480) 

(7.47d) 

and Eq. (7.47c) becomes 

L ICb(t)j
2 ~ t2n L I Vc,xi 26(Er- EJ = ;1t (7.47e) 

f! 1 lfs 

Thus the first two terms on the right-hand side of Eq. (7.44) exhaust the 
unitarity sum rule, up to the errors inherent in the Weisskopf-Wigner and the 
golden rule analyses. 

We turn our attention finally to the third term on the right of Eq. (7.44). 
Approximating Eq. (7.38b) to leading order in V gives 

c I (E) ~ i vfs(! C,x (E) + 0 ( j/2 ) 
f,i E + ir: + Ef 

(7 .48a) 

and substituting Eq. (7.45a) for Cn(E) then gives 

C ~ iVts(3 - 2 
if!( E)~ (E + i~: + Ep)(E + ie- E,) + O(V ) (7 .48b) 

Substituting Eq. (7 .48b) into Eq. (7 .35b) and again closing the integration 
contour down gives 

(7 .48c) 

and thus the third term on the right of Eq. (7.44) is 

"IC (t)I2=4"IV 12sin2[~t(Ei+EJ] 
~ f(! ~ Ps(! 2 

1 1 (Ef + E,) 
(7 .48d) 

We can estimate the sum in Eq. (7.48d) by noting that the lifetime t, of the 
initial state js) is t, ~ }'- 1

; for such times the argument of the sine is very 
large (since we assume E,/Y » I) and the sine function is rapidly oscillat
ing, and so we can replace sin2 [~t(E1 +E,)1 by its average value of~· 
Equation (7 .48d) then becomes 

Pf! L 1Cifl(t)l2 ~ 2 L I Vls/312 2 
1 1 (Ep + E,) 

(7.48e) 

showing that the total probability in the fi- (or intrinsically quaternionic) 
symplectic components does not grow linearly with time, but rather at large 
times approaches the constant value of Eq. (7.48e). Or in other words, the 
transition probability per unit time to the {J- symplectic components vanishes, 
just as was found in the case of scattering theory in Eq. (7.18). 
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To estimate the magnitude of P 11 , we approximate Eq. (7.48e) as 

(7.49a) 

since for £ ncar s the individual terms in the sum are expected to be similar in 
size. We now express the right-hand side of Eq. (7.49a) in the form 

(7.49b) 

and approximate 1'r1(E) to be a constant by writing 

~·/3(£) ~ rfJ(Es) = 2n L 1Vc,f3I 2
6(Ef- £,) 

fis 

~ ( I ~ 
2

) 2 n L I Vr,~ 12 
6 ( Ef - Es) 

m·crap,c f fs 

•• (l~:llwo,c; (7 .49c) 

Substituting Eq. (7.49c) into Eq. (7.49b), integrating over £, and dropping 
numerical factors of order unity, we get finally 

( 2) 
I 

Vr1 ~- ,. pfi ~ -- _I 

V, E, 
·· arerage · 

(7 .49d) 

Hence P11 is of the order of the errors ~ ~·/ E, inherent in the Wcisskopf-Wigner 
analysis, completing the verification of the unitarity sum rule. 

Although, for simplicity, we have carried out the preceding calculation in the 
case D = I, it is clear that similar result!; are obtained when the initial state is a 
member of a degenerate group. In particular, the transition probability per unit 
time to the /)-symplectic components still vanishesx in the degenerate case. From 
this result we reach the following important conclusion: Let us form the complex 
Hilbert subspace generated by all <C( I, i) superpositions of all H0-eig~n
states that have the eigenvalue iE,; clearly, all the states in this subspace are H 0-

eigcnstates that again have the eigenvalue iE,. Then our decaying state analysis 
shows that thi~ <C(l. i) subspace is stable when we turn on a weak quaternionic 
perturbation V, in the sense that any state in this subspace only makes transi-

H To order v'. this result fol!ows immediately from bqs. (7.43a) and (7.38b) by a calculation identical to 
the D ~ I case. We conjecture that it is tme to all orders in an expansion in powers of V. 
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tions to other states in the same subspace. This result is reminiscent of our 
earlier conclusion that the S-matrix in quaternionic scattering theory is <C(l, i), 
but is in certain respects more general, since in the analysis of this section no 
structural restrictions other than time independence have been imposed on 
either the unperturbed Hamiltonian H0 or the perturbation V. 

To conclude this section, we apply the decay theory analysis to the case in 
which H0 has the form J0 H0 , with H 0 the complex self-adjoint Hamiltonian for 
an atomic or nuclear system, with rest masses included. Since the binding 
energies in such systems are much smaller than the rest masses, the bound
state eigenvalues of H 0 are positive and (in the case of stable bound states) lie 
below threshold for the continuum states. Taking the initial state sA to be a 
stable bound state for the Hamiltonian H0 , the energy E, will be separated by 
a tinite gap from all other energies £ 1 appearing in the sum in Eq. (7.43c). 
Consequently, the decay width tah = rah(E,) vanishes in this case, and so just 
as at the end of Sec. 6.4, we conclude that adding a small quaternionic 
perturbing potential to a stable atomic or nuclear system has no destabilizing 
effect. 

7.4 USE OF THE INTERACTION AND HEISENBERG PICTURES, 
AND THE QUATERNIONIC FORCED HARMONIC 
OSCILLATOR 

In Sec. 7.1 we have formulated time-dependent perturbation theory by using 
the Schrodinger picture, in which the dynamics of time development is carried 
by the wave function. Because the perturbation problem involves a separation 
of the Hamiltonian if into an unperturbed part H0 and a perturbation V, it is 
often convenient to use instead the interaction picture, in which the operators, 
r~ther than the wave functions, carry the unperturbed dynamics governed by 
H0 . Defining U0 (t, 0) by 

(7.50a) 

the interaction picture state vector l.f/( t)) is related to the Schrodinger picture 
state vector If( t)) by 

lfi(t)) = u6(t,O)If(t)) (7.50b) 

and the interaction picture operator A1 is related to the Schrodinger picture 
operator A by 

A1 = U6(t, O)AU0 (t, 0) (7.50c) 

According to these definitions, we have 

(/1(t))A1IK1(t)) = (f(t)l Uo(t, O)U6(t, O)AUo(t, O)U/l(t, O)).r;(t)) = (f(t)IAfg(t)) 

(7.50d) 

showing that we get the same result for matrix clements irrespective of the 
picture in which they are computed. For the time development of lf!(t)), we get 
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= - u ~ (t' 0) vu 0 ( t' 0) u ~ (t l 0) I f ( t)) == - vI ( t) I fi ( t)) (7.5la) 

Thus the dynamics of the interaction picture state vector is governed by the 
interaction picture perturbing potential V1. Equation (7 .51 a) can be formally 
integrated to give 

lfi(t)) = UI(t, t')lfi(t 1
)), (7.5lb) 

with Tf, as before, ordering later times to the left 
As an elementary application of the interaction picture, let us use it to rede

rive the basic equation for time-dependent perturbation theory given in Eq. 
(7.6). From the expansion of Eq. (7Ab), together with Eqs. (7.50a,b), we get 

(7.52a) 
n n 

from which we learn that 

(7.52b) 

Differentiating with respect to time, and using Eq, (7 .51 a), now gives 

d f) -
dt Cn(t) = (nl 

0
/fi(t)) = -(nl VI(t)l f1(t)) 

= -(n!J/I(t) L I£)Ce(t) =- L(ntvi(t)I£)Cp(t) (7.53) 
£ £ 

which on substituting V1(t) = /i01 Ve-il01 yields Eq. (7.6). 
As a second application of the interaction picture, let us analyze the 

quaternionic forced harmonic oscillator, which we define as a ~tandard <C( I, i) 
harmonic oscillator coupled to quaternionic driving terms.9 We consider a one
dimensional configuration space with coordinate x and with anti-self-adjoint 
translation generator f3 = a 1 ax, in which the <r::( 1, i) harmonic oscillator is 
described by the anti-self-adjoint coordinate representation Hamiltonian 

- ' -p 2 2 

( 

-2 1 ) 
H o = z -- + - pw x 

2p 2 

Let us introduce creation and annihilation operators a and at, by 

(pw)I j2 ( I -) a= - x+-p . 
2 pw · 

·r _ (pw)I /2 ( 1 -) a- - x--p 
2 pw 

9 I wish to thank J. R. Klauder for suggesting the study of this model. 

(7.54) 

(7.55a) 
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which satisfy the commutator algebra 

[a. a1] = I (7.55b) 

and in terms of which i/0 has the form 

(7.56a) 

The quaternionic forced harmonic oscillator is now described by the total 
H ami! tonian 

il = fi0 + v, v = v(l)a- v(l)at (7.56b) 

with 

v(l) = v0(1) + iv1 (1) + ;\·2(1) + kv3(1), vo !.2.3(1) E IR (7.56c) 

thus incorporating a general quaternion-valued driving term. We note that since 
a and ai are real in the coordinate representation, we have 

[a, (i.j, k)] = [a1, (i,j, k)] = 0 (7.57a) 

which implies 

[(a, al ), v(l)] = [(a, ai), 11(1)] = 0 (7.57b) 

and so there are no factor-ordering ambiguities in the construction of V. 
Equations (7.55a)~(7.57b) give the formulation of the quaternionic forced 

harmonic oscillator in the Schrodinger picture. Since the dynamics induced by 
ff0 is well understood, it is natural to go over to the interaction picture to 
analyze the dynamics induced by the full Hamiltonian if. To apply Eq. (7.5lb), 
we must compute V1(1), given by 

where 

and where 

v1(1) = vo(l) + i1v1 (1) +/Jv2(1) + k 1v3(1) 

v1(1) = v0(1)- i1v1 (1) -jm(t)- k1v3(1) 

(7.58a) 

(7 .58b) 

(7.58c) 

We note that the transformation to the interaction picture leaves i11 .iJ. k 1 anti
self-adjoint, 

( · · k ) t _ Ho r ( • · k) t , - Ho r _ ( • • k ) ll,}l, 1 - e .Z,.J, C - - li,.JI, I (7 .58d) 
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and preserves the commutator algebra of Eqs. (7.55b) and (7.57a,b), 

I [cz1.a1]=l 

[a~, (i1,/J, k 1)] =[a~., (i1.}J, k1)] = 0 

[ i l [ i ~ 1 (a1, a1). v1(t) = (a1, a1), v1(t) = 0 
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(7.58e) 

The operators in Eq. (7.58c) may now be readily evaluated in terms of Schro
dingcr picture operators. First of all, since fl0 is <C( I. i) imaginary, we have 

lf = l 

· · -2ii0 r · -2iwia 1 a ~I /2i r 
}I= JC =JC · · 

k k ~2lfcJI k -~2iwlara, I 12[1 .. 
1 = e = e 1 = -J1z (7 .59 a) 

To compute a1 and aL we differentiate with respect to time and use Eq. (7.55b), 
gJVmg 

which by using the t = 0 boundary condition a1 =a. a~= ai, can be immedi~ 
ately integrated to give 

-iUJf a1 = e a. (7.59c) 

1 ust as a check, we find that Ho1 is given by 

Ho1= i1w(a~a1 +~) = iw(a 1 a+~) = H0 (7.59d) 

as expected. To summarize, then, V1(t) for the forced harmonic oscillator is 
given by 

V1(t) = v0(t)(e-iwra- eimrat) 

+ { ll'l (t) + je-2ir.J[a'a+l/2]t[v2(t)- iv3(t)]} (e-iwra + eiwtal) (7 .60) 

which when substituted into Eq. (7.51 b) gives the time evolution of a general 
state in the interaction picture. The fact that V1(t) is anti-self-adjoint is not 
obvious by inspection from the form given in Eq. (7.60). To verify that the j 
term in Eq. (7.60) is anti-self-adjoint, it is simplest to backtrack a step and write 

je~2iw[aia+l/2]r[v2(t)- iv3(t)] (e·iruta + e"'Jtat) = )J[v2(t)- iv3(t)](ai +a~) 

(7.61) 

from which the adjoint properties arc evident by use of Eqs. (7.58d,e). 
One can also study the forced harmonic oscillator in the Heisenberg picture, 

by using the transformation of Eqs. (3.52a-d), which again preserves the 
commutator algebra of Eqs. (7.55b) and (7.57a,b), 
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[aH, a~1 ] = I 

[aH, (iu,)u,kH)] =[a~, (iH,)H,kH)] = 0 

[(aH, a~f), Vu(t)] = [(aH,a~), VH(t)] = 0 

as well as the quaternion algebra 

·2 I zu =- , etc. 

(7.62a) 

(7 .62b) 

The Hamiltonian in the Heisenberg picture is given, in terms of the operators 
that appear in Eq. (7.62a), by 

with 

l'H(t) = vo(t) + iuv1 (t) +JHv2(t) + kHv3(t) 

VH(t) = Vo(t)- lHVI(t) -juv2(t)- kHv3(t) 

Regrouping similar terms together, Eqs. (7 .63a, b) can be rewritten as 

(7 .63a) 

(7 .63b) 

iiH = iHw ( a~aH + 1) + Vo ( t) ( aH - at) + [iHVt ( t) + Juv2 ( t) + kuv3 ( t)] ( aH + a~1 ) 
(7 .64) 

Using the commutators of Eq. (7.62a), as well as the quaternion algebra of Eq. 
(7.62b), we can now compute the Heisenberg picture equations of motion for all 
the operators from which flu is constructed by using Eq. (3.52c), with the 
results 

daH [- ] - = HH, au = -iH waH+ vH(t) 
dt 

dat [ - t J . t ----;;;-= Hu,aH =zHwaH+vH(t) 

d~7 = [ HH,iH] = 2[-kHV2(t) + JHV:J (t)] ( aH + a}1) 

d~~~ = [flH.iH] = 2kuw(ataH +~) 
+ 2[kHVI (t)- lHV3(t)] ( aH +at) 

d:; = [frH,ku] = -2jHw(ataH +D 
+ 2[-jHVI (t) + iuv2(t)] ( aH +at) (7.65) 
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In the complex quantum mechanics specializa1ion, with v2(t) = v3(t) = 0, the 
equation for iH reduces to diH/dt = 0, permitting the equations for a11 and a~ to 
be integrated in closed form. This corresponds to the fact that V1(t) of Eq. 
(7.60) reduces to a simple <C(l. i) form in the complex specialization. In the 
general qua tern ionic case with v2 3 (t) f. 0, Eq (7 .65) is a highly nonlinear set of 
coupled equations, corresponding to the complicated structure of V1(t) of Eq. 
(7.60) in the quaternionic case. 

7.5 A QUATERNIONIC MODEL FOR TIME REVERSAL 
VIOLATION IN PARTICLE PHYSICSi 

As we have seen in Sees. 4.6 and 6.3, nonrelativistic potential scattering in 
quaternionic quantum mechanics in general violates time reversal. Since time 
reversal violation is in fact present in elementary particle physics (for a review, 
see W olfenstein, 1969), it is tempting, but of course highly speculative, to try to 
abstract from quaternionic quantum mechanics a model for the observed time 
reversal violation, along the following lines: 

(i) We postulate that underlying the observed standard model of elementary 
particle forces is a layer of quaternionie quantum dynamics, appearing at a 
new energy scale MQ· Just as we have seen that the asymptotic state space 
for quatcrnionic scattering theory is a complex Hilbert space, we postulate 
that the asymptotic state space for the underlying quaternionic elementary 
particle dynamics is a complex Hilbert space, with an effective complex 
quantum field dynamics. 

(ii) We postulate that the dynamics at the quaternionic level is governed by a 
quaternionic Schrodinger equation with Hamiltonian H, and that the 
asymptotic state strong-electromagnetic dynamics governing hadronic 
production processes is described by an effective Hamiltonian 

H 0 =folio (7.66a) 

with H 0 time reversal conserving and with (from the spectral theorem of 
Sec. 2.3) 

Ho = L ln)En(nl 
11 

Io = L ln)i(nl (7.66b) 
11 

Let V = H- Ho be the difference between the full quaternionic Hamilto
nian and the asymptotic strong-electromagnetic Hamiltonian; defining 

lo = L ln)j(nl 
11 

Ko = L ln)k(nl (7.67a) 
n 

we decompose V into formally real components with respect to the 
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I0 ,Jo, K0 quaternion algebra [see Eq. (2.lld)], 

V = V~ + loVp. (7.67b) 

with Vo.u. 3 commuting with 10 . 10 , K0 . In the generic case, both V2 and V3 
will be nonzero and linearly independent. We assume that the Hermitian 
potential 

(7.67c) 

is time reversal conserving, so that in the absence of the quaternionic effects 
represented by v13 there is no time reversal violation. The term -/0 V~ thus 
includes all the usual weak interactions (apart from time-reversal-violating 
mass matrix terms) that are unified with the electromagnetic interaction in 
the standard electroweak model. 10 

(iii) We assume now, in discussing the low-energy asymptotic state dynamics, 
that the residual interaction V can be treated as a perturbation. The 
problem of calculating the effect of V on the asymptotic states then 
becomes a time-dependent perturbation theory problem with precisely the 
structure discussed in Sees. 7.1-7 .3. f n particular, the effect of V on the 
decaying-state problem will be through an effective complex <C(l,I0 ) 

potential V101 (E) with the form given in Eq. (7.39b). 

(iv) To see that V101 (E) contains time-reversal-violating effects, let us briefly 
review the structure of time reversal symmetry in the complex asymptotic 
state dynamics, assuming for simplicity that we are dealing with bosonic 
states. (A closely related discussion. starting from the quaternionic time 
reversal operation, is given in Sec. 4.6.) Let T be the time reversal 
operator for the asymptotic theory, which by assumption commutes with 
Ho. 

y-I H 0T = Ho (7 .68) 

and let lnr) be the time-reversed H 0-eigenstate corresponding to the 
H 0-eigenstate In). For a time-reversal-conserving potential V obeying 

r- 1vT = v (7.69a) 

we have, since T is antiunitary, 

(7.69b) 

and since Vis Hermitian, 

(mjVIn) = (mjVt In) = (n!VIm) * (7 .69c) 

10 We could alternatively define iill to include the full electroweak Hamiltonian. exclusive of time reversal 
violation. and get e"entially the same model for time reversal violation. In other words, the length scale 
characterumg the separation oi' if into an "asymptotic" part i/0 and a rcmaindc!' Vis somewhat arbitrary. 
and for purposes of the model can be taken as either the hadronic ma;s scale or the electl'llwcak mass scale. 
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which when combined give 

(ml Vln) = (nrl Vlmr) (7 .69d) 

[When In) and lm) are momentum eigenstates I ft) and IZ/), the states lnr) 
and lmr) are respectively I- ft) and I- q), and we see that the Born 
approximation to the reciprocity relation for the T-matrix given in Eq. 
(6.67b) is a special case of Eq. (7.69d).] Since Ho is time reversal 
conserving and since T 2 = I for bosonic states, we are always free to 
choose the states In) in the bosonic case to be time reversal eigenstates 
with eigenvalue unity 11

, so that lnr) ,=In). On such a basis, Eq. (7.69d) 
becomes 

(mjVIn) = (njVIm) (7 .69e) 

stating that a time-reversal-conserving Hermitian operator Vis represented 
by a symmetric matrix. Let us now examine the structure of V101 (E), which 
from Eq. (7.39b) has the matrix element 

(njV1or(E)Im) = (nl- loV"im) 

+ L (n!Vp 1£) (£1( E + Ho + Io V~)- 1 1£') (£'1V13Im) 
f.P' 

(7.70a) 

Since we are assuming that -10 Vex is time reversal conserving (i.e., that 
there is no direct time reversal violation), the matrices (nl- 10 Vcxlm) and 
(£1(£ + H0 + IoV~)- 1 1£') are symmetric, and so using the symmetry of the 
matrix Vf! [cf. Eq. (7.10)] we get 

(n!Vror(E)Im)- (m!VrM(E)jn) 

= L [ (njVp 1£) (£'IV 13Im) - (njV f! If) (£'1V/J jm) J (£1 ( E + Ho + Io V~) -II£') 
U' 

= --2iL[(niV21£)(£'1VJim)- (n!V3I£)(£'1V2Im)](£l(£ + Ho + Io V~)- 1 1£') 
U' 

(7.70b) 

which in general is nonzero as long as the operators V2 and V3 are linearly 
independent. Hence the term in V101 (E) that is quadratic in Vf! contains 
time-reversal-violating effects in the generic case. 

(v) Referring back to Eqs. (7.43a -c), we see that the time reversal violation 
in V101 ( E) leads to time-reversal-violating effects in the mass matrix ma1, 

at order V~, and in the decay matrix Yah at orders V1 V" and V~. Hence 

---------- ---~-

11 A T eigenstate with eigenvalue -I can be converted to one with eigenvalue +I by multiplication by i. 
since T(\n)i) = (T\n))(-i). Sec also Eqs. (4.98b). (4.99d). and (4.105a) in Sec. 4.6. 
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the time reversal violation induced by an underlying quaternionic 
dynamics is phenomenologically of "milliweak" form. 12 For the mass 
and decay matrices arising from Eqs. (7.43b,c) to be compatible with the 
CPT theorem, the product V2 V3 , as seen from Eq. (7.70b), must be CP 
odd. 13 

(vi) Finally, let us address the question of the magnitude of time-reversal
violating effects. Let us suppos~ that at the energy scale M Q, all terms in 
the quaternionic Hamiltonian Hare of similar magnitude, so that 

(7. 71) 

Then the Size of the time-reversal-violating terms relative to the time
reversal-conserving terms in the effective <C( I ,!0 ) potential Vtot of Eq. 
(7.39b) is 

VTodd (V')2 tot "' _,) ~ I . 
V Tcrcn V ' 

tot ·~ 

(7.72) 

in other words, there can be maximal time reversal violation. Equation 
(7. 72) should be considered as an upper estimate, since if there are cancel
lations or selection rules, the effective v1! could be significantly smaller than 
V1 • Let us now attempt a phenomenological comparison with accelerator 
experimental data. When the effective potential Vtot is developed in an 
operator product expansion in terms of fields of the standard model, one 
expects to obtain as the leading low-energy effective action a renormaliz
able action constructed from operators of dimension four. As shown by 
Kobayashi and Maskawa (1973), this effective action contains CP and 
time-reversal-violating effects parameterized by a single phase angle i5. 
Phenomenologically, the experimental results for CP violation in K decay 
indicate that, depending on how one defines the measure of CP violation, 
the observed violation is anywhere from maximal to significantly smaller 
than maximal in magnitude; a more precise statement is not possible 
without an understanding of quark masses and mixings that is not available 
at present (Jarlskog, 1987, 1989). Hence all one can currently say is that the 
postulate of a quaternionic quantum mechanics origin for time reversal 

12 The papers of Adlci' (1986b,c) state erroneously that a quaternionic dynamics leads to a superweak T 
violation with vanishing r.'; this error resulted from calculating only to order V~ and was corrected in 
Adler ( 1988). Por a review of the phenomenology of milliweak versus superweak CP violation, see 
Wolfenstcin ( !969. 1989). 
13 In the formulation of a quaternionic model for CP violation given in Adler ( 1986a,b), it was assumed 
that v0 = 0, V2 is CP odd. and Vu are CP even, which satisfies the condition for CPT invariance. With 
this assignment of the CP properties of Vt,2,J, and assuming that 

CP(lo. Jo. Ko) (CP)- 1 = (lo,Jo, Ko) 

the total quaternionic Hamiltonian if= flo+ Vhas uniform transformation properties under the action of 
the operator CPJo, 

- I - -
(CPJo) H(CPJo) ~ -ll: 

this was used as the starting point for the discussion of Adler (l986a.b). 
For a review of the CPT theorem, see Streater and Wightman (1964). 
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violation is not incompatible with observation. These remarks give no 
indication of the value of MQ, which could lie anywhere from a TeV or so 
(where deviations from the standard model can start to appear), to the 
Planck mass, where quantum gravity effects become important. 

In conclusion, we must stress again that the quaternionic quantum mechanics 
model for T and CP violation, which we have just sketched, is highly spec
ulative. We have jumped directly from a calculation in general quaternionic 
time-dependent perturbation theory to a phenomenological application, without 
the crucial steps of constructing a relativistic quaternionic dynamics, and 
beyond this, of exhibiting such a dynamics that has linearly independent v2 and 
V3 and that reduces asymptotically to the standard model. 14 Further develop
ment of a quaternionic model for time reversal violation will evidently reqmre 
filling in these essential missing details! 

14 In the remainder of this book, we will adhere to the convention employed in Sec. 4.6 and in this section 
of using T, C, and P to denote the time reversal, charge conjugation, and parity operations defined in 
complex quantum mechanics and in the standard model, and of using T, C, and P to denote their quater
nionic quantum mechanics counterparts. 

In Sees. 12.2 and !3.7, where we investigate the invariances of relativistic quaternionic wave equations 
and field theories, we will find no evidence for time reversal violation at a kinematic level, suggesting that a 
dynamical mechanism will be needed. See also the remarks concerning CP and T violation in Sec. 14.1. 

There is of course no contradiction between the potential theory calculations of Sees. 5.2 and 6.3, which 
f.nd T violations for scattering by external potentials and the relativistic analysis of Sees. 12.2 and 13.7, 
which find no violation when the potentials are dynamical fields with nontrivial transformations under T. 
Tile situation is closely analogous to the Kramers degeneracy of complex quantum mechanics, which is a 
consequence ofT invariance, and its breaking by external magnetic fields (see Wigner, 193!, Chap. 26, and 
also Sec. 4. 7), within a coupled electron-photon system that is T invariant when the electromagnetic fields 
are treated as dynamical entities. 
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Single-Channel Time-Dependent 
Formal Scattering Theoryt 

A key result established in Chapters 6 and 7 is that the S-matrix in quatcr
nionic quantum mechanics is <C( I, i), when the energy eigenstates are chosen 
in the standard ray representation of Sec. 4.2. To obtain this result we used 
the symplectic component formalism, exploiting the fact that by eliminating 
the {J components in terms of the 'Y. components, we could reformulate the 
quaternionic scattering problem as an effective complex quantum mechanics 
scattering problem. However, it is clear that the result for the S-matrix 
should not depend on the use of symplectic components, but instead should 
also be derivable by a manifestly quaternionic argument. Such an alternative 
derivation will in fact be needed to extend our discussion from the single 
channel to the multichannel case, where we will see in Chapter 9 that in 
channels with a negative sum of complex cluster energies, the /f-symplectic 
components (instead of the ':I.-symplectic components) can propagate to 
infinity. Hence in the multichannel case, we will not be able to convert the 
quaternionic scattering problem to a complex one by the simple device of elim
inating the fJ components; a more powerful technique for discussing the scat
tering problem is needed. Such a method is provided by the formalism of time
dependent formal scattering theory and Moller wave operators, which we 
develop for the case of single-channel quaternionic scattering theory (Adler, 
1990) in this chapter, and which we extend to the multichannel case in Chapter 
9. We also use the formal methods of this chapter as the basis for analyzing 
symmetries of the S-matrix. Our treatment here closely follows the analogous 
complex quantum mechanics discussion, as given in the excellent scattering 
theory texts of Goldberger and Watson (1964) and particularly of Newton 
( 1982). 

8.1 TIME DEVELOPMENT OF THE STATE VECTOR AND 
GREEN'S FUNCTIONSt 

As in Sec. 7.2, we start from the time-dependent Schrodinger equation 

g/f(t)) = -Hif(t)) (8 .1) 
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and assume Jhat fi can be split into a kinetic term Ho and a time-independent 
interaction V, 

- - -
H= H 0 + V (8.2) 

with V vanishing outside a bounded domain. To follow the time development of 
the wave function, it is convenient to introduce retarded and advanced Green's 
functions G±(t) with time evolution governed by the free Hamiltonian H0 , and 
analogous Gr~cn's functions 9±(t) with time evolution governed by the full 
Hamiltonian H. These arc defined by the equations of motion 

(%t + Ho) G:±(t) = l6(t) 

( () -) ot + H 9±(t) = l6(t) 

together with the boundary conditions 

c+(r) = 9+(r) = o, 

G-(t) = 9-(t) = 0, 

t < 0 

t > 0 

(8.3a) 

(8.3b) 

Equations (8.3a,b) can be immediately integrated to give the explicit forms 

t > 0 

0, t < 0 

t > 0 

t < 0 
(8.4) 

t > 0 

t < 0 

{ 

0, 
c-(t) = -!lot 

-e , 

{ 

-llt 
9-+(t) = e 

0, 

t > 0 

t < 0 
9-(t) = { -~t 

-e ' 

which imply the t --> 0 limiting behavior 

lim G+(t) = lim 9+(t) = lim -G-(t) = lim -9-(t) = 1 (8.5) 
r __, o+ r __, o+ r __, o- r __, o-

Also, from the fact that fi and Ho are anti-Hermitian, we obtain from Eq. (8.4) 
the Hermiticity properties 

(8.6) 

The Green's functions can now be used to formally integrate the Schr6-
dinger equation for the time devclopmc:nt of the wave function. Letting !fo_(t)) 
denote a free-particle wave function governed by the kinetic Hamiltonian Ho, 
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ffr I fo(t)) = - flol.fo(t)) 

we have for propagation forward in time 

lfo(t)) = e-iio(t-t')lfo(t 1
)) 

= c+(r- t 1)/fo(t 1
)), 

while the full wave function governed by fi obeys 

I f(t)) = e-if(t-t')/f(t 1 )) 

= g+(t- t 1)lf(t 1
)), 

t > t 1 

t > t 1 

Similarly, for propagation backward in time we have 

1./o ( t)) = e-Ho(t-t') I fo( 11
)) 

= -G-(t- t 1)lfo(t 1
)), t < t 1 

while the full wave function obeys 

lf(t)) = e-if(t-t')lf(t 1
)) 

= -Q- (t- t 1)1 f(t 1
)). t < t 1 

(8.7) 

(8.8a) 

(8 .8b) 

(8.8c) 

(S.Sd) 

We can now proceed to introduce special free-particle states called the in and 
out scattering states. Consider the free-particle state 1/0(t)) given by 

1./o(r)) = c+(r- t 1)/f(t 1
)), t > t 1 (8.9a) 

This equation defines a state that, by Eq. (8.3a), obeys the free-particle Schr6-
dinger equation of Eq. (8.7), and that as t----> t

1 agrees with the full state lf(t 1
)). 

Taking the limit t
1

----> -oo in Eq. (8.9a), we make the definition 

l.fin(t)) = lim c+(t- t1 )lf(t 1
)) 

t 1 
----> -oo 

(8.9b) 

which introduces the free-particle state /.fin(t)), which in the infinite past is equal 
to the state vector of the full system. Similarly, consider next the free-particle 
state I fo ( t)) given by 

lfo(t)) = -G-(t- t1)lf(t 1
)), t < t 1 (8.10a) 

which by Eq. (8.3a) defines a state obeying the free-particle Schrodinger equa
tion, which as t----> t

1 agrees with the full state lf(t 1
)). Taking the limit t

1
----> +oo 

in Eq. (8.10a), we make the definition 

I fout(t)) = 
1 

lim -G-(t- t 1)/f(t 1
)) 

t ----> +oo 
(8.10b) 

which introduces the free-particle state I f~u 1 (t)), which in the infinite future is 
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equal to the state vector of the full system. Using the fact that 1/(t)) is propa
gated in time by Hand agrees with lfin(t)) at t = -::x:J we can rewrite Eq. (8.9b) 
in the alternative form 

I f ( t)) = 
1 

lim Q + ( t - t 1 ) I /;11 ( t 1)) 

t --> -oc 
(S.lla) 

and similarly, since /f(t)) agrees with /.l>ur(t)) at t = +oc, we can rewrite Eq. 
(8.10b) in the alternative form 

lf(t)) = 
1 

lim -Q-(t- t')lf;nrr(t')) 
t --> +::x:J 

(8.llb) 

To conclude this section we derive a set of integral equations, constructed 
from the various Green's functions, relating the full state 1/(t)) to its associated 
in and out states l/;11 (t)) and l/;nr1(t)). To begin with, we consider 

() ({) ) {) ;::,- [G+(t- t')l/(t 1
))] = -r G-t-(t- t 1

) I f(t')) + c+(t- t')-;)--,1/(t')) 
ut' 8t 1 · ct 

{) () 
=-Dr c+(r- r')l f(t')) + c+(r- r') at' lf(t')) (8.12a) 

Substituting Eqs. (8.1) and (8.3a) into the right-hand side of Eq. (8.12a) gives 

~~ [G+(t- t')lf(t'))] = -[-HoG-"-(t- t') + 6(t- t')]/f(t')) 

+ G" (t- t')( -H) I f(t')) 

= - [J ( t - t I) I f ( t)) - G + (t - t I) VI f ( t I)) (8.12b) 

where in the final step we have used Eq. (8.2) together with the fact, apparent 
from Eq. (8.4), that H0 and G+ commute. Integrating Eq. (8.12b) with respi~ct 
tot' from -::x:J to ::x:J, we obtain 

G_,_(t- t')lf(t')) - G' (t- t')lf(t')) 

=-I f(t)) --I: dt'G-"-(t- t 1
) VI f(t 1

)) (8.12c) 

and finally, using the definition of the in state of Eq. (8.9b) and the fact that 
c+(t- t') vanishes for t 1 > t, we get 

1/(t)) = lfin(t)) -11

x dt'G+(t- t')VIf(t')) 

= lf;n(t)) -1~ dt'e-ilo(r-r'Jvlf(t')) 

In precisely analogous fashion, starting from 

f) -
Dr' [G (t- r')lf(r'))] 

( 8.12d) 

(8.13a) 
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and substituting the time development equations for G- and If), then inte
grating with respect to t 1 and using Eq. (8.10b) and the causal properties ofG-, 
we get 

lf(t)) = lf;mr(t))- !DO dt'G-(t- t'JVIf(t')) 

= lf;JUr(t)) + /x dt'e-Ho(t-t') Vlf(t')) 

Similarly, to turn Eq. (S.lla) into an integral equation we start from 

(8.13b) 

(8.14a) 

and use the time development equations for g+ and I fj 11 ), followed by integra
tion with respect to t 1 and use of the causal properties of g+, to give 

lf(t)) = lfin(t))- Itcxc dt'Q+(t- t 1
) V\fin(t 1

)) 

= lfin(t))- I~ dt'e-H(t-t')f/1J;·11 (t 1
)) 

Finally, proceeding in similar fashion from 

and Eq. (S.llb), we get 

lf(t)) =I fr>ur(t)) -lCJO dt'Q ·(t- t') Vl.frua(t')) 

I/. ( )) ;·x d I -ll(t--1
1

) -~ /' ( ')) = . out t + 
1 

t e V . out t 

(8.14b) 

(8.15a) 

(8.15b) 

completing the set of integral equations that form the basis for the subsequent 
discussion. 

8.2 THE MOLLER WAVE OPERATORS AND THEIR 
PROPERTIES1 

We proceed next to show that Eqs. (8.14b) and (8.15b) can be rewritten in the 
form 

I f ( t l) = n ( + l I tin ( t l) 

lf(t)) = nHif;JUr(t)) 

(8.16a) 

(8.16b) 

with n("'l time-independent operators called the Moller wave operators. To 
derive Eq. (8.16a), we use Eq. (8.8c) to express lf; 11 (t')) in terms oflf;,,(t)), 
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lfin(t 1
)) = e-lio(t'-t)lfin(t)) (8.17) 

which when substituted into Eq. (8 .14b) gives 

(8.18) 

This has precisely the desired form, and since the states I (;11 ( t)) form a complete 
set, we conclude (with the change of variable T = t 1

- t) that 

(8.19) 

Similarly, substituting 

I/. ( ')) -ii0(t'-t)l r ( )) . out t = e .I out t (8.20) 

into Eq. (8.15b), we get Eq. (8.16b), with 

( 8.21) 

The time independence of the operators O(i) is manifest from Eqs. (8.19) and 
(8.21). An alternative useful form for the Moller operators is obtained by noting 
that 

(8.2.2) 

Substituting Eq. (8.22) into Eq. (8.19) gives the limiting expression 

(8.23a) 

and substituting Eq. (8.22) into Eq. (8.21), we get the corresponding formula 

nH = I+ {x dr.!!___ (eilre-iior) 
Jo dr 

= lim (eiire-iior) 
T ----> +x (8.23b) 

Let us now examine the implications of requiring the consistency of Eqs. 
(8.16a,b) with the time evolution equations for lf(t)) and lf;n;out(t)). From Eqs. 
(8.1) and (8.16a,b) we have 

fln_(+/-ll r. ( )) - fll /'( )) --a I 1· )) -- D o(+/-JI 1·· ( )) .1111/0lil t - . t - ar . (t - ar - . 111/out t (8.24) 
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which since n(+/-J are time independent becomes, using Eq. (8.7), 

ifo.(+/-Jir· ( )) - -o.("/ J!J_I/·- ( )) - n(+/-J- 11·- ( )) J mjour t - at . liz/our t - lfo rn/our t (8.25) 

Because the states I finfour(t)) form a complete set, Eq. (8.25) implies the 
important operator relation 

(8.26) 

which states that o.(±) act as intertwining operators with respect to lJ and fl0 . 

So far we have used only two of the four integral equations relating I/( t)) to 
I J;nfour ( t)) that were derived in the preceding section; let us now usc the other 
two. Su bsti tu ting 

1/(t')) = e-lf(r'-r)lf(t)) (8.27) 

into Eq s. (8.12d) and ( 8. 13 b), respectively, transposing terms to place I fn; our (t)) 
on the left and setting T = t 1

- t, we get 

lf;n(t)) = ll +I~ drei1o've-ii']lf(t)) 

lf;nu(t)) = ll- J;oc dreHorve-iir] lf(t)) 

(8.28a) 

(8.28b) 

But comparing with Eqs. (8.19) and (8.21), and remembering that H0 . if. and V 
are all anti-self-adjoint, Eqs. (8.28a,b) are just 

lfin(t)) = 0_(1-Hif(t)) 

I lna(t)) = 0_(-Hif(t)) 

(8.29a) 

(8.29b) 

giving the inversion of Eqs. (8.16a,b). Now substituting Eqs. (8.16a,b) back into 
Eqs. (8.29a,b) we get 

(8.30) 

which since the in and out states are complete in the quatcrnionic Hilbert space 
implies 

(8.31) 

Equation (8.31) means that n ( ±) are isometric; that is, they do not change the 
norm of a state vector, 

(8.32) 
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We cannot, however, conclude that r{ll are unitary, because although 
substituting Eq. (8.29a,b) into Eq. (8.16a,b) gives 

lf(t)) = or+lor-'-!1 lf(t)) = nHnHtlf(t)) (8.33) 

the states I f(t)) do not form a complete set when bound states exist. 1 In fact, 
o(+Jo(L)t and 0(-)0(-) 1 can be specifically related to the projection on the 
bound states of H, as follows. Let I fo (E. a)) be a complete set of cigcnstatcs of 
ii0 in the eigenclass E, with a a label for all necessary quantum numbers other 
than the energy. We do not assume the standard ray representative choice or 
Sec. 4.2, and so we have in general 

Hollo(E,a)) = lfo(E,a))et:aE (8.34) 

with eE.a a unit imaginary quaternion that depends onE and a. Since the free
particle states are complete, we have 

I= L roc dEifo(E,a))(fo(Ea)l 
a Jo 

Multiplying Eq. (8.35) on the left by n(t) gives 

o(±) = L rx d£n(±)lfo(E,a))(fo(E,a)i 
a .fo 

But combining Eq. (8.26) and Eq. (8.34), we have 

floY-lifo(E,a)) = n(±)flolfo(E,a)) = n(±)lfo(E,a)) C£.aE 

and hence the states lf(±)(Ea)) defined by 

lf(±l(£,a)) = or±JI/o(E,a)) 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

are eigenstates of the full Hamiltonian f{ with eigenvalue C£.aE, and Eq. (8.36) 
takes the form 

or±J = L {C>O dEif(±l(E,a))(fo(E.a)l 
a .fo 

(8.39) 

Note that the completeness relation of Eq. (8.35) requires the states (/0(£, a)l to 
be normalized as 

(fo(E.a)l fo(E', a'))= 6aa'6(E- E') (8.40) 

and the isometric property ofn(±) then implies that the states If(±)(£. a)) have 

1 This is immediately obvious from the fact that the state norm is preserved under time evolution. Since 
I f;nonl(t)) arc nonnormalizable continuum scattering states, the state I f(t)), which approaches l.fm.nu1 (t)) 
at early or late times, is nonnormalizable. Thus because bound states w·c normalizable, the set of states 
{If (t))} cannot contain the bound states 
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the same normalization, 

(f("l(E, a)l /(±)(£',a'))= 6
00

1{5(£- E') (8.41) 

We can now evaluate f!.(±Jn(:±-)t by substituting I in the form of Eq. (8.35) 
and using Eq. (8.38) and its adjoint, 

n(±Jn(±)t = n(±)Jf!.(±)t = L rx dED..("-)1./o(Ea))( /o(E,a)ID..(-'=lt 
" Jo 

= _Lj·x dEif("l(E,a))(f(±)(E,a)l (8.42) 
{/ 0 

Now the right-hand side of Eq. (8.42) is a projection on all continuum eigen
states of fl, but if H has true bound states fh(Eh, ah)) (as opposed to bound 
state--associated scattering resonances, which are included in our complete set of 
continuum eigenstates), completeness in terms of fl eigenstates reads 

I = L L I fi,(Eh, ah))(fi,(Eh, ah)l + L lex dEl f(cl)(E, a))(f(-±)(E, a)l 
"h Eh " O 

(8.43a) 

Defining !he so-called unitarity deficiency A as the projection on the bour d 
states of H, 

A = At = L L I fh ( £,, ah)) (fi, ( Eh, ah) I (8.43b) 
"h Eh 

we get from Eqs. (8.42) and (8.43a,b) 

( 8.44) 

Since the time-dependent scattering state If( t)) in Eq. (8.33) can be written as a 
superposition of If(+)(£, a)) or lfH(£,a)), and since by definition 

(8.45) 

we have 

Alf(t)) = 0 (8.46) 

and so Eq. (8.44) is consistent with Eq. (8.33). Finally, acting with A on Eq. 
(8.39) for n(±) gives, by use of Eq. (8.45), 

(8.47a) 

or equivalently, 

f!.(Jc)IA = 0 (8.4 7b) 
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8.3 THE S-MATRIX1 

We now have the necessary formal apparatus to analyze the time-dependent 
scattering problem. Let 

1/;"(t)) = lfo(E, a, t)) ( 8.48) 

be an incoming free-particle state, formed as a wave packet or superposition of 
energy eigensta tes I fo ( E, a)) over some narrow range of energies E centered on 
E. 2 We wish to calculate the probability amplitude for the initial state to evolve 
to some other specified free-particle state I fo ( E'. h. t)) at large times. According 
to the discussion of the preceding section., the interacting state that evolves at 
finite time t from the incident state of Eq. (8.48) is 

lf(-+l(E.a,t)) =ll(+llfo(E.a.t)) (8.49) 

and we wish to calculate the t---> oc limit of this state. To do this, we exploit the 
facts that the interacting state 

lfH(E'.h, t)) = nHifo(E'.b, t)) (8 .50a) 

has the known limit I fo ( E', h. t)) at large times, 

I jH(£', b, t)) r~bo lfo(E', b, t)) (8.50b) 

and that (for appropriately chosen wave packets) these states obey the com
pleteness relation of Eqs. (8.43a,b), 

I =A+ L rx dE'IfH(E',b,t))(fH(E',h,t)l 
b lo 

(8.50c) 

Multiplying Eq. (8.49) from the left by Eq. (8.50c), and using Eq. (8.50a), we get 

I r(+l(£, a, t)) = AlJ(+llfO(E, a, t)) 

+ L roc dE'II(-)(El. h, t))(fo(E',b. t)ln(-ltl](+)IJO(E,a, t)) 
h Jo 

(8.51) 

According to Eq. (8.4 7a), the first term on the right-hand side of Eq. (8 .51) is 
zero, and by Eq. (8.8a), the matrix element in the second term can be rewritten 
as 

( lo(E', h, t)lnHtn(-c) lfo(E. a, t)) = Uo(E', b, O)[elforn(-ltDHe-if01 l fo(E. a. 0)) 

(8.52) 

2 We assume that "i:.a is slowly varying around the central value eE.a and that the superposition co
efficients are in \he complex C(\.cLa) subalgebra. 
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Let us now define the S-matrix bl 

(8.53) 

By using Eq. (8.26) and its adjoint, we sec that S obeys 

(8.54a) 

that is, 

[Ho,S]=O (8.54b) 

which implies that 

(8.54c) 

Substituting Eqs. (8.52), (8.53), and (8.54c) into Eq. (8.51), we get 

If(+)(£, a, t)) = L rx dE' I fH(E', b, t))(JO(E', h, O)ISI fo(E, a, 0)) (8.55a) 
h .fo 

and finally taking the largc-t limit and using Eq. (8.50b), we arrive at 

lf(+l(£, a, t)) ~~ L j'CX) dE'Ifo(E', h. t))(fo(E', h, O)!Sifo(E, a, 0)) (8.55b) 
h 0 

which shows that the free state lfo(E,a,t)), which was incident in the distant 
past evolves, in the far futur~, into a superposition of free states, weighted by 
free-state matrix elements of the operator S. Equation (8.55b) answers the 
fundamental question of what happens in a scattering process. 

By using Eq. (8.53) and the properties of n(±) given in Eqs. (8.31), (8.44) and 
(8.47a,b), the unitarity of the S-matrix is easily demonstrated. We have 

(8.56a) 

and 

(8. 56b) 

For completeness, we note that the Moller wave operators D(±) and the 
S-matrix can be formally related to the interaction picture time evolution 
operator given by 4 

(8.57a) 

'We follow the notation of Newton (1982). Goldberger and Watson (1964) denote this operator by S1, 

where t!1c subscript I ref'ers to the interaction picture. . , 
4 From Eqs. (l.4la,b). we have lf(t)) = U(t. t 1)if'(t 1

)), with U(t, r').cc ~-1!(!-t,) Therefore, by Eq. 
(7.50<J.c), the inten1ction picture transcription of U(t.t') is U1(t-t 1) = e' 1111 e .. 1111 .. 1 le· II,,,·, which by Eq. 
(7.50bl obey< 1 ti(r)) c· U1(r.r'JI t 1(t

1
)) 
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which obeys the interaction picture differential equations and boundary condi
tion 

- -
VI(t) = e!lor ]/e·Hor 

VI( L t) = I 

and satisfies the composition law 

u
1
(t, t')UI(t', t") = eifore-H(r-r')e-Fi0 r' /10 r'e-il(r'-r")e-JI0 r" 

= eiiote-H(r-r")e-llor" = UI(t, t") 

Comparing this with Eqs. (8.23a,b) and (8.53), we evidently have 

nH = I lim [UI(O, t')] = UI(O, -x) 
t --> -00 

n(+)i = lim [UI(t.O)] UI(-oo,O) 
t-->-x 

nH = lim [UI(O, t
1
)] = UI(O, +x) 

t' --> +oo 

nHt = lim [UI(t,O)] = UI(+x,O) 
t --> +oo 

(8.57b) 

(8.57c) 

(8.58a) 

from which there follows (since the t--> -I<XJ, t'--> -oo limits are independent) 

S= lim lim [lh(t,O)U1(0,t 1
)] 

t __, +x t' __, -oo 

lim lim [U1(t,t 1
)] = U1(x,-oo) 

t __, +x t' __, -oo 
(8.58b) 

Formally integrating Eq. (8.57b) for U1(t, t1
) gives, as in Eq. (7.5lb), 

U (t t ') T - {',duVI(u) 
I ' = re "' (8.59a) 

with Tt the time-ordering operator that orders later times to the left. Hence the 
S-matrix has the representation 

S _ T - Jx duVI(u) 
- fC -X (8.59b) 

which can be used to develop S in a series expansion in powers of v1. The 
convergence of Eqs. (8.59a,b) is assured by adiabatically switching V1(u) to zero 
at u = ±oo. With this switching, 

UI(-x,-oo) == Ur(oo,x) =I (8.60a) 
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which together with Eqs. (8.58a) and the composition law of Eq. (8.57c) implies 
the isometric property of n(±): 

n(+ltn(+) = lim lim [U1(t, O)UI(O, t')] 
{ ----+ - :::x:J { I ----+ - 0C 

lim lim [U1(t, t
1
)] = U1( -:::x:J, -:::x:J) = I 

t----+ -:::x:J t'----+ -:::x:J 

nHtn(-)= lim lim [U1(t,O)U1(0,t 1
)] 

t ---> +:::x:J t' ----+ +:::x:J 

lim lim [ U1(t, t')] = U1(::x:J, :::x:J) = I 
t ----+ +:::x:J t' ----+ +:::x:J 

( 8.60b) 

Up to this point, everything that we have done is basically a transcription of 
the standard complex quantum mechanics formal scattering theory as given in 
Newton (1982), with the replacements iH----+ fl, iHo----+ flo (where Hand Hoare 
the complex self-adjoint full and kinetic Hamiltonians), and with redefinition of 
the Green's functions to remove a superfluous explicit factor of i. We now 
proceed to derive the one inherently quaternionic result of this chapter (Adler, 
1990): the fact that with energy eigenstates chosen in the standard ray repre
sentation of Sec. 4.2, the S-matrix element between energy eigenstates is <C( I, i). 
This result follows immediately by an application of the argument of Sec. 3.5, 
which showed that symmetry operators in quaternionic quantum mechanics 
lead to a <C( I, i) group representation problem. Let us choose the energy eigen
kets ifo(£, a)) introduced in Eq. (8.34) to obey the ray representation conven
tion of Sec. 4.2, so that eE.a = i and Eq. (8.34) becomes 

Holfo(E,a)) = lfo(Ea))iE 

Defining the S-matrix element Sha(E', E) by 

Sha(E',E) = Uo(E',b)ISifo(E,a)) 

we learn from Eq. (8.54b) that 

iE'Sha(E',E) = (io(E',h)liioSifo(E,a)) = Uo(E',h)iSHolfo(E,a)) 

= Sba(E', E)iE 

Taking the absolute value of both sides of Eq. (8.63a), we get 

(E'- E)iSha(E', E) I= 0 

(8.61) 

(8.62) 

(8.63a) 

(8.63b) 

and hence S/Ja(E'. E) vanishes if E 1 f E; in other words, the S-matrix produces 
only energy-conserving transitions. Setting E' = E in Eq. (8.63a) and dividing 
through by E f 0, we get 

EfO (8.63c) 

which implies that for E f 0 the matrix element S1w(E, E) = 
Uo(E,b)ISifo(E,a)) is <C(l,i)! This gives the promised manifestly quaternionic 
derivation of the result previously obtained from the symplectic component 
formalism in Chapters 6 and 7. 
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Using the formal apparatus of Sees. 8.2 and 8.3, let us now discuss the connec
tion between symmetries of the Hamiltonian and symmetries of the S-matrix. 
Let us suppose that there is a unitary operator U that commutes with both the 
fu11 Hamiltonian if and the kinetic Hamiltonian if0 , so that 

uifu- 1 =if 

which together imply that 

1 

- -! -
UlloU = Ho 

uvu-l = v 

Then from Eq. (8.57b) we find 

and hence from Eq. (8.59b) we have 

(8.64a) 

(8.64b) 

(8.65a) 

(8.65b) 

Therefore the symmetry operator U is a symmetry of the S-matrix. This result 
can alternatively be derived from the Moller wave operators. Applying Eqs. 
(8.64a,b) to Eqs. (8.19) and (8.21), we learn that 

un(±J u- 1 == n(±J (8.66a) 

which since U is unitary implies that 

un(±Jt u- 1 == n(±Jt (8.66b) 

Hence from Eq. (8.53), we again learn that 

usu- 1 = unHtn(+J u- 1 = s (8.66c) 

Not all symmetries of the S-matrix are associated with unitary operators U 
that commute with if and if0 . In Sec. 4.6 we saw that time reversal invariance in 
quaternionic quantum mechanics requires the existence of a unitary operator 
Ur that anticommutes with if: 

UrifUJ- 1 = -H (8.67a) 

Equation (8.67a) is not enough, in itself, to guarantee that Ur generates a 
symmetry of the S-matrix. However, let us suppose that Ur also anticommutes 
with if0 , 

- -! -
UrH0 U r = -H0 (8.67b) 
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which further implies that 

- I -
UrVU7 =- V (8.67c) 

We will now demonstrate that Eqs. (8.67a-c) imply that Ur generates a 
symmetry of the S-matrix. 

As in our discussion of the symmetry operator U, the argument for U T can be 
carried out in two ways. Working first in the interaction picture, we have 

(8.68a) 

Equation (8.68a), when combined with Eq. (8.59b), gives 

U Su-·l- T - j'X duL) v,(u)UJ 1 

- T J''X. duV,(-u) 
T T - pe . ·'" - re· - x (8.68b) 

where Tr in the final expression continues to order the larger value of u to the 
left, and therefore orders the larger value of -u to the right. Making the change 
of variable -u = w we thus get 

(8.68c) 

The second derivation proceeds from the Moller wave operators. Acting with 
Ur ... UY, 1 on Eqs. (8.19) and (8.21), and using Eqs. (8.67a-c), we get 

J
o _ ~·x _ 

Urn(+Ju;;l =I+ dre-i!tvelloT =I+ drellrve-Hot = n(-) 
-DC , 0 

UrnHuTI =I- f'oc dre-iirv/Ior =I- ;·O dr/irve--ifor = n(+) 
.fo -x 

(8.69a) 

Hence, using the expression for Sin terms of n(±) given in Eq. (8.53), we again 
get 

(8.69b) 

Equations (8.68c) and (8.69b) give the result for the time reversal transforma
tion of the S-matrix that was used in Sec. 4.6. 
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Multipartic:le and 
Multichannel Methods 

In the preceding chapters we have given a detailed discussion of quaternionic 
scattering theory for the case of a single particle incident on a fixed external 
scattering potential. In complex quantum mechanics the external potential 
problem is of course only an idealized model, obtained from the physically 
more realistic case of multiparticle scattering when all particles except the 
incoming projectile are very heavy, or, in the case of the space-translation
invariant two-body problem, as the exact formulation of the internal motion 
after separation of the center of mass motion. We expect a similar situation to 
hold in quaternionic quantum mechanics, and hence in this chapter we gener
alize our earlier discussion to the case of quaternionic multiparticle and 
multichannel scattering. The first step is to determine the structure of the 
multiparticlc Hamiltonian if that satisfies the requirements of translational, 
rotational, and Galilean invariance and to simplify the Schrodinger equation 
by making a standard choice of ray representatives. We proceed next to discuss 
the symmetrization problem associated with identical particles and to show 
that it leads to the same complex representations of the permutation group as 
arc familiar in the complex quantum theory case. Another result paralleling the 
complex case is that after separation of the center of mass motion, the trans .. 
lation-invariant quaternionic two-body problem reduces exactly to the external 
potential model discussed in the preceding chapters. 

True multi particle effects first appear in the space-translation-invariant three
and higher-body problems, or equivalently, in the two- and higher-body 
problems with fixed external potentials, in which context we discuss the 
nonexistence of a quaternion multilinear tensor product and the related failure 
of clustering in quaternionic quantum mechanics. In a leading-order perturba
tion theory calculation, we find that although the full density matrix for a 
quaternionic multiparticle system does not cluster, the subsystem density matrix 
for a finite subsystem of an infinitely large system does cluster. We then proceed 
to classify various possible asymptotic sea ttcring state structures or arrangement 
channels that can appear in quaternionic scattering theory. In the final section 
we develop the quaternionic quantum mechanics analog of multichannel time
dependent formal scattering theory, and we use it to show that with suitable 
standardization of ray representative choices, the multichannel S-matrix is 
complex <C( I, i). We also show that when all <C( I, i) cluster energies are positive, 
there are additive energy and momentum conservation laws of the usual form. 
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9.1 RESTRICTIONS ON H FROM TRANSLATIONAL, 
ROTATIONAL, AND GALILEAN INVARIANCE 

To commence our discussion of multiparticle scattering, let us analyze, follow
ing the method already used in Sec. 4.1. the restrictions imposed on the multi
particle Hamiltonian if by translational, rotational, and Galilean invariance. 
Taking if to be the Hamiltonian for an N-particle system, we now have N 
Heisenberg picture 1 coordinate operators 

r =I, ... , N ( 9 .I) 

which obey the Heisenberg equations of motion 

(9.2) 

We again assume the existence of a unitary transformation G;: generating the 
boost to a coordinate system moving with velocity v relative to the original one 
and obeying the group multiplication law of Galilean transformations 

( 9.3) 

The transformation Gil must leave all the coordinates invariant: 

(9.4) 

and must simultaneously increment the velocities by v: 

(9.5) 

Just as in Sec. 4.1, Eq. (9.4) implies that Gil has no dependence on any of the 
operators Vx(•i, and hence is diagonal in the coordinate representation; from the 
Abelian group multiplication law of Eq. (9.3) and the fact that Gil is quaternion 
unitary, we again infer that G1x has the structure 

(9.6) 

with e( { x(s)}, t) a unit imaginary quatcrnion and with F( { x(s)}, t) real. In 
analyzing the implications of the velocity transformation law of Eq. (9.5), we 
will assume that in the multiparticle case, the structure of Gil continues to be 
independent of the interaction potentials, and that in the absence of interac
tions, the velocity operators have the same structure as was found in Sec. 4.1 in 
the single-particle case: 

(when interactions vanish), 

~ ~ I ( ~ D = . - -e e 
x(r) V "(r) 2 Vxu) ) (9.7) 

1 As discussed in Sec. 4.!. footnote 2, the left-acting quaternion algebra also gets transformed to the 
Heisenberg picture. Hence in the following equations. e. i. j. and k are all Heisenberg picture operators. 
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withe in Eq. (9.7) a shortha~nd fore( {x(s) }, t). Substituting Eqs. (9.6) and (9.7) 
into Eq. (9.5), we find that F must obey 

-ev·F.--eD =v [ 
~ I ~ ] 

X(rl m,. , 

for each r = I, ... , N, which using Eqs. ( 4.l2a) and (9. 7) reduces to 

and by rotational and translational invariance has the unique solution 

N 

F = L mr 5.-'(r) 
r=l 

(9.8a) 

(9 .Sb) 

(9.8c) 

Hence the Galilean transformation in the multiparticle case is the product of 
single-particle Galilean transformations, apart from the replacement of e(x, t) 
by a function of all the coordinates: 

Gv = e-e({x(s)}.t)v·L:;: 1 m,x(r) =IT e-e({x(,1}.t)m,,1.j'(r) (9.9) 
r=l 

With this G,;, Eq. (9.5) is still~satisfied when .X(r) differs from the expression in 
Eq. (9.7) by any function A(r)({x(s)},t) lying in the quaternionic subspace 
<C( I, e( {x( 1)}, t)), and so the most general form for the velocity operators is 

_i(r) = ~r [ -e( {x(.1)}, t)Dx(r) + A(r)( {x(s)}, t)] 
A(r)({x(s)},t) E <C(l,e({x(s)},t)) (9 .I 0) 

The final step in the analysis is again to use Eq. (9.2), together with the 
general form_of the velocity operators given in_Eq. (9.10), to infer the general 
structure of H. Forming the trial Hamiltonian Ho, 

(9.11) 

and using 

(9.12) 

we get 

(9.13) 

Comparing Eq. (9.13) with Eq. (9.2), we thus have 
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which implies that 

if- Ho = V( {x(s)}, t) = Vo( {x(s)}, t) + iVl ( {x(s)}, t) + )V2( {x(s)}, t) 

+ kV3( {x(s)}, t) 

(9.14) 

(9.15) 

with Vo, .. ,3( {x(s)}, t) a!'bitrary real functions of {x(s)}, t. Finally, imposing 
the requirement that H be anti-self-adjoint gives the conditions 

v= -vi 
' 

~ - ~t 
A(r) -A (r) (9.16) 

with t as before indicating quaternion conjugation together with operator and 
spin-internal index transposition. When the wave function has only a single 
component (i.e., when there is no spin-internal index structure), the condition of 
Eq. (9.16) implies that Vo = 0. This will be assumed throughout the remainder 
of this chapter, except where explicitly noted to the contrary. 

To summarize our results in the multiparticle case, the requirements that H 
be anti-self-adjoint and that the underlying physics be rotation, translation, and 
Galilean invariant, and that in the absence of interactions the single-particle 
velocity-momentum relation be preserved, impose the structure for the 
N-particle Hamil toni an 

A(r)( {x(s)}, t) E <C( I, e( {x(s)}, t)) 
- _ T ~ ~ T 
V( {x(s)}, t) =-V( {x(s)}, t) , A(r)( {x(s)}, t) = A(r)( {x(s)}, t) (9.17) 

We can now proceed, as in Sec. 4.2, to simplify the Schrodinger equation by 
making appropriate choices of ray representatives for the states ( { X(s)} I and 
I .f( t)) from which we form the multiparticle wave function 

(9.18) 

Setting 

({x(s)}l----> w( {x(s)}, t)({x(s)}l 

f( {x(s)}, t)----> w( {x(s)}, t) f( {x(s)}, t), lwl = 1 ( 9 .19) 

we can use the freedom provided by w to rotate e( {x(s)}, tl into t_!le ccmsta1_1t 
unit imaginary quaternion i, with changes in the potentials A(r) ---+ A(r)• V---+ V' 
defined by the multiparticle generalization of Eq. (4.28b). Dropping primes, we 
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thus get for the canonical form of the time-dependent multiparticle Schrodinger 
equation 

(9.20) 

together with the anti-Hermiticity conditiOns on the potentials given in Eqs. 
(9.16) and (9.17). Similarly, setting 

1/(t))--> lf(t))wf, (9.2la) 

we can use the freedom provided by w1 to reduce the time-independent Schro
dinger equation to the canonical form 

£>0 (9.2lb) 

with the corresponding form for f( {x(s)}, t) given by 

(9.2lc) 

Up to this point, we have imposed space translation invariance only on the 
kinetic part of H, in the absence of interactions. When the vector potentials 
A(r) vanish and the scalar potential V is a function only of coordinate differ
ences, 

A(r)( {x(s)}, t) = 0 

V( {x(s)}, t) = V( {x(s)- X(s')}, t) (9.22) 

then the full iJ of Eq. (9.20) is space translation invariant. The restrictions of 
Eq. (9.22) will be assumed at a number of points in this chapter. 

9-2 IDENTICAL PARTICLES; SEPARATION OF CENTER OF 
MASS MOTION 

We turn next to an analysis of structural features of multiparticle states, begin
ning with the implications of the presence of identical particles. Suppose that the 
multiparticle system contains M identical particles, so that the coordinate 
representation Hamiltonian H(x(l), ... ,)((M),X(M+l)' ... ,x(/'1)) is a symmetrical 
function of the identical particle coordinates S'( 1), ... , x(M). Letting 

( 9.23) 

be the permutation operator that interchanges the coordinates X(f) and -~(m)• we 
have for an arbitrary wave function f, 
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PtmH( ... .X( f) ... x(m) .. . ) f( ... ~i(fl ... .X(m) ... , t) 

= l!( .... i(m) ... x(t) .. . ) f( ... x(m) ... . i(fl .... t) 

= H( .. . i'(f) .. . X(m) .. . )/( .... X(m) .. . X(f) ... , t) 

= H( ... .Xrtl ... i'rml .. . )Ptm f( ... .Xrfl ... x(m) ... , t) (9 .24) 

where in the third line we have used the sy~metry of iJ in x(f) and x(m). So the 
permutation operator P£117 commutes with H, 

[Pt 111 , H] = 0 (9.25) 

We can now invoke the results of our analysis of the representation of symme
tries of if given Ln Sec. 3.5, where we showed that any symmetry operator 
commuting with H defines, on a basis of energy eigenstates with E > 0 obeying 
the standard ray representation convention ofEq. (3.69) and Sec. 4.2, a complex 
<C( I, i) group representation problem. In the present context, this means that 
when acting on the 11-fold degenerate set of nonzero energy eigenstates 
/hp), p = I, ... , 11, in the standard convention, the permutation operator Pp111 gives 

n 

Prm/hp) = L /h 4 )Dqp(£m) (9 .26) 
q=l 

with Dqp( £m) a complex <C( I, i) representation of the permutation group. Hence 
for E > 0 the problem of symmetrization of identical particle wave functions 
has the same structure in quaternionic quantum mechanics as it docs in the 
standard complex quantum theory case, and in particular the concepts of 
bosons (particles with totally symmetric wave functions) and fermions (particles 
with totally antisymmetric wave functions) carry over unchanged to quatcrni-

. h . 2 omc quantum mec ames. 
Another place where the quaternionic analysis closely parallels that familiar 

from complex quantum mechanics is in the separation of the center of mass 
motion. For this discussion we assume that the potentials satisfy the restrictions 
of Eq. (9.22), so that the multiparticlc Hamiltonian iJ of Eq. (9.20) is space 
translation invariant and commutes with the anti-self-adjoint translation 
generator P1 of Eq. (3.!9b). According to Eqs. (3.86 a,b), we can then separate 
the center of mass motion by writing 

(9.27a) 

with f[{x(r)- x(sJ}] a quaternion-valucd wave function that depends only on 
the coordinate dtfferences, and with X the center of mass coordinate defined by 

(9.27b) 

2 Parastatistics may abo be possible in qucllernionic quantut:J mechanics; see, for example. Govorkov 
(1987). We wtll return to this point in discussing composite quarks and leptons in Sec. 14.!. Y. M. Cho has 
pointed out that since the argument of Eqs. (9.23) (9.26) does not assume that the square of the pcnnuta
tion operator ts unity, it should extend to fractional statistics. which are reviewed in Forte (1992). 
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Let us explicitly illustrate this procedure in the case of the space-translation
invariant two-body problem, with vanishing vector potentials and time-independ
ent scalar potential, for which the time-independent Schrodinger equation is 

(9.28a) 

with the two-particle Hamiltonian 

[ 

~2 ~2 l ~ . Vx(l) Vx121 H=t ~--~-~-
2ml 2m2 ' 

(9.28b) 

Following the standard procedure (see Newton, 1982, p. 271 ), we define relative 
and center of mass coordinates x( 12) and X( 12), the total mass M12, and the 
reduced mass 111 2 by 

X( !2) = X(l) ~ X( 2) 

x(l2) =(miX(!)+ m2x(2))/ Ml2 

M12 = ml + m2 

J.112 = m1m2/M12 

In terms of these variables, iJ of Eq. (9.28b) takes the form 

(9 .29) 

(9.30a) 

and the corresponding specialization of Eq. (9.27a) to theN= 2 case becomes 

(9.30b) 

Substituting Eqs. (9.30a,b) into the Schrodinger equation of Eqs. (9.28a,b), and 
factoring away e;J'xl 12 ! after acting on it with v~ '' we get the following 
Schrodinger equation obeyed by the relative coordindt~ wave functionf(x(l 2)), 

H =t --~~-~ ~, . [ P v::12)] 
2M12 2J.1l2 

(9. 31) 

Equation (9.31) has just the form of the Schrodinger equation for a single 
particle incident on a fixed external potential, which has been intensively stud1ed 
in the preceding chapters. 

The center of mass separation calculations of Eqs. (9.27a)-(9.31) can be 
viewed as special cases of the following more general reduction. Let if be a 
multiparticle quaternionic Hamiltonian that, in coordinate representation, can 
be written in terms of a quaternion anti--self-adjoint sub-Hamiltonian il(l) and a 
real-valued, self-adjoint sub-Hamiltonian H( 2), 

~ ~ 

H = H(l) + iH(2) (9 .32a) 



240 NONRELATIVISTJC QUATERNIONIC QUANTUM MECHANICS 

with if( I) and H( 2) depending, respectively, on disjoint subsets {x(r)} 1 and 
{ x(r) h of the coordmates. Let c( 2) E <C( I, i) be a function of the variables { x(r) } 2 
that is an eigenfunction of H( 2) with eigenvalue £( 2), 

(9.32b) 

Then we can reduce the Schrodingcr equation for if, 

Hf=fiE (9.32c) 

to a Schrodinger equation involving only the variables { x(r)} 1, by making the 
substitution 

(9.32d) 

with f(I) a function of the variables {x(r)} 1. To see this, we substitute Eqs. 
(9.32a) and (9.32d) into Eq. (9.32c) and usc the reality of H(2) and E(2) to get 

Hf= [if(!)+ iH(2Jlf(I)c(2) = H(l)f(l)c(2) + if(l)H(2)c(2) 

= [fl(l) + i£(2Jlf(I)c(2) =f(I)C(2) i£ = f(I) i£c(2) (9.33a) 

Factoring away c( 2), we find thalf(I) obeys the reduced Schrodingcr equation 

(9.33b) 

with 

(9.33c) 

a modified sub-Hamiltonian for subsystem (I). Evidently, the reduced dynamics 
of subsystem (I) is not independent of subsystem (2), because of the term i£(2) in 
H( 1 ); only wh~n £(2) = 0 is the dynamics of subsystem ( 1) governed by the sub
Hamiltonian H(l) alone. This point will be alluded to in Sec. 9.4. 

9.3 THE TENSOR PRODUCT PROBLEM AND THE FAILURE 
OF CLUSTERING 

Characteristic features of the quaternionic many-body problem can first be seen 
at the level of the space-translation-invariant three-body problem, which, as we 
shall see, is similar in structure to the two-body problem with external poten
tials. Assuming, for simplicity, a one-component wave function (i.e., no spin
internal index structure), vanishing vector potentials A(r), and a time-independ
ent scalar potential V that is the sum of two-body potentials, the time-inde
pendent Schrodinger equation for the three-body problem becomes 

(9.34a) 
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with the three-particle Hamiltonian 

[ 

-2 -2 -2 l H c= i _ Vx(l) _ Vx(l) _ Vx(3) 

2ml 2m2 2m3 

+ v(23)(x(2)- x(3)) (9.34b) 

Let us now separate the center of mass motion by defining relative coordinates 
x(lJ),x( 23 ), the center of mass coordinate X(Il3)' and the total mass M123 by 

X(!3) = X(l)- X(3) 

X(23) = X(2) - X(3) 

x(l23) =(miX(!)+ m2X(2) + 11'13X(3))/ Mm 

M123 = m1 + m2 + m3 

In terms of these variables, fl of Eq. (9.34b) takes the form 

fl = i - v x(i23) - (vx(J3) + \7x(2l)) - Vx(J3) - \7,(23) 

[ 

-2 - - 2 -2 -2 l 
2Ml23 2m3 2ml 2m2 

+ V(l2)(X(!3)- X(23)) + V(!J)(X(!3)) + V(23)(X(23)) 

(9.34c) 

(9.34d) 

while the corresponding specialization of Eq. (9.27a) to the N = 3 case becomes 

(9 .34e) 

Substituting Eqs. (9.34d,e) into Eq. (9.34a), and factoring away eiP·X(l23) after 
acting on it with \7~ , we obtain the Schrodinger equation for f(x(l 3), x(23))., 

(123) 

(9.35a) 

with 

fl' = i p - vx(IJ) + vx(ll) ~ Vx(l3)- Vx(23) 

[ 

-2 ( - - )2 -2 -2 l 
2Ml23 2m3 2ml 2m2 

+ V(l2)(X(l3)- X(23)) + V(l3)(X(!3)) + V(23)(X(23)) (9.35b) 

In the limit as m3 ----+ oo (in which case M 123 also becomes infinite), Eq. (9.35b) 
reduces to 

hm H = t - - ---=--'---'-. -, . [ v:(IJ) v:(23)] 
mJ~CXl 2m 1 2m2 

+ V(l2)(X(13)- X(23)) + V(l3J(X(!3J) + V(23J(X(23J) (9 .3 5c) 

which is the Hamiltonian for the quaternionic two-body problem in the presence 
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of ex~ernal potentials V(I3) and V(l3)· When V(il) vanishes, Eq. (9.35c) further 
S1mphf1es to 

(9.35d) 

which gives a simple two-particle external potential model which we will use to 
illustrate the tensor product problem in quaternionic quantum mechanics. 

Let us introduce an abbreviated notation by writing 

2 (1) = X(i3)• 

Z(2) = X(23)• 

so that Eq. (9.35d) becomes 

V(l)(Z(l)) = V(i3J(X(i3)) 

v(2J(z(2)) = v(23)(x(23)) (9.36a) 

(9.36b) 

We can evidently also write Eq. (9.36b) as a sum of two one-body Hamiltonians, 

- - -
h(z(i)• Z(2J) = h(I)(z(l)) + h(2)(z(2)) 

with the one-body Hamiltonians defined by 

~2 

- .Vz(l) -
h(IJ(Z(IJ) = -t--+ V(I)(z(l)) 

2ml 
~2 

- . \7"12) -
h(2)(z(2)) = -l 2m2 + v(2)(z(2)) 

(9.37a) 

(9.37b) 

Using Eqs. (9.37a) and (9.37b), we can now illustrate some crucial differences 
between the behavior of the many-body problem in complex and in quaterni
onic quantum mechanics. 

Consider first the complex quantum mechanics limit, in which (since Vo = 0 
for a one-component wave function) 

V(2)(z(2)) = V(2)ct(z(2J) = iV(2)i (z(2J) 

(9.38a) 

with V(i )1 and V(l) 1 real. In this case the Hamiltonians h( I) ( z (I)) and h(l) ( z (l)) 
are <C( I. i) and commute 

(9.38b) 

and therefore Eqs. (9.37a,b) describe a two-particle system that is the sum of 
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two totally independent <C( I, i) one-particle systems. We can then solve the two
particle Schrodinger equation 

(9.39a) 

in terms of solutions of the two independent one-particle Schrodinger equations, 

h(2)(z(2)) f(2J(z(2)) =/(2)(z(2)) i£(2) 

(9.39b) 

withf( 1J(z(l)) andf(2)(z(2)) complex <C(l,i) wave functions. To do this we write 
f(z 11 ),z(2)) as a <C(l,i) tensor product 

(9.39c) 

which when substituted, together with Eq. (9.37a), into Eq. (9.39a), gives 

h(z(l)·Z(2J)f(z(l),Z(2)) = [ii(l)(Z(J)) + h(2)(zl2))] filJ(Z(lJ)ft2)(z(2)) 

= [ h(l) ( z(l)) fr1) ( z(l)) ]1(2) (z(2)) + /(1) (z(l)) [t;(2) (z(2)) /(2) ( z(2)) J 

=/(l)(z(l)) i£11)/(2)(z(2)) +/(l)(z(lJ)f(2J(z(2)) i£(2) 

=/(J)(Z(l))f(2J(Z(2)) i[£(1) + £(2)] 

(9.40a) 

Thus the tensor product two-particle wave function satisfies Eq. (9.39a), withE 
identified as the sum of one-particle energies, 

(9.40b) 

In writing Eq. (9.40a) we have shown every step, in order to emphasize that we 
have made use of the vanishing commutators 

(9 .40c:) 

which are a consequence of the fact that the one-body Hamiltonians and wave 
functions lie in the <C( I, i) subalgebra. Therefore, in the complex quantum 
mechanics limit, the two-body problem of Eqs. (9.37a,b) reduces to independent 
one-body problems. 

There are two important formal properties that characterize this reduction. 
The first of these is that the <C( 1, i) tensor product 

f(l 2) E <C( I, i) 

is complex multilinear, that is, 

T(f(lJ( +f(lJ(,/(2)) = T(f(IJ,f(2J)( + T(f( 1J,/(2J)(' 

T(fll)J(2J( + f(2)() = T(f('t), /(2))( + T(f(1JJ(2))(' 

(9.4la) 

(9.41 b) 
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for any(, ( E <C( I, i). Equation (9.41 b) guarantees that a probability amplitude 
superposition for each of the two independent one-particle components of the 
two-particle state maps into a corresponding probability amplitude super
position for the two-particle state itself, and it is the condition making possible 
an independent particle interpretation. The second formal property is the 
factorization 

( 9 .42) 

which has numerous consequences, such as implying (via the Moller wave 
operator construction of Sees. 8.2-8.3) that the S-matrix for the scattering of 
two independent particles from external potentials factorizes into a product of 
one-particle S-matrices. 

We consider now the full quaternionic version of Eqs. (9.37a,b), in which the 
potentials 

V(J)(Z(J)) = V(l)a(Z(J)) +jV(I)fi(z(l)) 

V(2)(z(2)) = V(2)"(z(2)) +jV(2)fi(z(2)) (9.43a) 

have non vanishing /)-symplectic components. In this case, the one-body Hamil
tonians fail to commute, 

- -
[h(l)(z(J)),h(2)(z(2))] f 0 (9.43b) 

even though they depend on independent coordinates z(l)' z(2), and Eqs. 
(9.37a,b) do not yield dynamically independent one-particle problems. Specifi
cally, when the potentials are quaternionic, the two-particle and one-particle 
Schrodinger equations, which still have the form of Eqs. (9.39a,b), are now 
solved by quaternionic wave functions f(z(l), z(2J) and .f(l)(z(l)),/(2J(z(2J), 
respectively. As a result of the noncommutativity of the quaternions, the 
commutators of Eq. (9.40c) are nonvanishing; consequently, the manipulations 
of Eq. (9.40a), in which the two-particle problem was reduced to independent 
one-particle problems, are no longer valid in the quaternionic case. 

Mirroring this, the formal properties characterizing the reduction in the 
complex case are no longer valid in the quaternionic case. Thus it has long 
been known (Finkelstein, Jauch, and Speiser, 1959, and Brackx, Delanghe, and 
Sommen, 1982) that for N > I there exists no tensor product 
T(.f( 1)J(2), ... J(N)) of quaternion arguments .!(!), ... J(N) that obeys the 
multilinearity condition 

T(f(l)' · · · J(m)¢ + f(m)¢
1

, • · • J(N)) = T(f(J), · · · J(m)' · · · J(N))¢ 

+ T(.f(l)' · · · J(m)' · · · J(N))¢' 
(9.44) 

for arbitrary m and arbitrary quaternionic constants ¢and¢'. This constitutes 
the well-known tensor product problem in quaternionic quantum mechanics. 
For example, in the simplest nontrivial case N = 2, if we try by analogy with Eq. 
(9.4la) the construction 

(9.45a) 
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then we find 

T(f(IJJ(2J(P +f(2J¢') =f(lJ(f(2)¢ +.f(2J¢') 

= f(l )./(2) ¢ + f( l)f (2) ¢' =o T(.f( l), f(2) )¢ 

+ T(.f(,JJ(2J)¢' (9.45b) 

T( f(l)¢ +f(!J¢',/(2)) = (f(l)¢ +f(l)¢')((2) 

= f(l)f(2)¢ +f(IJ[¢, f(2)l +f(l)f(2)¢
1 

+.l(l)[q/, f(2Jl 

= T(f(l), f(2J)¢ + T(f(1J./(2))¢' 

+ /(1)[¢, f(2Jl +.f(l) [¢',/(2)] (9.45c) 

Since the commutators on the final line an:: in general nonvanishing for quater
nionic ¢, ¢', and 1(2), multilinearity fails for the first factor. 3 In like manner, 
because the Hamiltonian commutator of Eq. (9.43b) is nonvanishing, the 
factorization property of Eq. (9.42) fails in the quaternionic case. Specifically, 
according to the Baker~Campbell~Hausdorff formula of Eq. (4.83a), we have 

(9.46) 

We conclude, then, that in quaternionic quantum mechanics, a sum of N ::>: 2 
one-body Hamiltonians gives a many-body Hamiltonian that does not describe 
N independent particles; the particle motions are coupled through the noncom
mutativity of the quaternion algebra. This of course does not prevent us from 
solving the dynamics described by the total Hamiltonian as a coupled-particle 
problem! Evidently, independent particle behavior obtains in the quaternionic 
many-body problem only to the extent that a complex <C( I, i) specialization is 
valid. 

As a concrete illustration of these remarks, let us do a first-order perturba
tion theory calculation around the <C( I, i) limit. In order to also be able to study 
the behavior of the multi particle wave function when the particles are separated 
into widely spaced clusters, we consider a generalization of the model of Eq. 
(9.36b), constructed as follows. We consider a 2N-particle problem in which 
spin zero particles interact by short-range two-body scalar potentials, and we 
focus on the configuration in which the particles are grouped into N widely 
separated pairs, so that the potentials acting between particles in different pairs 
can be neglected. The system Hamiltonian, including rest masses, is then 

(9.47a) 

with X(lr)' x(2r·) the coordinates of the particles in the rth pair. Let us follow Eqs. 
(9.29-9.30) and transform to relative and ce:nter of mass coordinates within each 
pair, according to 

1 It is easy to see that this problem is nor cured when on·c formulates quaternionic quantum mechanics in 
terms of density matrices rather than wave functions. Sec also Eq. (9.53b). 
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(9.47b) 

The 2N-body Schrodinger equation 

(9.47c) 

can now be reduced to an equation for an internal coordinate wave function 
f({x(12r)}) by the substitution 

N " " 
f( {X (I r), X(2r)}) = f ( {x( 12r)}) IJ eiP(r) X( 12r) (9.47d) 

r=l 

which, following the procedure of Eqs. (9.32a)-(9.33c), gives 

H'f( {x(12r)}) = f( { X(12r)} )iE 

v [ ( ~2 ~2 ) l - r 
1 

• Vx(l2r) p(r) -
H = L l - 2 +J.1Ir+J.12r+2M + v(r)(x(12r)) 

r=] J.112r 12r 
(9.47e) 

As a final step, let us simplify the notation by dropping the prime on fl' and by 
writing 

Z(r) = X(I2r)• mr = J.112r 
~2 

p (r) 
J.lr = J.11 r + J.12r + 2 M 

12r 
(9 .4 7f) 

so that Eq. (9.47e) takes the form of a Schrodinger equation for N particles 
interacting with external potentials, 

(9.47g) 

Clearly, the Hamiltonian h(z(l)• z(2J) of Eq. (9.36b) is just the N = 2, J.lr = 0 
specialization of Eq. (9.47g). 

Let us now solve the model of Eq. (9.47g) to leading order of perturbation 
theory, treating the /)-symplectic components of the potentials as small pertur
bations. Writing in coordinate representation 

(9 .48a) 
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with V(r)l real (we recall that V(r)O = 0), we have in representation-independent 
form 

N N 
- - -

H =o Ho + V, Ho = IH = IL H(r)• v = 1vf3 = JL v(,.Jf3(zr,.J) 
r=l r=l 

"'2 
p (r) ( 

H(r) = --2 + Jlr + V(r)l z(,·)) m,. 

(I, J, K) = (If j d
3z(t))t{z(s)})(i,j, k)( {z(s)}i 

P(r) =(If/ d 3
z(t))t{z( 1)})Vzu;({z(s)}i (9.48b) 

We assume that the rest masses flr are sufficiently positive so that H(r) is positive 
definite, which implies that 

N 

IHol = H = L= H(r) (9 .48c) 
r=l 

Since H(r) is <C( I, i) (in fact, real) in coordinate representation, for each r we can 
construct a complete set { c11 r) (z(r))} of (:(1, i), unit-normalized, coordinate 
representation energy eigenfJnctions of H(f)• with respective eigenenergies 
{ £},~;) }, 

n(r) = 0, I, 2, ... (9 .48d) 

Letting the state label n in the perturbation analysis of Sec. 5.3 be the composite 
label n = {n(r)}, we take the zeroth-order state lh~0 )) to be a simultaneous 
eigenstate of each of the H(r) with eigenvalue £~~;), 

(9.48e) 

corresponding to the zeroth-order energy 

(9 .48f) 

and the unit-normalized <C(l ,i) tensor product zeroth-order wave function 

IV 

({z(rJ}Ih,~0 )) = [[ Cn(r) (z(r)) (9 .48g) 
l'=l 

We wish now to calculate the first-order wave function correction lh,Vl) 
arising from the perturbing potential V of Eq. (9.48b). Note that since 
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({z(rJ}Ih~0 )) is <C(l,i) and since ({z(r)}l and lh~0 )) are members of complete sets 
of states, the operator I defined in Eq. (9.48b) and the operator I ilo defined by 

I- = """ih(0l)i(h(0)1 
flo L n n (9 .49a) 

n 

are equal, 

(9 .49b) 

and hence a_ representation-independent characterization of the {1-symplectic 
structure of Vis 

(9.49c) 

Combining Eqs. (9.49a~c) with Eqs. (5.29a) and (5.41), we get 

i v = ! { i (h(O) I Vlh(O))} = ! (h(O) I{/- V} lh(O)) = 0 
mnrx 2 ' m n 2 m Ho' n 

E (l) - -z·v - o n - nna - (9.49d) 

and so the first-order energy shift is zero. W c proceed with the calculation of 
lh~ 1 l) by putting the general perturbation theory formulas of Sec. 5.3 into an 
appropriate form. When the perturbing potential has only a ,8-symplectic 
component, the first-order state vector lh~ 1 

)) corresponding to an unperturbed 
state lh~0 l) is given by Eq. (5.44a), which we rewrite [recalling Eq. (5.41)] as 

lh~ 1 )) = L lh~))i(£;;;) + £~0))~ 1 (h~~)l Vlh~0 l) (9.49e) 
m 

Substituting the identity of Eq. (5.47a) and usmg Eq. (9.49b), this equation 
becomes 

Substituting now Eqs. (9.48b,c) and using the fact that H(r) and JV(s)fi commute 
for r f s, we get finally the formulas 

(9.49g) 
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with 

(9.49h) 

Equations (9.49g,h) are as far as the analysis can be carried without intro
ducing more specific assumptions about the operator H(r) that appears in the 
denominator in Eq. (9.49h). As a first application, let us specialize to the case in 
which V(r) 1 (z(r)) = 0, so that H(r) reduces to the free-particle Hamiltonian 

~2 

V z(r) 
H(r) = - --- + J.lr 

2m, 

and lh),~!.l) is the momentum eigenstate 

lh(O) ) = I ) 
n(r) P(r) 

(9.50a) 

(9.50b) 

which has the energy eigenvalue and wave function (with normalization 
constant N(r)) 

(9.50c) 

Substituting Eqs. (9.50a~c) into Eqs. (9.49g,h), and inserting a complete set 

(9.50d) 

in front of v(r)f3(z(r)), we get 

N N 

( {z(r)} \h~ 1 l) = k L f(r) (z(r)) IJ Nr,le'Pi,l Z"r,J 

J roc _,(2£(0) -£(0.) ) - _, -

j(,.)(Z(r)) = d3z(,.) .Ia dse. "n ""ld (z(r)le-sH:rllz(,.)) V(r)fl(z(,.))e'P(rJ(zi,-Z(rJ) 

(9.50e) 

The coordinate matrix element of e-sHrr) was evaluated in Eq. (5.49c), which 
g1ves 

(9.50f) 

Substituting this into Eq. (9.50e), and evaluating the integrals overs by using 
the formula4 

4 This integral follows from the formula of footnote 3, Chapter 5 [discussion related to Eq. (5.49e)], to
gether with K1;2(z) = ~e-'. 
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i x ds -(A.HBjs) _ ~ . 2../AB -e - -e 
. o s3/2 B 

(9.50g) 

we get 

(9.50h) 

which gives the first-order wave function ({z(r)}ih~ 1 )) when substituted into the 
first line of Eq. (9.50e). 

We comment now on a number of features of the final result of Eqs. (9.50e) 
and (9.50h): 

(i) The total wave function through first order is 

N N =II (I+ kj;(z(r))) II N(,/ji(,) z"(,) + 0( V2) (9.5la) 
r=l s=l 

which since k anticommutes with i cannot be rearranged into a single 
product of quaternionic factors such as 

N 

II {N(r) [I+ kf;(z(r))] eifi":r) i(r)} 
/"c·] 

(9.51 b) 

So we see explicitly that the corrected wave function no longer has tensor 
product form. 

(ii) Reinterpreting Z(r) as the internal coon!inate x(1 2r) of the rth cluster in the 
2N-particle model with Hamiltonian H' [cf. Eqs. (9.47e,f)], the fact that 
Eq. (9.5la) does not factorize implies that the quaternionic wave function 
for widely separated subsystems does not factorize. In other words, the 
cluster decomposition property familiar from complex quantum theory 
(Streater and Wightman, 1964, p. Ill) fails in quaternionic quantum 
mechanics. 

(iii) When the rest masses J.lr are bounded away from zero, the constant A,. in 
Eq. (9. 50 h) becomes infinite as N becomes infinite: 

A,.:::::; 2£~0) = 2 L J.lr + P(r) ·--> 00 
N ( -•2 ) 

r=l 2m, N--> oc 
(9.5lc) 



MULTIPARTJCLE AND MULTICHANNEL METHODS 251 

As a consequence, the formula for ./(,.)(z(r)) in Eq, (9.50h) simplifies 
dramatically for large systems, as follows. Making the change of integra
tion variable 

(9.5ld) 

in Eq. (9.50h), we get 

1 J ( + 
) 

-lui 
. 3 Z(r) u ·~ . -~~ e 

i(,·)(z(r)) = ~- d u V(r)f! F:=== e'P(r) u ,.m,. -~ ~~ 
4nA,. v 2A,.m,. u 

(9.5le) 

which as A,. becomes infinite approaches 

I .. -1171 I 
/(,.)(z(r)) = ~- V(r)fJ(z(r)) J d3u :__I~~ = -(O) V(r)f3(z(rJ) 

N -+ oc 4nAr . u N -+ CXJ 2£ n 

(9.5lf) 

Hence for large N, Eq. (9.50e) simplifies to 

(9.5lg) 

Let us now, as a second application of Eqs. (9.49g,h), discuss the general case 
in which the <C(l, i) potential V(,·)I (z(r)) is nonzero, in the limit of large system 
size N. Although H(r) is no longer a free-particle Hamiltonian, it can be ne
glected relative to 2£~0 ) in the denominator of Eq. (9.49h), and so the result 
found in Eq. (9 .51 f) holds in this more general case as well: 

(9 .52a) 

Equation (9.49g) now yields 

(9.52b) 

giving for the total wave function through first order (with N-+ oc understood 
henceforth) 

(9.52c) 

Let us apply Eq. (9.52c) to a study of the density matrix 

Pn = \hn) (hnl (9.53a) 
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through first order in the perturbation V. Taking the ({z(r)}i to ({z(,)}) matrix 
element of Pn, and substituting Eq. (9.52c), we get 

N 

= IJ Cn(,) (z(s))Cnc,) (z(s)) 
s=l 

Although E),0l is of order N for large N, the sum I:~v~I v(r)fi(z(r)) is also of order 
N, and so the first-order corrections to the density matrix of Eq. (9.53b) are 
significant and destroy the clustering property; that is, Eq. (9.53b) does not 
factorize. However, let us now consider what happens when we divide the 
coordinates into two groups, a finite group, which without loss of generality can 
be labeled 

{z(r)h = {z(r): r = 1, ... ,NI}, N 1 finite (9.54a) 

corresponding to particles that we observe, and a second group 

(9.54b) 

corresponding to particles that we do not observe, and whose coordinates are 
therefore integrated over to form the subsystem density matrix 

I { z(,)}, IP" I{ z(,) J,) ~ Ct~, , / d 3 
z(,)) I { z (')},, { z(,) hiP" I{ z(,)},, { z(d hi 

(9.55a) 

Since by assumption N1jN-+ 0, in evaluating Eq. (9.55a) we can neglect 

(9.55b) 

and similarly for the sum of the same form with Z(r) replaced by z(,)· Conse
quently, Eq. (9.53b) yields for the integrand in Eq. (9.55a) the simplified 
expresswn 
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(9.55c) 

Substituting Eq. (9.55c) into Eq. (9.55a), carrying out the indicated integrations, 
and defining the <C( I. i) constants 

we get for the subsystem density matrix 

s, 
(hrj}ljp,,j{::;,)}l) = II Cn '· (z(s)Vn,, (::;,)) 

.1=1 

Let us now define a constant quaternion uJ by 

with conjugate 

y 
k 

(J) = I - --/OJ L r(r)p 

2£11 r=.Y 1 +I 

so that to first order in the perturbing potential we have 

iJJUJ = UJiJJ = 1 

Then Eq. (9.55e) can be rewritten as 

(9.56c) 

( { ::,, L iP,,I { ::;,J 1) = u) ( D c" (::! ,i )C, ,(:·;,,)) (J) = D [o)c,, J::r >J )w][wcn (::;, 1 )c:J;: 

(9.56d) 

that is, the subsystem density matrix factorizes and thus satisfies the cluster 
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decomposition property. The sole effect of the unobserved particles is to induce 
a quaternion automorphism transformation on the zeroth-order subsystem 
density matrix, which transforms it from the C( I. i) to the q I. i,.)) quaternion 
subalgebra. with i,.) = 6Jim dependent on the unobserved part of the system. We 
conclude from this calculation that to first order in the quaternionic perturba
tion V of Eq. (9.48b), the full-system density matrix does not obey cluster 
decomposition, but the subsystem density matrix for a finite subsystem of an 
infinitely large system does cluster! Further ramifications of this intriguing 
result are discussed in Sec. 10.4 and Sec. 14.2. 

9.4 ASYMPTOTIC STATE STRUCTURE 

Let us now apply what we have learned about many-body quaternionic wave 
functions to characterize the asymptotic scattering state structure in quaternio
nic multiparticle. multichannel scattering. For definiteness. we will assume a 
Hamiltonian with no spin--internal index structure. witn vanishing vector 
potentials, and with V( { x 1 11 }. t) the sum of translation-invariant. time-indepen
dent two-body potentials of compact support, 

(9.57) 

However. as will be discussed at the end of this section. the classification of 
asymptotic states that we arrive at is more general and applies to a much wider 
class of models in which spin, vector potentials, and three-body and multibody 
interactions are included. as long as the potentials vanish asymptotically and all 
subsystem energies are positive. 

The general asymptotic scattering state it;,) is characterized by a partitioning 
a of the N particles into P(o) ::; N independent clusters. which can each be a 
single particle or a bound state of a number of particles. with the clusters 
separating widely from one another and ultimately propagating to infinity. Let 
the pth cluster contain np particles. so that we have 

Pi o) 

l•' = L llp 

p~l 

(9.58a) 

and in referring to clusters we relabel the coordinates so that x11 : , 1. £ = I .... . np· 
are the coordinates of the particles in cluster p. Since the interc{uster potentials 
vanish asymptotically. the Hamiltonian if can be replaced. when acting on the 
asymptotic state [ j;,), by a Hamiltonian if" in which the inte~·cluster potential 
terms have been dropped. and correspondingly. the coordinate representation 
Schr6dinger equation of Eq. (9.21 b) is replaced by the asymptotic Schrodinger 
equation 

if" j;,( {.\(1 I}) = J;,( {XI 1)} )f£. 

fa ( {X 1 1 J} ) = ( { .\ ( 1 I } I J;,) 

E>O 

(9.58b) 

By construction. H0 will be a sum of pieces if"P' with fl"I' acting only on the 
variables of the pth cluster. 
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Piul 

H0 = L Hu.p 
p=l 

(9.58c) 

We note that when 11p = I, there is no potential energy contribution and Hap 

consists on!v of the kinetic and rest mass terms. 
Let us n~w classify the clusters into two basic types. 5 A complex cluster pis 

one for which all the interparticle potential terms in Hu.p have vanishing 
[5-symplectic components, so that 

(9.59a) 

with Vrr P'"~Jlll a real potential. Thus for a complex cluster. Ho.p reduces in form 
to 

Ho.p = iHa.pl (9.59b) 

with H0 pi the Hermitian and real-valued Hamiltonian 

(9.59c) 

The dynamics of a complex cluster in an energy eigenstate with energy £" P 

(which can be negative6) is completely described by a complex C( I. I) wave 
function c0 p( {x11 1' 1} ). which obeys the Schrodinger equation 

Since Ha.pl is space translation invariant. we can separate off the center of mass 
motion of the cluster p by writing 

(9.59e) 

with Pu.p the total momentum of the cluster and with Xo.p the center of mass 
coordinate 

·"' Vv'e as"utne in this cla~-:;tfication that the generic case ah\ a~ s pre\ ails. that i~. that there are no special 
cancellations that occur onl\ for particular. tine-tuned 'a lues of the (!-" mplectic components of the 
potentials. 'A'e also as~ume that each clus1er i'l irreducible- -that rt Cdnnot be broken do\\ n into smaller 
independent dusters 

''We remind the reader that in specif~mg that the""'" function correspondmg to i(, I' of Eq. (9.59b) rs 
(' !l. il. \\e are e\.cluding change-; of n1) represent<Jtn·e m the quaternionic Schrbdinger equation (such as 
right multiplication b) i) that re\ cr·sc the sign of the energy eigell\ alue E, r Hence £ 01, cannot be assumed 
positi\ c. as in our standard ra: rep!'esentation choice of Sec. 4 ~for the qua tern ionic SchrOdinger cqwition. 
The fact that the cnerg\ eigemalue in a complex Schriidinger equation buch as Eq (9.59d)j can ha\e 
negatiYe n1lues ts. or course. a familiar one in complt:'\. qu<u1tmn tnechanic;.; 
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n,) 

.'via. p = L l111 I' (9.59f) 
I c" l 

The second basic type of cluster is. not surprisingly. a quatemionic clwter p. 
for which some of the interparticle potential terms in i(, I' have nonvanishing 
~-symplectic components. The dynamics of a quaternionic cluster in an energy 
eigenstate with energy magnitude Eap is described by an intrinsically quater
nionic wave function/;,p({.\rp,}). which cannot be made complex C(l.i) by a 
change of ray representative [sec. e.g .. Eq. (5.11)] and which. \\ith the standard 
ray representative choice of Sec. 4.2. obeys the quaternionic Schrodinger equa
tion 

if" I' J;, p ( { .\" 1 lip·. } ) = fu p ( {X 1 lip. } ) iEu I' (9.60a) 

Since if" I' is space translation invariant. we can again separate off the center of 
mass motion (as was done in the preceding two-body and three-body examples) 
by writing 

(9.60b) 

with P" I' the cluster momentum and with X" I' the center of~ mass coordinate 
defined by Eq. (9.59f). Note that the precise significance of P0 I' for a quater
nionic cluster is that. multiplied by i. it gives the eigenvalue of the anti-self
adjoint operator Pa.p· with the coordinate representation form 

(9 60c) 

that is. 

(9.60d) 

Let us now ask how many clusters of the two basic types can occur in the 
partitioning a. and for each case that occurs. what is the corresponding struc
ture of the asymptotic state \Vave function fa( {x1, 1} )? The answer turns out to be 
surprisingly simple. that there are only four possible C<lscs: 

(i) In the first case there is one quaterrtionic cluster with 12 1 = S. and there are 
no complex clusters. The wave functionf,({x

1
,J}) is given in this case by 

(9.6la) 

with ~ a constant ('(I. i) factor of unit magnitude. and obeys the asymptotic 
Schrodinger equation of Eq. (9.58b). with 

E=Eu.l (9.6lb) 
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(ii) In the second case there is one quaternionic cluster with 11 1 <Nand P- I 
complex clusters with a vanishing sum of complex cluster energies. 

P(ol 

L Eu.p = 0 
v=2 

The wave function};,({x(l)}) is given in this case by 

P(o I 

fc,({xr, 1}) =/;,1({-'ulll}) IT c"P({x(llpJ})s 
p=2 

(9.62a) 

(9.62b) 

with S' again a <C( I. i) phase, and it obeys the asymptotic Schrodinger 
equation of Eq. (9.58b) with 

E==Eo.l (9.62c) 

[This case corresponds, in an altered notation, to the reduction of Eqs. 
(9.32a)-(9.33c) with vanishing energy £(2).] 

(iii) In the third case there arc no quaternionic clusters, and there are P(a) 
complex clusters, with a positive sum of cluster energies 

P(o) 

LEu.p > 0 
p=l 

The wave functionj;,({x11)}) is given in this case by 

P(o) 

,t;,({xc,1}) = fl c"l'({xU!pJ})s 
p=c I 

(9.63a) 

(9.63b) 

with S' as earlier, and it obeys the asymptotic Schrodinger equation of Eq. 
(9.58b) with 

P(a) ,,......., 
£ ==c ,L £ 0 p 

p= I 

(9.63c) 

(iv) In the fourth case there are no quatcrnionic clusters, and there are P(a) 
complex clusters, with a negative sum of cluster energies, 

P(a) 

L: Eup < 0 (9.64a) 
fJ=I 

The wave function/;,( {x(s)}) is now given by 

P(u) 

f~({x(1 J}) =if} Cu_p({x(flpJ})( (9.64b) 
p=l 
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with ; as earlier. and it obeys the asymptotic Schrodinger equation of Eq. 
(9.58b) with 

P1o) 

E =- L Eu.p 
J>= 1 

(9.64c) 

To justify this enumeration. we begin by observing that quaternionic clusters 
can occur, since we saw in the discussions connected with Eqs. (6.24a.b) and 
following Eq. (6.82) that in the two-body case with nonzero rest mass p. intrin
sically quaternionic bound state solutions do in fact appear. However. because 
of the nonexistence of a quaternion multilinear tensor product. at most one 
quaternionic cluster can be present: As we have discussed in detail in the 
preceding section. quaternionic Hamiltonians 1(, 1• · · · • i1a.R [with I < R S:: P( a)] 
that depend on disjoint clusters of the coordinates still fail to commute. because 
of the noncommutativity of the quatet:nion algebra. Conse_quently. the Schro
dinger equation for the Hamiltonian Ho.l' = Ha.l + · · · + Ha.R must be solved 
on the full configuration space obtained by taking the union of the configura
tion spHces for the i!Jdividual H"P' giving a single quaternionic cluster with 
cluster Hamiltonian Ha l'· 

\Ve therefore need analyze only the case in which at most one quater
nionic cluster is present, along with complex clusters. Specifically. let us 
assume that there is one quaternionic cluster with cluster Hamiltonian H0 1 

and wave function ;;, 1 ( {x1111 J} ). _together with P(a)- I ? 0 complex clusters 
with cluster Hamiltonians Ho.p and wave functions c0 p( {x(llpl} ). 
p = 2 .... . P(a). Since clusters are, by definition. independent, the asympto
tic state wave function t;,({.\d) will be a product of wave function factors 
for each cluster with. accordmg to the analysis of Eqs. (9.27)-(9.33). C( I. i) 
factors ordered to the right. We thus have 

(/'(") ) 
};, ( {X (I) } ) = fu l ( {X (I i l) } ) T! C" p ( {X (lip I } ) ; (9 .65) 

with ; a constant C( I. i) phase. Substituting Eq. (9.65) into the Schrodinger 
equation of Eq. (9.58b), and using Eqs. (9.59b-d) and (9.60a). we get, following 
the procedure of Eq. (9.33a). 

_ . . (P(") , ~ v • (P(a) ) (P(a) . ) v 

- .1{/.l rEa.! II Ca.p) s -1- ifc, l L 1Ia.p1 II ("·P s 
p=2 p=2 p=2 

(

P(") ) (P(a) ) P(") 

=.fa,iE"·' IIca.p ;+if"·' IIca.p sLEa.p 
r-2 p=2 p=2 

(

P(a) ) 
= f,.] II c"·l' siE 

p=2 

(9.66a) 
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- . . . . . v-I p,ul . 

( )

-1 
fhe fimtl two lmes. after nght multJphcatiDn by, Tir~c c0 .p . g1ve 

P(u) 

u;, I L Eo I' = j;, I i( E - Eu. I) 
p~ :2 

which expressed in terms of symplectic components/" 11 and/0 If! gives 

( 

P(ul ) 

t;,.l1 E- Eu.l - ~ Eu fl = 0. fu.l(! [ E- Eo. I -L L Eu.p = 0 
( P1u1 ) 

\ p~2 

Hence if !;, 11 f 0 we must have 

which implies 

P(u) 

E = Eu.l + .L Eo.p 
p=2 

P("l 

J;, 1 (i L Eu p = 0 
p='2 

whereas iff;, I(! f 0 we must have 

which implies 

P~o) 

E = E".l - 2= Eu.p 
p~2 

Ply) 

f,d~ L Eu.p = 0 
p~2 

Therefore we have the following four cases: 
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(9.66b) 

(9.66c) 

(9.67a) 

(9.67b) 

(9.67c) 

(9.67d) 

(i) P( a) = I, so that there are no complex clusters and L~~~' E0 I' = 0. In 
this case fo.l 1 and /:, 111 can both be nonzero. A single quaternionic 
cluster is present. and 

(9.68a) 

(ii) P(a) > I. so that complex clusters arc present. but the sum of complex 
cluster energies vanishes. 

P(a~, 

2.: E0 I' = 0 (9 .68b) 
pc·c:.] 

In this case.f;,lY and/111 /i can again both be nonzero. A single quater-



nionic cluster and P(a)- I complex clusters are present. and 

E =Ea. I (9.68c) 

(iii), (h) P(a) > I. and the sum of complex cluster energies is nonzero. 

Fl"l 

LE"l' f 0 (9.69a) 
]!=-~::: 

In this case. either/;, 11 or/;, 113 must vanish. contradicting the fact that 
a nontrivial quaternionic cluster wave function .t;, 1 cannot be made 
<C( I. i) by a constant rephasing. Hence the postulated qudternionic 
cluster is a null cluster. H0 . 1 =Ea. I = 0. andf, 1 is a constant. There are 
then two possibilities. If the sum in Eq. (9.69a) is positive. then since 
E 2: 0. Eq. (9.66c) implies thatt;,. 111 = 0. and unit normalization off, 1 

further implies that,f;,IY is a <C( I. i) phase. which can be absorbed into 
:;. We then get case (iii) with P(a) - I complex clusters indexed from 2 
to P(a). 

Pta) 

£=LEu.]> 
]J=:.:.:2 

(9 .69b) 

If the sum in Eq. (9.69a) is negative. then since E 2: 0. Eq. (9.66c) 
implies that/;, 1, = 0. and unit normalization off, 1 further implies that 
f, 111 is a <C( I. i) phase. which can be absorbed into ~- We then get case 
(iv) with P(a)- I complex clusters indexed from 2 to P(a). 

P(ul 

E=-LE"J' 
p:::-~ 

(9.69c) 

In carrying out this classification. we make use of the assumptions that there 
is no spin structure and that there are no vector potentials _starting from Eq. 
(9.59b). where we assume that for a complex cluster we have Ha.p = iHu.p1· with 
Ha pl real. The reality of H" pl is used in the calculation of Eq. (9.66a) for cases 
(ii) and (iv). since in these two cases we commute Ha.pl through a quaternionic 
factor to act on <C( I. i) wave function factors. Suppose now that we assume that 
rest masses for all particles arc included in the Hamiltonian. which are suffi
ciently large to make all complex cluster energies Ea.p positive. Then cases (ii) 
and (iv) are excluded. and the reality of Ho.pl plays no role in the asymptotic 
state structure classification. which contains as the remaining possibilities only 
cases (i) and (iii). We can now immediately generalize the analysis to include 
spin-internal index structure and vector potentials, for which a <C( I. i) cluster 
Hamiltonian Ha.p does not reduce to i times a real Hamiltonian. There is also 
no difficulty in extending the analysis to the case in which multibody interac
tions are included. since the two-body structure of the potentials in Eq. (9.57) 
does not enter into the calculation of Eq. (9.66a). 
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We conclude this section with a brief discussion of the action of the anti-self
adjoint and self-adjoint momentum operators on the asymptotic:, wave function 
f 11 ({x(l)}). Defining the anti-self-adjoint translation generator P by the repre
sentation-independent expression 

(9.70a) 

we have in coordinate representation 

(9.70b) 

We now see fr_9m the center of mass separations of Eqs. (9.59e) and (9.60b) that 
the action of P on the asymptotic wave function, in all four cases, is 

~ 

Fra( {x(l)}) =f;,( {x(')}) iPa (9.70c) 

with the total momentum P11 the sum of cluster momenta 

(9.70d) 

The fact that there is at most one quaternionic cluster is crucial in obtaining this 
result. since this is what permits the individual cluster eigenvalues iPa.p to be 
commuted through to the right without encountering noncommuting quater
nionic factors. In Sec. 3.1 we introduced three possible definitions of a self
adjoint momentum operator, denoted by f>U), J5UH), and p(IJ, and defined in the 
present context by the representation-independent expressions 

(9.7la) 

Since asymptotically m channel a we have I it -+ Ili
11

, and because by Eq. 
(9.58b), 

(9.7lb) 

the operators pUff) and pli) have the :;arne action on the asymptotic wave 
function in all four cases, 

(9.7lc) 
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Finally, since 

(9.7ld) 

the action of p(I) on the coordinate representation asymptotic wave function is 

(9.7le) 

Thus in case (iii) ftUJ acts as 

case (iii) (9.7lf) 

whereas in case (iv) the factor of j produces a sign reversal, giving 

case (iv) (9.7lg) 

In cases (i) and (ii), in which j~ is quaternionic, the operator fW) has no simple 
action on the asymptotic wave function, since this wave function now neither 
commutes nor anticommutes with i. 

9.5 MULTICHANNEL TIME-DEPENDENT FORMAL 
SCATTERING THEORY1 

Because the asymptotic wave function .J;, is not always complex <C( I. i), the 
constructive approach used in Chapters 6 and 7 to show that the one-channel 
S-matrix is CC( I. i) is not directly applicable in the multichannel case. However, 
it is still possible to prove that the multichannel S-matrix is <C( I, i), by proceed
ing from a multichannel generalization of the time-dependent formal scattering 
theory approach of Chapter 8. In the ensuing discussion we focus on those 
aspects of the multichannel problem that differ from the single-channel case and 
omit the details of certain derivations that are substantially identical to those 
already given in Chapter 8. We closely follow the multichannel theory in 
complex quantum mechanics, as given in Newton (1982) and Goldberger and 
Watson (1964), and adopt without proof all formal limiting assumptions custo
marily made in the complex case. 

We proceed to study the scattering of N particles in a quaternionic dynamics 
governed by a Hamiltonian fl, concerning which no special structural assump
tions (such as Galilean invariance) will be made. Let a denote a particular 
partitioning of the particles into clusters, called an arrangement channel, anci 
when this partitioning contains two or more clusters, we define a splitting of H 
into two parts, 

(9.72a) 

with 

Ha = lim H 
intercluster d'rstances -) x: 

(9.72b) 

and with fl;, the residual part of fl, which vanishes as the intercluster distances 
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become infinite. In analogy with Eqs. (8.3a,b), we define arrangement channel 
Green's functions G ~ (t) and full Hamiltonian Green's functions g± ( t) by 

(:t + Ha) c;=(t) = Ib(t) 

(:t + fi) g±(t) = lb(t) 

G~(t) = g+(t) =: 0 t < 0 

c;;(t) = g-(t) == o t > 0 (9.73) 

Let VfH be the quaternionic Hilbert space spanned by the state vectors of 
arrangement channel a, and let V~ be the complete Hilbert space for the 
ill-particle scattering problem, so that VfH ~ VN. Also, we define Pa to be the 
orthogonal projection onto the channel space V\H, so that, with {I .fa.n)} any 
complete, orthonormal set spanning V\H, we have 

Pa = Llfa.n)(ft~.nl, 2 p a= Pa, 
n 

We now introduce multichannel analogs of the various free and full scatter
ing states employed in Chapter 8. We define an a-state, denc:ted by l.f;,(t)), to be 
a state in V\H that develops according to the dynamics of Ha, 

(9.75) 

and adopt the convention that in labeling states and matrix elements, the index 
a includes all information beyond the partitioning into clusters that is needed to 
specify a unique state. We then define the full state l.f(+)(a, t)) to be the state in 

N -
V IH that develops according to the dynamics of H, 

(:t + fi) l.f(-'-)(a, t)) = 0 (9. 76a) 

and for which there exists an a-state such that 

f ( +) (a, t) -----+ I.J:, ( t)) - I .fj,, (a, t)) (9.76b) 
t-. -x 

which implies 

lim (f~(t)l.f(+)(a, t)) =I 
t-. -oo 

(9.76c) 

Similarly. we define the full sta!e If H (a. t)) to be the state in Vi~ that develops 
according to the dynamics of H, 

(9.77a) 
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and for which there exists an a-state such that 

(9.77b) 

which implies 

(9.77c) 

From these definitions, and using the properties of the channel Green's func
tions c;:(t), we have in analogy to Eqs. (8.9b) and (8.10b) 

1 t:n(a, t)) = lirn c,;(r- r')lf(+-l(a, t')) 
t 1 

---> -oc 

I fm11 (a, t)) = lim - G :r ( t - t 1) I f (-) (a, t 1)) 
I t --. +oc 

(9.78) 

Proceeding by manipulations paralleling those of Eqs. (8.12)-(8.15), we 
now obtain the following integral equations relating the states I f(±)(a. t)) 
to their corresponding in and out states, 

1/(-r-l(a, t)) = lf,:n(a, t)) -- [
1

"' dt'c;;(r- t')fl;Jr(~ l(a, t')) 

=I fin(a, t)) - It"x: dt'Q+-(t- t')H~I fin(a, t')) 

If H (a, t)) = I / 0111 (a, t)) - Jx dt'G; (t- t')fi;Jl(-) (a, t')) 

= lfmr(a, t))- !x dt'Q-(t -- t')fl;,lfnlf(a, t')) 
. I 

(9. 79) 

We define the Moller wave operators D),±) for arrangement channel a, which 
have the domain VfH, by 

1/(+-l(a, t)) = n;,+)lfin(a, t)) = D),-tllfa(t)) 

lfH(a, t)) = n;
1
-)lf!llr(a, t)) = D~-ljj;/(t)) (9.80) 

while on the orthogonal complement of v;~ we define D~±) to be zero, so that 

n(=J P = p(:lJ 
a a "'a (9.81) 

Since the span of the states I j;Jt)) is the space V\~ (and not the complete 
Hilbert space V~), manipulations paralleling those of Eqs. (8.17)-(8.26) give 

(9.82) 
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together with the intertwining property7 

(9.83) 

Let us now denote by R~~+!--) the range of the operators D),+l-l, which is the 
space of full states developing from/into the set of channel states {I/~ ( t))}, and 
let us define the operators Q~ -r/-) as the orthogonal projections on R~ +I-). 
From the integral equations of Eq. (9.79) we find that the inversions of Eq. 
(9.80) arc 

lfin(a, t)) = Sl~,+)tlf(+l(a, t)) 

if~ur(a, t)) = n;,-ltlfH(a, t)) (9.84) 

Combining Eqs. (9.80) and (9.84), and using the fact that the span of the states 

lfin;our(a,t)) is V~ and the span of the states 1/(±)(a,t)) is R~±), we get 

(9.85a) 

Since the full states in different arrangement channels are orthogonal (they 
evolve by the unitary dynamics generated by if from in or out states in different 
arrangement channels, which are clearly orthogonal), we have 

a ;feb (9.85b) 

or taking Eq. (9.85a) into account, 

(9.85c) 

To take account of the possibility that there may be bound states for all N 
particles, let us define the operator A to be the orthogonal projection onto the 
single-cluster arrangement channel. Then we have (with a understood hence
forth to refer to arrangement channels with at least two clusters) 

Q (±) A = AQ(±) = Sl(±Jt A= AD(±) = 0 
a a a a (9.86a) 

and since the full states projected by the: set of Q~±) and by A are expected8 to 
span the entire Hilbert space V~, we have the so-called asymptotic complete
ness relation 

(9.86b) 

7 Since (Pa, Ha] = 0, we do not have to include an additional right-multiplied factor of Pain Eq. (9.83). 
x We make no claim to prove Eq. (9.86b), which is a very hard theorem even in the complex case; see Sigal 
and Soffer (1987). 
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We can now proceed to construct the multichannel S-matrix, by analogy with 
Sec. 8.3. Because 

(9.87) 

Eq. (9.86b) implies that the states 1 f(- l(b, t)) form a suitable basis set on which 
we can expand the state lf( 1 )(a. t)), giving 

lf(+)(a, t)) = L If( )(h, t))(fH(h, t)l/(+l(a, t)) 

" 
(9.88) 

Since the state_? 1/(-)(h, t)) and lf(~J(a, t)) are both evolved in time by the full 
Hamiltonian H, the matrix element in Eq. (9.88) is time independent and can be 
expressed in terms of channel states by using Eq. (9.80), 

(f (-) (h, t) lfH (a. t)) = (f (- J (h, 0)1 f(~ J (a, 0)) = (fi,(O) I D)) )i D),~ l I j;,(O)) 

(9.89) 

Taking the limit t--. -Loc in Eq. (9.88), and using Eq. (9.77c), we get 

lf(+l(a, t)) ------> L 1/i,(t))(fi,(O)ISt)(llfa(O)) 
t --. +oc h 

(9.90) 

with the channel S-matrix Sha defined by 

(9.91) 

From Eq. (9.83) we derive the fundamental intertwining property of S1)(, 

H- S _ H- ')(-lin(+)_ n(-)iH- n(r-) _ n(-ltn(t-)/::r _ S li-
b ha - bLh "a - "h "a - "h "a 1 a - ha a (9.92) 

which is the multichannel analog of Eq. (8.54a). Combining the definition of Eq. 
(9.91) with Eqs. (9.85a-c) and (9.86a,b), we can derive the formal unitarity 
properties of the multichannel S-matrix, 

"""'s s-t = ""'n(-J+~i·Jo( 1 JrnH L ah ' ch L a h h c 
h h 

= L n~--)IQ~' ln~.-) = n~-H(l- A)D) J = n~ llni-l = P,/J0 , 

h 

"""'s+ s . = ""'n(+JinHnHtn(+J L ha he L "a h h c 
h h 

= """' D ( 1 Jl Q (-) D ( ' ) = D ( ~ H ( I - A) D ( 1 ) = 0 l 1 )t D ( +) = P !5 . (9 9 3) L.-t a h c a c a ( a ac · 
h 

Up to this point everything closely parallels the usual multichannel theory 
in complex quantum mechanics (Newton, 1982, and Goldberger and Watson, 
1964). To derive the characteristic quaternionic result that the S-matrix is 
complex <C(l,i), we follow the method used in Eqs. (8.61)-(8.63). Passing over 
to the limit of wave packets of precisely defined energy. we let the states 
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lf;,(Ea)) and l.ft,(Eb)) be respectively ifc, and Hb energy eigenstates, for the 
moment in arbitrary ray representations, 

(9.94a) 

Defining the S-matrix element Stw(Eb, Eo) by 

(9.94b) 

we learn by using the intertwining property of Eq. (9.92) that 

(9.95a) 

Taking the absolute value of both sides of Eq. (9.95a) gives 

(9.95b) 

and hence Sha(Eh, Ea) vanishes if Eh f Ea. Setting Eh = Ea in Eq. (9.95a) and 
dividing through by Ea f 0, we get 

(9.95c) 

which places a restriction on the quaternionic phase structure of Sba(Ea, Ea)· In 
particular, if we choose the standard ray representation of Sec. 4.2 in both the a 
and h channels, so that ea = eb = i, then Eq. (9.95c) becomes 

(9.95d) 

and the matrix element Sba ( Ea, Ea) is !I:( I, i). This completes the multiparticle, 
multichannel generalization of the result first encountered in our study of the 
one-dimensional delta function model in Sec. 6.1. 

We conclude this section by discussing the momentum and energy conserva
tion laws in quaternionic multichannel scattering. If if is space translation 
invariant. then if__, Ha, and Pa will all commute with the anti-self-adjoint trans-

lation generator P defined in Eq. (9.70a). From Eq. (9.82), we then have 

(9. 96a) 

which by Eq. (9.91) implies that P commutes with the channelS-matrix Sha, 

(9.96b) 
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Taking the matrix element of Eq. (9.96b) between states of equal energy 
IJ;,(Ea)) and lfh(Ea)), we have 

(9.96c) 

However, we saw in Eq. (9.70c) that asymptotic states in arrangement channej 
a, choosing the standard ray representation convention of Sec. 4.2, are P 
eigenstates with eigenvalue iPa. and so Eq. (9.96c) becomes9 

(9.96d) 

When Sha(Ea, Ea) is nonzero, this implies, by Eq. (9.95d), that 

(9.97) 

Finally, we saw in Eq. (9.70d) that Pais equal to the sum of cluster momenta in 
the arrangement channel a, and so Eq. (9.97) is equivalent to the usual state
ment of momentum conservation: 

P(a) P(h) 

L Pa,p = L Pb,p (9.98) 
p=1 p=1 

We consider next energy conservation. We have already shown, in Eq. 
(9.95b), that states connected by a nonvanishing S-matrix element must have 

(9 .99) 

Recall now that we have seen in the preceding section [cf. Eq. (9.69c)] that Ea is 
not the sum of cluster energies, which can have either sign, but rather the abso
lute value of this sum. Hence Eq. (9.99) implies only that 

P(a) I P(h) I L Ea,p = L Eh,p 
p=1 p=1 

(9.100) 

which is not the usual form of energy conservation. However, if we make the 
additional assumption that all cluster energies Ea,p. Eh.p are nonnegative 10 

(which, as remarked in Sec. 9.4, is the case when sufficiently large rest masses 
for all particles are included in the Hamiltonian), then case (iv) of Sec. 9.4 is 

9 In the general ray representation, where Halla)= lf~)eaEa, the action of Pis PjL) = lfa)eaPa, and Eq. 
(9.96d) becomes PhehSha(Ea,Ea) = Sha(Ea,Ea)eaPa. By virtue of Eq. (9.95c), this again yields Eq. (9.97). 
10 All that is actually needed is the weaker assumption that the cluster sum L;:~'11 Ea.p is always nonnega
tive. This remark is relevant because there is an ambiguity as to how rest masses are to be distributed 
among the cluster Hamiltonians Ha. If there exists one distribution of rest masses for which all Ea.f' are 
nonnegative, then for any distribution of the rest masses the cluster sum is nonnegative. 
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excluded, the absolute value signs in Eq. (9.100) become irrelevant, and we get 
the usual statement of energy conservation 11 

P(a) P(h) 

'"""""' ,~ ~ Ea.p = )___, Ehp (9.101) 
p=l p=l 

11 Another peculiarity of the energy in quaternionic quantum mechanics. also related to the fad that 
E = :hl has been pointed out by Wolff(I981). He notes that there are self-adjoint operators that commute 

with IHI but do not commute with H; an example is (-~If 1t), with J11 as defined in Eq. (5.43a). 

Therefore the quaternionic analogs of the conserved observables of complex quantum mechanics are. as 
already seen in Sec. 3.5. operators that commute with the evolution operator ii, not operato~rs that 
commute with the energy ]If]. 



10 

Further Multiparticle Topics t 

In this chapter we continue the development of multiparticle quaternionic 
quantum mechanics that was begun in Chapter 9. In the first section, we 
construct the Fock space and give the second quantization procedure appropriate 
to the quaternionic many-body problem with completely symmetrized or anti
symmetrized wave functions. We define an allowed class C of Fock space bases, 
related by <C( I. i) one-particle transformation functjQnS, any member of which 
can be used to build quaternionic many-body wave functions with the appro
priate symmetry properties and with the usual quaternionic inner product. For 
the basis 1;,) with canonical creation and annihilation operators ai_. aj, we 
construct the corresponding left-acting al~ebra operators Ii., Ji., Ki and show 
that with respect to this algebra, ai. and a~ arc formally real. This permits the 
construction of second quantized, anti-self~adjoint quaternionic Hamiltonians. 
In the second section, we illustrate the general formalism with the example of a 
quaternionic particle-number-conserving one-body Hamiltonian. We show that 
this Hamiltonian can be formally diagonalized in terms of noncanonical quasi
particle operators a~, a", that create and annihilate the single-particle Hamilto
nian eigenstates, and that in the fermionic case obey the unconventional 
exclusion principle (a~) 4 = 0. 

In the third section, we examine the implementation of statistical mechanical 
methods in quaternionic quantum mechanics. We define thermal averages and 
construct thermally averaged retarded and "temperature" Green's functions, 
which obey the usual temporal boundary conditions, but which are no longer 
related to one another by analytic continuation in Fourier space. In the fourth 
section, we reexamine the clustering problem within the framework of the optical 
potential equations, without making specialized assumptions about the structure 
of the quaternionic Hamiltonian. To first order in the /)-symplectic part of the 
Hamiltonian, we find, as in Sec. 9.3, that the subsystem density matrix for a finite 
subsystem of an infinitely large system continues to cluster. We calculate higher
order corrections within the framework of a mean field approximation and find 
that clustering breakdown can occur with a specific phenomenological form. 

10.1 FOCK SPACE AND SECOND QUANTIZATIONi 

In Sec. 9.2 we discussed systems of identical particles and showed that their energy 
eigenstates in the standard ray representation must transform as bases for C::( I. i) 
representations of the permutation group. The simplest representations of the 
permutation group are the real one-dimensional representations IP and (-l)P, 
with P the order of the permutation, corresponding respectively to particles with 

270 
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completely symmetric wave functions (bosons) and completely antisymmetric 
wave functions (fermions). In dealing with systems of such particles, it clearly is 
very useful to have a formalism that automatically symmetrizes or an1i
symmetrizes the wave functions, and that permits the description of processes in 
which the number of particles changes. Such a formalism is provided by the Fock 
space and second quantization constructions. which we now give for bosonic and 
fermionic quaternionic many-body systems, working in the Schrodinger picture 
throughout. 

We begin by noting that the lack of a quaternion linear tensor product is not 
an obstacle to setting up a Fock space in the quatcrnionic many-body problem. 
Even in the many-fermion problem in complex quantum mechanics, when 
particle-particle interactions are present, the exact wave function is not just a 
Slater determinant constructed from independent particle wave functions; such 
determinants are simply convenient expansion bases for representing the exact 
wave function. Since we can readily construct <C( I. i) bases that are complete in 
quaternionic Hilbert space, we can use the complex tensor product to construct 
a Fock space basis that is a complete expansion basis for the quaternionic 
many-body problem. A simple paradigm for what we will do is the use of the 
coordinate and momentum representations in one-body quaternionic quantum 
mechanics. When we write the expansion 

(IO.la) 

the kets lx) in themselves have no a priori quaternionic structure, as reflected in 
the fact that the inner products 

(xlx') = b3(x- x 1
) (IO.lb) 

are real; it is the transformation functions (xlf) =f(x) that are quaternions 
and that can be used to construct the quaternionic inner product of two states 
If) and lg), 

(IO.lc) 

When we transform from coordinate representation to momentum representation. 

(xi f)=/ d3p(xlp)(plf) (IO.ld) 

the transformation functions (xi p) as constructed in Sec. 3 .I are <C( I, i), even 
though the wave functions (xi f) and (PI f) are in general quaternions. Let us 
generalize from these examples to a class of representations C with the following 
properties: (i) The basis functions I/~) for each A.-representation E C form a 
complete orthonormalized set for the one-particle Hilbert space (this is just the 
definition of a representation), 

( .I ·/) . I~ I~ = c) i.i-', I= L li.)(ti.l (I0.2a) 
I. 

with o ii.' a Kronecker delta or Dirac delta function, and correspondingly with Li. 
a sum or integral, as appropriate to the spectrum of i~. (ii) C contains the coordi-
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nate or X- representation. (iii) If the l-representation and a-representation are any 
two representations inC, then all transformation functions (lla) are <C( I, i). 

We can then expand the general one-particle wave function If) over the 
basis 1).), 

(10.2b) 

and represent the general quaternionic,i_nner product (fIg) as 

(fig)= LUI).)(!clg) (10.2c) 
I. 

Because of requirement (iii), representations inC remain inC when rerayed with 
<C( I, i) phases (, as in 

C E <C(L i) (I 0.3a) 

but move outside C when rerayed with general quaternionic phases oJ, as in 

(10.3b) 

since ~i (/,la)Cr is still <C( I, i), whereas wi (J.Ia)wu is not. Nonetheless, the inner 
product (fIg) as represented by the right-hand side of Eq. (I 0.2c) is still 
quatcrnion linear in I g) and quaternion antilinear in I f), 

(I0.3c) 

Our construction of Fock space and second quantization for quaternionic 
Hilbert space will proceed by constructing the standard <C( I, i) Fock space bases 
from symmetrized (or antisymmetrized) tensor products of bases inC, and then 
using them as expansion bases for general quaternionic multiparticle states, in 
analogy with Eq. (10.2b). This leads, in analogy with Eq. (10.2c), to an inner 
product in F ock space with the correct qua ternion linearity properties. 1 

1 Our construction thus differs from earlier attempts at formulating a second quantiLation for quuternionic 
quantum mechanics. Horwitz and Biedenharn (1984) give a second quantization based on the complex 

linear tensor product of two-component complex wave functions w1 = (i;,) constructed from the 

symplectic components, taking the inner product to be the complex linear inner product 
(/I R)c = J d 1x1JJ) IJJg [cf. Eqs. (2.65a) and (2.66b)]. Thus what they give is the standard second quanti;a
tion of the complex quantum dynamics associated. as in Sec. 2.5. with a quatemionic dynamics. Razon and 
Horwitz (1991a.b, 1992) and Horwitz and Razon (1991) give a construction based on an embedding of an 
N-fold multiquaternion algebra (corresponding to an N-particle system) into quaternionie Hilbert space. 
Their work elucidates many interesting properties of mulliquaternion algebras. but the inner product they 
propose reduces in the one-particle sector to 

W /l~) +2tr(J!g)) 

which is real linear but not quatcrnion (or even complex) linear. Their con>truction therefore does not 
correspond to the one-particle quaternionic quantum mechanics developed both in Horwitz and Bieden. 
harn ( 1984) and in this book. 

In arriving at the Fock space construction given in this section. I have benefited from stimulating 
conversations with L. P. Horwitz. who in particular emphasized the necessity of determining the structure 
of the lcrt.acting quaternion algebra. 
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We begin the construction by defining F ock space for a system of identical 
particles that are of either bosonic or fermionic permutation symmetry type. 
When one particle is present, the corresponding state vector lies in a quater
nionic Hilbert space denoted as Vll-1 in Sec. 2.1, and here denoted as V~. Simi
larly, when N identical particles are present, their state vector lies in a 
quaternionic Hilbert space V~. To these N-particle Hilbert spaces, 
N = 1, 2, ... , we adjoin a zero-particle Hilbert space V\k, which contains a 
single unit normalized state, called the "vacuum state" and denoted by IO). Fock 
space V" is simply the "big" Hilbert space, that is the direct sum of all the N
particle Hilbert spaces, for N = 0, I, 2, ... , 

V F vo o vi v2 
!H = IH E"t-' lH E9 !H ffi · · · (10.4) 

We now erect an orthonormal basis of appropriately symmetrized or anti
symmetrized states in F ock space, by taking over the standard complex 
quantum mechanics construction, as applied to representations in the class C. 
Since this construction is described in detail in a number of excellent texts (see, 
e.g., Negele and Orland, 1988, and Blaizot and Ripka, 1986), we give only a 
brief account, focusing on the formulas needed in setting up second quantiza
tion in quaternionic Fock space. We begin by choosing a it-representation E C 
and define creation and annihilation operators, denoted by a! and a;_, for the 
state Iii.) E v~, so that Iii.) is obtained from the vacuum state as 

(10.5a) 

and a;_ converts II~) to the vacuum state 

a;J-l) = IO) (10.5b) 

and annihilates the vacuum state, 

(10.5c) 

The creation and annihilation operators are assumed to satisfy the commutator 
or anti-commutator algebra 

(10.6a) 

with e = -I (giving commutators) for bosons and & = I (giving anti
commutators) for fermions. As a consistency check, let us show that Eq. (10.5b) 
follows from Eqs. (10.5a,c) and the algebra of Eq. (10.6a), 

(10.6b) 

We can now use the creation operators to form an appropriately symmetrized 
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orthonormalized basis for the N-particlc Hilbert space V ~~, as follows: 

n0 + ... +n 11 =N(10.7a) 

where the numbers na ..... n 11 are the occupation numbers. that is, the numbers 
of, identical eigenvalues in the list io 1, ••• , )~l\'· In the fcrmionic case, since 
(a} )2 = 0, all the cigenval ucs ;, 1 .... , )v must be distinct, and so there arc N 
occupation numbers n11 , ••• , nil', all equal to unity. 2 In the bosonic case, the 
eigenvalues in the list ;~ 1, ..• , i, 1v can occur more than once, leading to occupa
tion numbers greater than unity. The states of Eq. (10.7a) form a complete set in 
VN according to IH• 

L nal ... n".! I' ' (. , I L 1 t t I ) ( I lv.v = V' )~ 1 ... A.v) 1~ 1 ... A.v = -,a .... a. 0 Oai, ... ai, 
n1 . . J . . • N. /., 1

·.\ ·• 
1,1··"-X I"J .. I,\' 

(10.7b) 

where I v\ is the projector on completely symmetrized or antisymmctrized 
states. Th~1 combinatoric factor (N!/na! ... n11 !) -I just accounts for the fact that 
when the l~£'s are summed independently, there is an overcounting of states that 
arc identical up to permutation of the labels 1~ 1 ..• I~N· Summing Eq. (10.7b) over 
N, we get finally the completeness relation in Fock space, 

(10.7c) 

where again 1 vF is a projector on completely symmetrized or antisymmetrized 
states. nl 

Up to this point there is nothing specifically quaternionic in the formalism. 
We now introduce a quaternionic structure by defining left-acting quaternion 
units/;,, Ji. K;,, as follows: 

:)0 1 
(I;,h,Ki) = ~ N! L at .. . aLIO)(i,j,k)(Oia,;N ... a;.

1 

J\ =0 I, I . .I.,V 

(IO.Sa) 

which are evidently anti-self-adjoint, 

J~ = -};, K~ = -K,· 
I. • 

(10.8b) 

We shall show that these operators have the following further properties: 

(i) The four operators 1;.,!;, Ji., K;. form a quatcrnion algebra, 

(10.9a) 

2 In the fermionic case. Eq. (10.7a) assumes that a ..... It' is an even permutation of 1. .... N. 
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left-acting quaternion algebra I;,/j_.Ji_,Ki} 

(10.9b) 

(iii) The states 1). 1 ••• i.N) are formally real with respect to the left-acting algebra 
1;. lj_,Ji. K; and the right-acting algebra I. i.j. k, 

(10.9c) 

(iv) For any A.-representation E C and a-representation E C, 

(10.9d) 

but in general Ji. f J" and Ki f K", with Ji. 
4 

J" and K,: = K" only when 
all the transformation functions (/.Ia) are real. 

To prove properties (i)-(iii), let us use the notation eA. E;A: A = 0, I, 2, 3. for the 
corresponding right algebra and left algebra elements l, li.; i, /j_: },Ji_; k, Ki. 
respectively, so that 

(10.10) 

Multiplying E;A and Ei.B· we get 

. I . I 11 ) ( ·I • I I 
· · .I.N ),1 · · · ILN' Cs /.1 ··./.IV' 

(lO.lla) 

Now 

(lO.llb) 

with Af ... A~ a permutation of A1 ... leN and P the order of the permutation. 
Substituting Eq. (lO.llb) into Eq. (lO.lla), using the Kronecker delta liNN' to 

3 Just as in our treatment of the coordinate representation, where x denoted both the coordinate operator 
and its eigenvalue, we use i. to denote both an operator anc\ its eigenvalue. Thus, in l;..f;..J;.,K,, the 
expression i. denotes the i.-operator. and in l.l).a,_.a~. the: expression A denotes a specific eigenvalue. 
4 We could have based the Fock space construction on a class of representatives R defined in analogy with 
C but with the transformation functions (l.!rr) restricted to be real. We would then have J;_ =Jr.. K;. ~~ K" 
for any i .. rr-representations E R. However. within R we cannot construct the momentum or p-represc;nta
tion, which one would like to have as part of the Fock space formalism. That is why we have based our 
construction on the wider class C, which contains the momentum representation. 
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Substituting Eq. (lO.llb) into Eq. (lO.lla), using the Kronecker delta liNN' to 
eliminate the sum over N 1

, and noting that because of the symmetry properties 
of IA- 1 • • • /.,v) each term in the sum over permutations P makes the same contri
bution as the identity permutation, we get 

X 1 
EAEB ~ "- " " I. I. ~ ~ ( 1)2 ~ ~ N . .. ·I ·I N=O 1. 1 .. -1._v 1_1 

... 1,s 

(lO.llc) 

which shows that the left algebra EiA is isomorphic to the right algebra e A, 

proving (i). To prove (iii), we multiply Eq. (10.10) from the right by l/. 1 • · • ;,N) 
and use Eq. (lO.llb), giving 

= IJ,, · · · ).N)eA (lO.lld) 

To prove (ii), we form the product a)E.;A and use the fact that 

(10.12a) 

with n;_ the number of occurrences of). in the set of labels A. 1 ···AN, giving 

:xJ 1 
t£. ~L-L( I ') . (. 1)1/21)" . )' (1 'I a. 1A ~ I na. · .. nit'· 1• , nA + .AI ... AN eA A! .. -AN }. . N ·I· .. "N 

N=O . .l, ... ;.N 

(10.12b) 

where the subscript on the product of occupation number factorials is a re
minder that it pertains to the original label set .tl 1 · · • ),N· On the other hand, 
multiplying in the opposite order and using (Oial = 0, we get 

. t ~ L:XJ 1 L ( I... I) I' 1 ) ( 1 1 I t E1Aa, ~ ( 1 na. nw. ; ' . 1.1 ... /,N+I eA AI ... AN+! a 1-. 1' N+ 1). ·f-.-ANti • 
N=O }.I .. .)·N-t-1 

But since a·t acts as· an annihilation operator on bra states, we have 
/. 

N+l 

(1,, · · ·ANtiiaj = L(-e)£-lb;_;,£(n;_ + l)- 1
/
2 (J.J ... (.tle) ···AN+! I 

€=1 

(10.12c) 

(10.12d) 
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with ni. + 1 in Eq. (10.12d) the number of occurrences of I~ in the set of labels 
i. 1 ... ;~TV+ 1, and with (i~ 1 ... (it) ... I~N~ 11 the N-particlc state obtained from 
(1~ 1 ••• i.N-'-II by deleting 1.1. Since we evidently have 

61-.1·.
1 
(n,,! ... n,, !)

1
· 1· . = 6 1-_1·_

1 
(n,,! ... n,, !) 1· ( · ) (n + 1) 

·I··· ·,\~I '" .J ... l.f . . i._v.,-1 I. 
( 1 0.12e) 

substituting Eqs. (10.12d) and (10.12e) into Eq. (10.12c) gives 

- ~ 1 '"""' '~( )£--h .. ( I I) ( 1)1/2 
EiA< = 0' (N + l)!. ~ ~ -£ u~.~. 1 n0 •••• nli". i., .. (i.r).i.\ll ni. + 

.\--0 /.j . ./._\',-! 1=1 

x l/~1 ... i~t ... i~Nt-l)eA(I~I . .. (i.J) ... i.vt-11 (10.13a) 

Finally, noting that all N + 1 terms in the sum overt give the same contribution 
as the£ = 1 term, and in this term replacing the dummy variables /~2 ... i~iV ~ 1 by 
/. 1 ••• i./v, so that ni. now becomes the number of occurrences of i. in the set of 
labels i. 1 ••• i.N, we get 

(10.13b) 

which is identical to Eq. (10.12b). So [EiA. ajJ = 0, and taking the adjoin1 
implies [Ei.A. ai.] = 0. There is evidently nothing quatcrnionic about these 
manipulations: The proofs of (i), (ii), and (iii) arc essentially just the proofs that 
I~= Ii, [aj. li] = 0 and Ui.J ... iv) = 11., .. . i~,v), respectively, which are 
expected properties of the identity operator in Fock space (but which are not 
proved in most textbook discussions of second quantization). 

We turn now to property (iv). For any i~- and a-representations E C, we have 

li~) = L la)(rrlll) (I 0.14a) 
(J 

with (ali~) E <C(l.i). Writing li.) and Ia) in terms of creation operators acting on 
the vacuum state, Eq. (10.14a) becomes 

a} IO) = La~ IO) (ali.) ( 10.14b) 
(J 

which has the multiparticle state generalization5 

( 1 0.14c) 

5 We either can take Eq. (IO.I4c) as defining a change of representation (within C) for a multi particle 'tate. 
or we can add the assumption :a). a~L. -= 0 [which is obeyed by the left algebra form of the transformation 
given in Eqs. (l0.17a,b)] and derive Eq. (10.14c) by repeated application ofEq. (IO.I4b). 
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Applying Eq. (10.14c) to Eqs. (10.7c) and (IO.Sa), we obtain 

X I ' ' 
li,Ji = L Nl L at .. . a})O)(l.i)(Oiai\ ... ai

1 

1V·~O 1.1 ... 1._v 

X I 

=L:ML: L L 
N=O 1.1 .. J_v cr1 .. cry rr1

1 
... cr1\ 

(I0.15a) 

This argument docs not apply in general to Ji and Ki because j and k do not 
comm u tc with fir"= 1 (a 1l i,f), except when ( al /.), rather than being q I. i), is reaL 

Before applying these properties, we note that property (iv) has a direct 
converse, which states that if Ii. = I" = I, then the transformation functions 
(!.Ia) are all <C(l. i). This follows immediately from 

(IO.i5b) 

Also, the operators Ui.cr JiJ~ and Vi.rr- 1)1" are <C(l.I) unitary. In the case 
of ui.cr the <C( 1./) property follows from 

!Uirr = liUirr = Ji( -/i) J~ = Ji( -/") J~ = JiJ~J" = JiJ~J. 

and unitarity follows from 

Uicru}cr = JiJ~lcrl) = JiJ} =I 

U i U· -J J~J-JT _I Ji -I· 
I~(J !.a - (J i. I. (J - • r; (J - ' 

the argument for V;,cr is similar. 

(I0.15c) 

(IO.I5d) 

Using properties (i)-(iv), we can now infer the operator form of the connec
tion between the creation operators a} and a~. Starting from Eq. (I 0.14b) and 
writing 

(ali.)= (al/.) 0 + i(al/\ 1 (I 0.!6a) 

with (ali.) 0_1 real, we have 

a}IO) = L:a~IO)((alti.) 0 +i(al/.) 1 ) (IO.l6b) 

" 
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But by properties (iii) and (iv), 

IO)i = IIO) (10.16c) 

and so defining 

(a-1/.) 1 = (aV)o + l(aV) 1 (10.16d) 

Eq. (10.16b) can be rewritten as 

(10.16e) 

This equation is consistent with the operator relation 

aj = L a~(al)~) 1 (10.17a) 
(J 

which by property (ii) can also be written as 

aj = 2)alic) 1a~; (10.17b) 
(J 

in other words, the factors on the right-hand side can be written in either order. 
Taking the adjoint of Eq. (I 0.17b ), we get 

ai. = L a(J(al).) j (10.17c) 
(J 

Now since 

(ali.)* = (J.Ia) = (all) a- i(al/.) 1 (10.17d) 

we have 

(a Ill);= (all~)o- l(o"!i-) 1 = (tlla) 1 (10.17e) 

and so Eq. (I 0.17c) takes the form 

(10.17f) 

From Eq s. (I 0.17a,b) and (I O.l7f), we can verify that the commutator- anti
commutator algebra in the a-representation implies that in the },-representation, 

a1 • a11 

[ t J - " [ t J ( .,1 ') ( ''I"") ail , a/' " - 4---;, a"' . a rr'' " A a 1 a A 1 

(J ·" 
" ~ ( .,1 ') ( "I"") \._____,(J'I ') ( 'I'") ~ = ~ u "' "" 1. a 1 a A 1 = L--J . a 1 a ;. 1 = o ;.' i." (IO.!Sa) 
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This calculation makes explicit use of the fact that 

(IO.!Sb) 

so that the order of factors on the right- hand side of Eq. (I O.!Sa) is immaterial. 
However, if we attempt to define transformations 

a~= :Lat(a/K)IH, a"= L arr(K/a) 1H (10.19a) 
(J (J 

with (a/K) 1H a general left algebra quaternion-valued transformation function 

(10.19b) 

then the calculation of Eq. (I O.!Sa) breaks down; for example, 

= L a"dlrr" [ ( K
1

/ a') !H, ( K" /a") IH] f 0 (10.19) 
a' .(J" 

= i5"' "" + L w~" a"' [ ( a
11

/K
11

) lH, (K
1
/a') lH] 

(JI .(JII 

The problem encountered in Eq. (10.19c) is yet another manifestation of the 
nonexistence of a quaternion linear tensor product, which was analyzed in detail 
in Sec. 9.3. We remark, however, that since the noncanonical terms in Eq. 
(IO.l9c) arise from a commutator of elements of the left algebra I, I= l(J, J "' K", 
and since a" is formally real with respect to this algebra, the noncanonical terms 
are formally imaginary with respect to this algebra. Thus, if we define a trace 
over the left algebra I,/". J", K" as [cf. Eq. (2.11 b)] 

then we have 

tr EJa"', a"" Jr. = 0 

trErr[a~,,a,~~~L = 0 

tr Err [a"', a~~~ L = i5"'"11 

(10.19d) 

(10.19e) 

An application and further properties of the operators at, a" will be discussed in 
Sec. I 0.2. 

Although we can only define canonical creation and annihilation operators 
for representations /. E C, we can still use the corresponding basis states as 
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expansion bases for a general quaternionic many-body wave function, just as 
the x-representation was used in Eqs. (IO.la-c). Let I f) be a general state of a 
bosonic or fermionic many-body system. Then multiplying from the left by the 
representation of unity given in Eqs. (10.7a-c), we get 

1/.)=l·lf)=~-1 "at ···at IO)(Oia· ···a· If") . /.. ~ N! -~ /.j /._v l.,v /.j 

N=O 1. 1 ·--1.,\' 

(10.20a) 

which exhibits the general state I f) as a superposition of /.-representation states 
IJ. 1 • • • I.N), with quaternionic expansion coefficients (A 1 · • • 1-NI f). Taking the 
inner product of Eq. (10.20a) with (gl, we get an expansion of the quaternionic 
inner product (gl f) in terms of expansion coefficients 
(/., ... }.Nif),(/., ... J.Nig) [analogous to Eqs. (IO.lc) and (10.2c) in the one
body case], 

(10.20b) 

This construction of the inner product satisfies all the inner product axioms of 
Eqs. (2.2a-e), and reduces in the one-particle sector to the inner product used in 
Chapters 2-8. 

The dynamics of states in Fock space is governed by the Schrodinger equation 

f) -
atlf) = -Hif), (10.2la) 

with fl anti-self-adjoint, 

fl = ·-fit , (10.2lb) 

so that the inner product (gl f) of Eq. (I g.20b) is time independent. Given any 
A-representation E C, the Hamiltonian H may be constructed as a sum of a 
partic!e number conserving part Hcons and a particle number nonconserving 
part Hnoncons, 

- - --
H = Hcons + Hnoncons (10.2lc) 

which, respectively, commute with, and fail to commute with, the particle 
number operator N, 

(lO.nd) 



282 NO:\'RELATJV!STIC QLA n:R:'IIIOI\IC QlJANTLM MECHANICS 

The conserving part is a sum of n-body operators for n = 0. I. 2 .... , 

with W, given by6 

·X 

Hcons = L W, 
11-~0 

(10.22a) 

(10.22b) 

The quaternion-valucd coefficients (/. 1 · · · i.,l W11 li-~ · · · A.;,) 1H lie in the left-acting 
algebra spanned by 1./. 1;_, K;, 

(. . IW- I'' J') (' ) IW- I'' '') (' 'IW- I'' '')I 1·1 · · " 1·n n Ill··· ·n IH = lq · · · ·n n 1., .. ·1.11 0 + "-1 · · ·1-n 11/'l · · ·1., 1 

+ (). I · · · ).,11 Wn I/.', · · · i.:, h 1 i 

+ (1,, · · · /.,1 WniX, ... ).~)JKi (10.22c) 

w.Jth real_ P-1 ... A. 11 l W,li1 ••• ).~)A, A= 0, I, 2, 3, and with the condition that 
w~ = - w/J requiring 

(10.22d) 

where the bar denotes the conjugation operation I= -I, 1; = -1;_, K;, = -K;, in 
the left-acting algebra. By virtue of property (ii), the coefficient 
(). 1 ••• l,l W11 IA.~ ... Jc~)IH can be ordered anywhere in the product inside the sum 
in Eq. (10.22b); for example, we can equally well write 

(I 0.22e) 

The nonconserving part has a similar structure, except that of course the 
numbers of creation and annihilation operators do not match, so that the 
generic contribution to Hnoncons has the form 

n ic n
1 ( 10.23) 

Once we arc given the construction of fi in the },-representation, we can transform 
fi to any a-representation E C by using Eqs. (10.17a,_b, f). Finally, taking the).
representation to be the x-representation, and with Hnoncons = 0, the projection 
of Eq. (I 0.21 a) on the N-particle state ( {x(r)} I gives an N-body coordinate repre
sentation Schrodinger equation of the type studied in Sees. 9.1-9.3. 

1
' The round bracket states (/.1 ... ,;,,I denote unsymmetrized unit normalized states. which when symme
tri!ed and rcnormalizcd give the states li.1 .. . 1.1,); hence for n = I. (Ail c_ (/.II-
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In conclusion, we note that the entire Fock space construction of this section 
remains valid if the class of representations C is replaced by the more general 
class C', where representations within C' are related by <C(i, i') transformation 
functions, with i 1 a general unit imaginary quaternion. The transformation from 
the Fock space based on C to the one based on C' will then involve the quater
nions in a nontrivial way; elucidating the structure of these transformations is 
an important open problem . 

. .. ·----------·----

10.2 QUASIPARTICLE TRANSFORMATION FOR A PARTICLE
NUMBER-CONSERVING ONE-BODY HAMILTONIAN 

As a concrete illustration, let us consider an N-particle Hamiltonian that is the 
sum of identical one-body terms for the N particles, with the coordinate repre
sentation form 

.V 

fi = Ll;(x(r)), 
r=l 

- i ~2 -
h(x) = --

2 
v'x + V(x) m -

(10.24a) 

The second quantized form of this Hamiltonian, in the /-representation, is then 
the particle-number-conserving one-body Hamiltonian 

H= Lat(/. 1 lhll'1 ) 1Ha;,~ (10.24b) 
• -1 
/.j/.1 

These formulas are analogous to those familiar from the second quantized 
many-body proble,!ll in complex quantum mechanics, except that now the coef
ficient matrix (/q lhl/.'1 )1H appearing in Eq. (I 0.24b) is q uaternionic, 

3 

= L (;l.,l/;ll~) AEi,A = (iL,Ihll',) h + J;, (A.,Ihll',) I(J 

A=O 

(/.,lhiA'1) I ex,{! E <C(l,J) 

( 10.24c) 

This has the consequence that it is not possible to transform to an independent 
particle picture that diagonalizes fl. 

To see this, we COf!Sider the one-particle Schrodinger equation determining 
energy eigenstates of h, 

which in ),-representation is 

L (,l.lhl;l.') (A.'IK) = (/.IK)i£1{ 
},' 

(10.24d) 

(10.24e) 

When (l.lhiA') fi f 0, the transformation functions (.l.l K) that diagonalize h are 
quaternionic, which, as we have seen in Eqs. (10.19a-c), has the consequence 
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that the "quasiparticle" operators a;,, a,, defined by 

a,,= _L(K!J.)!Ha,; 
,; 

( 10.24f) 

are no longer canonical. Let us nonetheless proceed to reexpress if in terms of 
a~ and aK. We begin by remarking that although the order of factors on the 
right-hand side of Eq. (I 0.24f) is immaterial, in the inversion formulas 

a;= LVIK)!HaK (I 0.24g) 
/( 

the factors on the right do not commute and must be ordered as shown. 
Substituting Eq. (10.24g) into Eq. (10.24b), we get 

(10.24h) 

which on using the left algebra transcription of Eq. (I 0.24e) becomes 

(10.25a) 

with the factor ordering again significant because a;c and aK do not commute 
with I. We thus see that the transformation of Eq. (10.24g) formally diag
onalizes if, but this does not constitute an independent particle picture because 
the operators a~ and a,c are noncanonical. 

To study the properties of the quasiparticles in greater detail, we begin by 
considering the single-quasiparticle state IK), which we rewrite as 

(I 0.25b) 

Thus the quasiparticle operator a;< creates the state IK) when applied to the 
vacuum state. Conversely, when a"' is applied to !K), we find from Eqs. (10.24f) 
and (10.25b) that 

aK'!K) = _L(K'i).')IHaJ.'aj_iO)(ti.IK) = _L(K'i).')IHb,;,/(}'iK)IHIO) = b"K'!O) 
;.J.' ; . .l' 

(10.25c) 

and so aK acts as an annihilation operator for single-quasiparticle states. As an 
immediate consequence of Eqs. (10.25a-c), we learn that IK) is an eigenstate of 
if with eigenvalue i£", 

= L a;c,J£K,<)KK'!O) = a;~!O)iEK = !K)iE,c (10.25d) 
I<' 

However, when we turn to the two-quasiparticle state a~ 1 aUO), we find that 
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this is not an eigenstate of fl, both because [a,<, a;c
1 

],, is noncanonic;al in form 
and because I and at do not commute. Two--particle eigenstates of H of course 
exist, but in general are some quatcrnionic superposition of the states a;c a;,

2
IO) 

for different K1, K2 , with an eigenvalue spectrum not simply related to the one
particle spectrum. These results are in complete accord with what was found in 
Sec. 9.3. Corresponding to the noncanonical structure of the quasiparticle 
operators, we see that in the fermionic case they do not obey the usual Paul.i 
exclusion principle, since we have [cf. Eq. (10.19c)] 

The generalization of Eq. (10.25e) to higher powers of a" is 

a;'a;~~ai"'a;'' ~!A( (Kii.')IH, (Ki/') 1H, (K[.ti.'") 1H, (KIA1")IH) 
/ i./1 /" j_h 

(I 0.25e) 

(I 0.25f) 

with A denoting the completely antisymmetrized product of its arguments. Thus 
a~ is nonzero, but a~ vanishes for fermions, since A (I, i,j, k) = 0 implies that the 
totally antisymmetrized product of any four quaternions is zero. 7 We note, 
finally, that the complications just discussed do not affect the number operator 
N, which is defined in Eq. (10.2ld) to be a formally real operator over the 
/.-representation left algebra. Hence N commutes with (AIK) 1H, and so 
[N. aT]= at together with Eq. (10.24f) impl.y that 

I. !. 

(I 0.25g) 

apd thus we have been correct in identifying a~IO) as a one-particle state, 
a~ a~ IO) as a two-particle state, and so on. The number operator also remains 
fo~mllly diagonal when expressed in terms of the quasiparticle operators, since 
substituting Eq. (I0.24g) into Eq. (10.2ld) give&-

N = La!a; = I>t<(Kii.)IHU·IK')IHa,<' 
!. }J<f(' 

= L a~i5""'a><' = ~= a1ca>< (I0.25h) 
/(1( 1 

F( 

Certain simplifications in _the quasiparticle structure arise if we assume that 
the one-body Hamiltonian h(x) of Eq. (10.24a) is time reversal invariant. In 
'lccordance with the analysis given in Sees. 4.6 and 4.7, we must treat separately 

7 This \lias observed in a somewhat different conlext by Govorkov (1987). When tr(><li.) ~ 0. the quasi
panicle operators a;. a,, obey an algebra closely resembling rank-3 parastatistics, which will be discussed 
further in Sec. l4.l. 
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the bosonic and fermionic cases. In the bosonic case, when if anticommutes 
with the time reversal operator 

Ur = J;cos 8 + Ki. sin 8 (10.26a) 

for some fixed angle 0, the transformation functions (ti.IK)IH lie in <C(l, Ur), and 
commute with one another irrespective of the values of K and A.. Hence in this 
case the bosonic quasiparticle operators obey the canonical commutation rela
tions 

(I 0.26b) 

However, since a~.and aK are now <C(l, Ur), they still do not commute with I, 
and therefore a;,

1 
aJc

2
IO) still fails to be an H eigenstate, 

= (a,tJE1<1 aJ<2 + at/E,,A~ 1 )IO) 

= at a;,)O)i( £,< 1 + £"2 ) + {a;'~ E,q [I, aU + a~ 2 EK2 [I, aU} IO)( I 0.26c) 

In the fermionic case, when if anticommutes with the time reversal operator 

Ur = (J;. cos 0 + K; sin ti) ( ~ -~I) (I 0.26d) 

the transformation functions (K, ±II A.,± I) Il-l are restricted in form according to 

(i, -ilK, I )IH = Is 1 (L K) + d1 (/., K) 

(/., ilK, -J) lH = Is 1 (/., K) - d1 (}., K) 

(A., -ilK, -J) !H = s2 (/c, K) + Id2 (}., K) 

().,IlK, l)!H = S2(A., K) -Id2(A, K) (10.26e) 

with s 1, s2 , d1 , d2 E <C(l ,I(J;. cos 0 + K~c sin fl)). In this case, any two of the four 
transformation functions in Eq. (10.26e), say (/c, -IlK, 1) 1H and (A., IlK, l)IH, 
are completely general left algebra quaternions, with Eq. (10.26e) implying 
that the other two spin cases are computable in terms of them. As a conse
quence, there is no simplification in the overall structure of the algebra of the 
quasiparticle creation and annihilation operators a~., and a",.,, which remains 
non canonical. 

There is of course one case in which an independent particle picture is valid. 
This occurs when (A.IhiJ.') 11 = 0, so that the second quantized Hamiltonian 
reduces to 

if= fi~ = La)(Jclh!i') 1 ~a;i (10.27a) 
;_;_' 
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The one-particle Schrodinger equation now is 

L().lhltl')~(/.1 IK) =c (/.IK)i£1{ 
;_' 

287 

(I 0.27b) 

and is solved by C( I, i) transformation functions (ti.IK). The quasiparticle 
operators a~, aK are now <C( 1, I), and therefore obey canonical c~mmutation 
relations and commute with the explicit I in the diagonalized H, with the 
consequence that we obtain the independent particle result 

(10.27c) 

We thus conclude that only the <C( I, I) part of the quaternionic one-body 
Hamiltonian can be reduced by a change of basis to an independent particle 
picture. In terms of the general many-body Hamiltonian Hcons of Eq. (10.22a), 
this means that to implement an independent particle basis we must make a 
splitting [cf. the discussion following Eq. (9.46)] 

- - -
Hcons = Hindependentpartic!e + Hmany-body 

Hindependent particle = Wo + W,a = Wo + La t ().,1 W,ltl',) I "a i.'l 
A,/, 

')C 

Hmany-body = Ji. W,p + L w/1 
11=2 

w,p = :Lat(A.,IW,Iti.;)Itia;'t 
' •I 
/.j/.1 

(10.27d) 

Similarly, when Hnoncons f 0, transformation to an independent particle picture 
is possible only for C(l ,/) terms in Hnoncons that are diagonalizable by a quasi
particle transformation in the standard complex many-body theory. 

10.3 STATISTICAL MECHANICSi 

In this section we shall briefly examine the extension of statistical mechanical 
methods to quaternionic quantum mechanics. We consider a quaternionic 
multiparticle system that asymptotically separates into a very large number of 
complex clusters, and in which (through the inclusion of rest masses) all 
complex cluster energies are positive. Then, according to Eq. (9.101), the 
complex cluster energies Ea P satisfy an .additive energy conservation law 

P(a) 

LEa.p=E 
p=l 

(I0.28a) 

with the total energy E independent of the arrangement channel a. Similarly, 
letting n11 P denote the number of particles in cluster p of arrangement channel a, 
we have from Eq. (9.58a) an additive particle number conservation law 
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P(a) 

Lna,p = N 
P-' 1 

(l0,28b) 

with the total particle number N independent of the arrangement channeL The 
existence of additive energy and particle number conservation laws, as in Eqs, 
(10,28a,b), is a sufficient condition (Landau and Lifshitz, 1958) to guarantee 
that an ensemble of asymptotic (i,c_, dilute) systems in thermal equilibrium 
contains the set of clusters p in arrangement channel a, with energies Ea_p and 
particle numbers na,p, with probability 

N --1 -(!('\' Ea p-!1 '\' 11a p) N-l -/!(1:."-nN) e Gp Gp , = e ,_.. (10,28c) 

Here N is an overall normalization determined by a sum over all arrangement 
channels, f3 is the customary shorthand for (ksT)- 1

, with ks Boltzmann's 
constant and T the temperature, and J1 is the chemical potentiaL Let us now 
consider an ensemble of quaternionic multiparticle systems, which are in 
thermal equilibrium but which need not be in the dilute regime_ Such an 
ensemble is described by a density matrix p that is time independent, and so by 
Eq, (3A8) obeys 

[p,il] =0 (l0,29a) 

Assuming that the particle number operator N commutes with the time-inde
pendent Hamiltonian if and is the only relevant conserved quantity, Eq, 
(10,29a) implies that p has the functional form 

(10.29b) 

with IHI and Iii the Hamiltonian modulus and phase that are defined in Eqs. 
(3.21) and (3.23a). Adding the requirement that p agree with the distribution of 
Eq. (10.28c) for dilute systems in which the force ranges arc much smaller than the 
mean intercluster distances, then fixes the functional form of Eq. (I 0.29b) to be 

(10.30a) 

with !1 a constant fixed by the normalization condition 

Trp = 1 (10.30b) 

The ensemble expectation of a quaternion self-adjoint operator A is then, in 
analogy with Eq. (3A9), 

(A)= Tr(pA) = Tr(efi(n-liil+wV) A) (I 0.30c) 

Rewriting Eqs. (10.30a-c) as sums over a complete set of eigenstates {In)} of the 
operators (H,N) with eigenvalues {iE11 ,N11 }, we have 

11 

(A)= z-1 L e-f!(E,-!1Nn) (A)n (10.30d) 
n 
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with (A)n = (niAin) the expectation value of A in the state In). Equations 
(10.30a~d) give the extension of equilibrium statistical mechanics to quaternio
nic multiparticle systems. 

Let us next examine the generalization of thermal Green's functions to 
quaterni?ni~ systems. For this purpose we define a <C( 1, i)-valued thermal 
expect a t10n 

(O)a: Tr (pO)- iTr (IiiPO) (10.31) 

which can be applied to a general guaternionic operator 0, which need not be 
self-adjoint. In the applications that follow, we will take 0 to be a product of 
two distinct operators A and B evaluated at different times. Specifically, let A(O) 
and B(O) be two Schrodinger picture operators that are either both bosonic or 
both fermionic in symmetry type,9 and let A' (t) and B' ( t) be the modified 
Heisenberg picture operators constructed as in Eg. (3.51a), but using the modi
fied Hamiltonian 10 

(10.32a) 

that is, 

B'(t) = eii't B(O)e~if't (10.32b) 

In terms of the expectation of Eq. (10.31) and the operators of Eq. (10.32b), we 
introduce a retarded Green's function 

and an "imaginary time" or temperature Green's function 

G(rl, r2) =-(A'( -lifT! ).B'( -/ifr2))8(rl - r2) 

+ 6(B'( -Iifr2)A'( -lrJII))8(r2- rl) 

(10.33a) 

(10.33b) 

with e in both cases taken to be -I ( 1) according to whether A and B are of 
bosonic (fermionic) symmetry type, and with 8(u) the step function 

O(u) =I, 

8(u) = 0, 

u>O 

u<O (I 0.33c) 

We proceed now to derive a number of properties of these Green's func-

'The structure of Eq. (10.31) is analogous to that of the complex inner product defined in Eq. (2.19). Both 
are based on the decomposition of a complex number c into real and imaginary parts according to 

c=Rec+ilmc =Rec~iRe(ic) 

9 A bosonic (fermionic) operator is a product of any number of bosonic creation or annihilation operator 
factors with an even (odd) number of fermionic creation or annihilation operator factors. 
10 The corresponding modified Heisenberg picture state vector is If~/)= / 1 ''1 nand obeys 

D I ., ) ii'r(a -,)I . 1/'r(i) - ) ., Dt fH =e Dt+H f)=e 8t+H~JI111N lf)=~lilllNifll) 
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tions. 11 First of all, let us show that both Green's functions depend only on the 
difference of their temporal arguments, 

GR(tJ, t2) = GR(t! - t2. 0) = GR(O, t2- t1) GR(tl - t2) 

G(rJ, r2) = G(rJ- r2, 0) = G(O, r2- TJ) G(r1- r2) (10.34a) 

To prove Eq. (10.34a), we note that 

Tr [(I, Iif)pA'(tJ )B'(t2)] = Tr [(L Iii)peif'r1 A(O)e- i/r1JI'r2 B(O)e-if'r2] 

= Tr [(i,I11 )peif'(r!-t2)A(O)e1f'(trti)B(O)] (10.34b) 

where in arriving at the final line we have used the cyclic property of the trace 
together with the fact that if' commutes with p and with I 1i" Hence the expres
sion in Eq. (I 0.34b) is a function of the difference t 1 - t2 of the time arguments. 
The same is true when the roles of A' (tJ) and B' ( t2 ) are interchanged, and is 
also true when t1, t2 arc replaced by -Iifr 1, -I11r2, since I 11 commutes with p. 
Thus each individual term on the right-hand sides of Eqs. (10.33a,b) is a func
tion of the difference of temporal arguments, giving the desired result. 

The next property we derive is a periodicity property of the thermal Green's 
function G(r 1,r2). Let r be chosen so that 

0 < T ~ {J-¢=} -(J < T- j3 ~ 0 (10.35a) 

and let us use the fact that 

(10.35b) 

to rewrite p in the form 

(10.35c) 

Hence for the Green's function G(r- {3) we find 

G(r- f3) = G(r- {3,0) = c(B(O)A(-Iif(r- f3)))Q~ 

= r;elin Tr (efi111if' B(O)e- 11/(r-f!)if' A(O)/il(r-/J)if') 

- i£ef!n Tr ( Iifefill!if' B(O)e -Ifl(r-f!)if' A (O)e1if(r-f!)!i') (10.36a) 

which, using the cyclic property of the trace and the fact that I if commutes with 
if', becomes 

G(r- {3) = cef!\1 Tr (e11)!!1' A(O)e1iirif' B(O)e-1 frd1') 

- ieef3!l Tr (I
11

e111Pif' A(O)e111rii' B(O)e-1ildi') (10.36b) 

11 Equation (10.34a) is still valid when the Green's functions arc defined using H, rather than if', as the 
time translation generator. Usc of if' is required in the derivation of the periodicity condition of Eq. 
(10.37a) obeyed by the temperature Green's function. 
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But now considering the Green's function G(r), we have 

G(r) = G(O, -r) = -(A'(O)B'(Iifr))r;: 

=-elm Tr (el!li/1' A(O)e1Jir!l' B(O)e-Iilr!l') 

+ ief!ll Tr (1iie~1ilil' A(O)/i!ril' B(O)e-1iiril') (10.36c) 

which when compared with Eq. (10.36b) gives the periodicity condition 

G(r- [5) == -~;G(r) (10.37a) 

Applying Eq. (10.37a) twice, first with r = fJ and then with r = 0, we also get 

G(#) = -~;G(O) = ( -c) 2 G( -{3) = G( -/3) (10.37b) 

Let us now use the properties just derived to Fourier analyze the Green's 
functions. Beginning with G R, we define 

GR(w) =I: dte
1
w

1
GR(t) 

= -i I: dte1
w

1([A'(t), B'(O)L)f:O(t) 

= -i (x dte1w1([A'(t), B'(O)],)<L 
.fo 

(10.38a) 

which defines a <C( 1, i) function G R ( w) that is analytic in the upper-half complex 
w plane. Let us now express( )r;: in Eq. (10.38a) as a sum over a complete set 
{[n)} and insert a second complete set {[m)} between A'(t) and B'(O). Introdu
cing the notation 

( 10.38b) 

so that 

if'[n) = [n)iE~., ( 10.38c) 

we get 

([A'(t), B'(O)lJQ: = efJSJ L e-fJ£,, [tr(n[[A'(t), B'(O)L!n)- itr(i(n[[A'(t), B'(O)],n) )] 
11 

=elm L e-ru:;, (n[[A'(t), B'(O)l,;ln)~ 
n 

= e~n "'"'e-f!E,, '\'((n[A'(t)[m)(m[B'(O)[n) 
~ L..J 

n rn 

+ ~;(n[B' (0) [m) (m[A' ( t) [n) )" (10.39a) 
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Substituting Eq. (10.32b) and again using Eq. (10.38c), we get 

([A' (t), B' (O)]J«C = efill L e-fiE;, L ( e 1E~r (njA(O) Jm)e-iEn,t (mjB(O) Jn) 
n m 

+ t:(nJB(O) Jm)eiE,,t (mjA(O) Jn)e-il:~,r)~ 

~ of3n "'""""'e-f31:~, ""(e'(t~,-E,,)rA B - /(t~,tEml 1A* B 
~ L L L nma mm nmfi mnfJ 

n nt 

(10.39b) 

where we have written 

(njA(O)jm) = Anmcx +JAnmfi, (njB(O)Jm) = Bnmcx +JBnmfi (10.39c) 

Since all time dependences in Eq. (10.39b) are exponential, we can conveniently 
rewrite it as 

([A'(t),B'(O)],)([= I: dxe-ixtAR(x) 

with AR(x) the spectral function 

AR(x) = ef311 ""{(e-fJ!~, + ee-f3E,n)A B b(x + E' - E' ) L......t nm:x mnr:t. n m 
n,m 

(10.39d) 

Finally, substituting Eq. (10.39d) into Eq. (10.38a) and carrying out the inte
gration overt, we get an expression for GR(w) in spectral form (with Imw > 0), 

( 1 0.40b) 

We turn our attention next to the temperature Green's function. Since G(r), 
by Eq. (10.37b), is a periodic function in the interval -fJ 'S r 'S {3, it is natural to 
represent it in this interval as a Fourier series. Taking into account Eq. (10.37a), 
which relates values of G(r) in the upper and lower halves of the interval, we 
write 

:xJ 

G(r) = {3·-I L G((t)e-i(lr (10.41a) 
£=-oc 

with J! an integer and with 

n2J! 
(£=If' e =~I (boson) 

Y -- n(2f! + 1) t: = 1 (fermion) 
S£ - j3 ' (10.41b) 
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The Fourier coefficient G( (p) may be calculated from the inversion of Eq. 
(10.4la), 

( 10.42a) 

which on substituting Eq. (10.36c) gives 

Carrying out the integration over r, we get 

ef(L;,-E;,+isr) __ 1 
G( " ) _ ;m"""""' -/!£',, (A B A' B ) 

l,( - -e L e E' _ E' + i(, nm~ mn"- nm/i mnfJ 
n.m .J n m f 

(10.42c) 

which since eif\1 = -~;becomes 

(10.42d) 

Rewriting Eq. (10.42d) in spectral form, we get finally 

j ·x A(x) 
G ( (I ) = dx -. v--'---'--

--x ll,f -X 

A(x) = cl!n L(e-f!E',, + £C-/i£,,)(A 11111"B"'""- A~mfBmnfJ)b(x + E;,- E~,) (10.43) 
11)1l 

Now comparing Eq. (10.43) with Eqs. (10.40a,b), we see that in the complex 
quantum mechanics specialization, in which A~mfBmnfi vanishes, the spectral 
functions AR(x) and A(x) are equal, with the consequence that G((£) is simply 
the analytic continuation of GR(w) to the imaginary axis point i(e. In the full 
quaternionic case, however, AR(x) and A(x) differ. We conclude that in 
quaternionic quantum mechanics, although we can define thermally averaged 
retarded and temperature Green's functions satisfying the usual temporal 
boundary conditions, they become independent functions not related to one 
another by analytic continuation. 12 

10.4 AN OPTICAL POTENTIAL ANALYSIS OF CLUSTERING! 

As a final topic in multiparticle physics, let us return to the analysis of the 
clustering problem, which was discussed within the framework of a specific 
model in Sec. 9.3. We now make no restrictive assumptions about the quater-

i2 In cases in which the quatcrmonic Hamiltonian fi has the form if= i/11 + V, with the unperturbed 
Hamiltonian !111 defining a theory m which the operators A. /J have ~:(1. i) matrix elements between energy 
eigenstates. one can set up unperturbed thermally averaged retarded and temperature Green's functions 
related by analytic continuation in the usual fashion, and then treat the effects of Vas a perturb,rtion. 



294 NONRELA TIVISTIC QUA TERNIONIC QUANTUM MECHA:\IICS 

nionic Hamiltonian if, beyond the assumption that the potentials acting 
between two subsystems vanish as the distance between the subsystems becomes 
infinite. Thus if the total system with particle coordinates {x(r)} consists of two 
widely separated subsystems (1) and (2) with particle coordinates { X(r) }t and 
{ X(r) } 2 , respectively. then we assume that H in coordinate representation sepa
rates into a sum of two terms 

(I 0.44a) 

with 

(I 0.44b) 

acting only within subsystem (I), and similarly with 

(10.44c) 

acting only within subsystem (2). We do not, however, assume that either H(I)~ 
or H(2 )~ is i times a real Hamiltonian, and so the analysis now permits vector 
potentials and spin--internal symmetry structure to be present. 

We assume that subsystem (I) is a small system that we observe, and that 
subsystem (2) is a very large system ("the rest of the universe") that we do not 
observe, and we investigate the effect on clustering within subsystem (I) of its 
quaternionic cross-coupling to subsystem (2). Instead of working directly with 
the time-independent quaternionic Schrodinger equation 

(10.45a) 

as in Sec. 9.3, we follow the analysis of Sec. 5.2 and immediately reduce Eq. 
(10.45a) to optical potential form. Substituting Eqs. (10.44a--c) into Eqs. (5.11) 
and (5.12), the optical potential equations become 

[ -i(HrJ)x + H(2Jx) + i(H(1JfJ + H(211J iE _ (H' I + H* ) (H(J)fJ + H(2)fJ)l f, = Ef, 
(I)> (2)x 

fj! = [iE- (H(I)rx + H(2 l~)J -I (H(I)/i + H(2)~)f~ (10.45b) 

We now invoke the assumption that subsystem (2) is very large, which implies 
that the term iE- H(2 J~ in the denominators in Eq. (10.45b) is much larger 
than the term -H~I)~· Making the "large subsystem (2)" approximation of 
neglecting all terms that vanish as E, H(2), and H(2 )~ are scaled to infinity 
with Hol~J! remaining finite, Eq. (10.45b) simplifies to 

[ -i( H(l l"- + H(2Jrx) + iH(2J/J .E _ !H* H(2)f! 
l (2)~ 

+ iH(I )/J iE- !Jr H(2)/i + iH(2)fJ iE- IH* H( I l~l ~~ = Efrx 
(2)o: (2)~ 
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- 1 . H !rJ - '£ _ H" (2){Ji~ 
l (2)~ 

(10.45c) 

This set of equations forms the basis for the analysis that follows. 
Let us begin by solving Eqs. (10.45c) to lowest order in H(I,2)fJ< which is the 

parallel of the calculation done in the specialized context of Sec. 9.3. Dropping 
terms quadratic in H(I.2 )f3• Eq. (10.45c) drastically simplifies to 

( 10.46a) 

Following the method used in Eqs. (9.38)-(9.40), the equation for f~ can be 
separated into independent equations for the (I) and (2) subsystems, giving 

withf(l )x and f( 2 )~ unit normalized, 13 

E = E(I) + £(2) 

(10.46b) 

and with N a normalization constant, to be determined, for the quaternionic 
wave function f From the second equation in Eq. (10.46a), the quaternionic 
wave function is 

(10.47a) 

from which we get for the subsystem (1) density matrix, with the coordinates of 
subsystem (2) integrated out, and neglecting second order in H(l,2)f3• 

({x(r)}liPI{x(r)}l) = J d{x(r)}2({x(r)}l, {x(r)}21PI{x(r)}l' {x(r)}2) 

= N
2 

[({x(r)}liP(l)i{x(r)}l) + Jv(2J({x(r)}liP(l)i{x(rJ}l) 

+({x(r)L IP(l)l{x(r)}l )(}'v(2))] (10.47b) 

11 We use here the natural abbreviations 

for the integrations over the coordinates of subsystems (1) and (2), respectively. 
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where we have introduced the abbreviated notation 

({x(r)} IIP(I)I{x(r)}I) =f(IJ~( {x(r)}I )/(I)~( {x(,.)}I) 

v(2) = J d{x(r)}2({x(r)}21.E _
1
H* H(2){Jif(2Ja)Ur2)~1{x(r)}2) 

l (2)x 

= J d{x(r)}2 J d{x(r)}2({x(r)}21 iE _ 1H(2 l~ H(2)~1{x(r)}2) 
X f(2Jx( { x(,)}2 )f(2J~ ( { x(r) } 2) ( 10.47e) 

Since the constant v( 2) is <C( I, i), the product }v(2) is qua ternion imaginary; hence 
jv(2) = -jv(2 ), and Eq. (10.47b) simplifies to 

({x(r)}IIPI{x(r)}I) = N 2
{ ({x(r)}IIP(IJI{x(r)}I) + [jv(2), ({x(rJ}IiP(I)ifx(r)}I)]} 

(10.47d) 

We can now determine the normalization constant N by setting 
{x(,.)}I = {x(r)}I and integrating, giving with the help of Eq. (10.46c), 

Therefore N = 1, up to corrections quadratic in H(I.2)fi· Defining the constant 
quaternion w(2), the value of which is independent of the subsystem (I) wave 
functionf(I)~· by 

w(2) = I - jv(2), w(z) = I + jv(2) 

w(2)w(2J = w(2)w(2J = 1 + O(Hfi))fi) ( 10.48b) 

our final result for the subsystem (I) density matrix is 

({x(r)}IIPI{x(r)}I) = w(2J({x(rJ}IIP(IJI{x(r)}I)w(2J 
~--:;----,...,.---;--;--;--

= [w(2) f( I )x( { X(r)} I )w(2) )][w(2)f(l )ex ( { x(r)} I )w(2)l ( 1 0.48c) 

Thus we see that the result found in the model calculation of Sec. 9.3 is 
completely general: To leading order in the quaternionic perturbation, the sole 
effect of the unobserved subsystem (2) is to induce a quaternion automorphism 
transformation i--> iw(

2
) = w( 2)iw(2) on the zeroth-order subsystem (I) density 

matrix. Since the zeroth-order dynamics of subsystem (1) is governed by 
complex quantum mechanics, when subsystem (I) is split into widely separated 
clusters the zeroth-order density matrix ({x(r)}IIP(I)I{x(r)}I) factorizes (i.e., it 
obeys the cluster decomposition property), and Eq. (10.48c) implies that this 
property is preserved to leading order in the perturbation H(I,2)fi· 

Let us next extend the analysis of Eq. (10.45c) to higher orders in H(I.2)fi· We 
shall not now be able to achieve an exact result, but shall instead proceed by 
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treating the equation for f~ in mean field approximation. Writing the equation 
for fx in abbreviated notation as 

(10.49a) 

we regard Eq. (10.49a) as the variational equation for the functional 

(10.49b) 

The mean field approximation is obtained by extremizing \ji with respect to the 
restricted class of wave functionsf~({x(r)}) that factorize [as in Eq. (10.46b)] 
into a product of wave functions for subsystem (1) and subsystem (2), 

({x(r)}l /~)meanfield = /~( {x(r)} lmeanfield = Nf(l)x( {x(,,)}l )/(2)~( {x(r)}2) 

(10.49c) 

withf(u)~ satisfying the unit normalization conditions of Eq. (10.46c). Substi
tuting the factorized wave function of Eq. (I 0.49c), together with the full 
expression for H 101 from Eq. (10.45c), into Eq. (10.49b), and varying with 
respect tof(l)o: and/(2)co we find (for arbitrary normalization off(u)~) 

,,T, b((f(IJ~I) ('1.1 c:· )1/. ) d .. 
0 '~' = (fr I/' ) 'l(l) -- •"-(!) (l)x +a JOint 

(l)c< (I)~ 

b ( (!(2)iX I) . . 
+ ( / I/ ) (H(2) -- £(2)) I f(2)x) + adJOint 

. (2)~ . (2)~ 

with H 1t.2) the self-adjoint operators 

( 10.50a) 

H(IJ = -iH(t)"' +) H(2)~ iE -'H* ) H(t),q + i / iE -'w H(2Jfi) H(t)fJ 
\ (2)~ 2 \ (2)~ 2 

I 
H(2) = -iHr2 J~ + iH(2l~ E _ H* H(2J# 

l (2)o: 

1 1 
+ i(H(I)~)I E- H* H(2)~ + i(H(I)fi)IH(2 )~ E- H* (10.50b) 

l (2):>: l (2)iX 

and with 
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The subscripted expectation values in Eqs. (10.50b,c) are defined by 

(O(I)) I = (./(I )x )O(I) If( IJa) / (f( I )xi f(IJ~) 

(0(2))2 = (f(2J~I0(2)if(2J~)/(/(2Jxlf(2J~) (10.50d) 

for any operators O(IJ: 0(2) acting respectively on subsystems (I) and (2). Thus 
equating 6\]i to zero, we get the coordinate representation mean field equations 
for the two subsystems, 

H(I) /(IJ~( {x(r)}I) = E(I) f(IJ~( {x(r)}I) 

H(2).i(2):x({x(r)}2) = E(2Jf(2):x({x(r)}2) (10.5la) 

with the total system energy E related to the mean field subsystem energies 
E(IJ(2J by 

E= \]i()f~)) = E(I) + £(2)- i(H(I)fi)I liE _1
H* H(2)f!) 

\ (2)~ 2 

- i(H(I)f!)I I H(2)f! iE _
1
1!* ) (10.5lb) 

\ (2)x 2 

Using the mean field equations we have just derived, we can now study the 
effect of quaternionic cross-coupling to subsystem (2) on clustering in subsystem 
(1). We begin by observing that the mean field subsystem (I) Hamiltonian H(l) 

defined in Eq. (I 0.50b) is linear in H(I ):x and H(l ){J· Consequently, when subsystem 
(I) is split into widely separated clusters, the zeroth-order complex density matrix 

(10.52a) 

determined by the mean field approximation still factorizes. This is of course not 
the quaternionic density matrix for subsystem (I), which may be calculated from 
the total quaternionic wave function/of Eq. ( 1 0.47a), as was done in Eq. (I 0.47b ), 
except that now the quadratic term in (i£- H(2)rxl-I H(2 J~ must be retained. 
This contributes to the right-hand side of Eq. (10.47b) the additional ex
pressiOn 

N 2 
;· d{x(r)}2j({x(r)}21 E-ll!* H(2)~if(2Ja)({x(r)}IiP(I)i{x(rJ}I) 

l (2)~ 

X ( -j) ( { X(r) }21 "E _ lH* H(2){J I f(2Jrx) 
l (2)~ 

= N
2w(2J({x(r)}IIP(l)i{x(,J}I)* (10.52b) 

where we have defined 

(10.52c) 
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which by the Schwartz inequality obeys 

Thus, Eqs. (10.47d) and (10.48a) are now replaced by 

({x(r)}tiPI{x(r)}I) = (1 + IV(2))-I (({x(r)}JIP(t)l{x(,.J}I) 

+ [Jv(2)· ({x(rJ}tiP(I)I{x(,)}I)J 

+ lt'(2J({x(r)}JIP(t)l{x(,.)}l)"") 
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(10.52d) 

(10.53) 

which is the end result of the mean field calculation. Equation (10.53) reduces to 
a quaternion automorphism transformation on ({x(rJ}tiP(tJI{x(rJ} 1) only when 
the Schwartz inequality bound of Eq. (10.52d) is saturated, since when 
1v(2) = I v( 2) 1

2 we can then define 

( 10.54a) 

and rewrite Eq. (10.53) as 

(I 0.54b) 

We note that even in this case the value of w(2) is (despite the notation) no 
longer independent of the subsystem (I) wave function, since the Hamiltonian 
operator H(2) of Eq. (1 0.50b) and the eigt:nfunctionf(2 )~ defined by Eq. (1 0.5la) 
depend on f(l ):x through the expectation value ( H(l )fJ) 1• A second circumstance 
under which Eq. (10.53) simplifies is when the density matrix 
({x(rJ} 11P(I)j{x(,.)} 1) is real, in which case Eq. (10.53) reduces to the identity 
transf o rma tJ on 

( 10.54c) 

which preserves the clustering properties of P(I)· 
We conclude that to second and higher orders in the quaternionic cross

coupling between subsystems (1) and (2), the dynamics of subsystem (I) is 
affected in an observable way, and in general its clustering properties are 
altered. Implications of these results for possible experimental tests of quater
nionic quantum mechanics will be discussed in Sec. 14.2. 
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11 

Relativistic Single-Particle 
Wave Equations: 

Spin-O and Spin-1/2 

We turn in this chapter and the next to a discussion of topics relating to relativistic 
single-particle equations in quaternionic quantum mechanics. In Sees. 11.1 
through 11.3 we develop the theory of the quaternionic Klein~-Gordon equation, 
and then proceed in Sees. 11.4 and 11.5 to develop the theory of the quaternionic 
Dirac equation. Both cases receive parallel treatment: We begin with the free
particle equation and discuss the corresponding definitions of coordinate space 
and momentum or Fourier space inner products. We construct a complete set of 
free-particle energy eigenstates and show that when ray representatives are chosen 
so that the energy is non-negative, the "antiparticle" states reside in the [1-
symplectic part of the wave function. We then introduce interaction potentials via 
a gauge principle. In a specialization of the most general gauging, which has a 
structure corresponding to the ray transformations of the nonrelativistic quater
nionic Schrodinger equation, we carry out a nonrclativistic reduction. In the Dirac 
case this yields the nonrelativistic quaternionic Schrodinger equation studied in 
detail in Part II. with the interesting feature that the [1-symplectic component of the 
nonrelativistic potential V arises as a spin effect. A noteworthy feature of the 
interacting Klein--Gordon equation is that the coordinate representation inner 
product that admits a local gauging is one connected with the charge structure, and 
not with the probability amplitude structure, of the theory. This inner product 
does not satisfy the postulates for the inner product introduced in Sec. 2.1; conse
quently, the nonrelativistic reduction of the spin-0 case does not have the form 
studied in Part II (except in the complex quantum mechanics limit). In two final 
sections we develop an alternative, "semirelativistic" reduction of the Klein
Gordon and Dirac equations, in which particle and antiparticle solutions remain 
coupled but obey a nonrelativistic energy-momentum relation, and we survey the 
properties of the resulting semirclativistic wave equation. 

11.1 THE OUATERNIONIC FREE KLE:IN-GORDON EQUATION 

We begin our discussion of relativistic single-particle equations with the simplest 
case, the quaternionic generalization of the free Klein-Gordon equation for a 
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relativistic spin-0 particle. To start with, we must establish some notation for 
relativistic calculations. We adopt a (-I, I, I, I) metric convention, so that the 
metric tensor is 

(11.1) 

with the contravariant coordinate 

11 _ ( 0 I 2 3) _ ( , ) _ ( ~) X - X ,X ,X ,X - t,X,},Z - t,x ( 11.2a) 

and the covariant coordinate 

3 

x 11 = Lg11 ,xv = (-t,x,y,z) = (-t,x) (11.2b) 
1'=0 

Although up to this point we have never used a summation convention, we now 
adopt the standard relativity theory convention that repeated Greek letter 
indices arc understood to be summed from 0 to 3, so that Eq. (11.2b) becomes 

(11.2c) 

The inner product of two four-vectors in this notation is 

For four-derivatives we use the notation 

a=-=----a (a a a a) 
11- ax11 8t'ax'8y'az 

( 11.4a) 

in terms of which the d'Alembertian becomes 

,~2 
-a all- u ~2 Dx = f1 -- - at2 + \1, (11.4b) 

Let c/J(x) now denote a quaternionic Lorentz scalar coordinate representation 
wave function, 

( 11. 5) 

with the cpA (x) real-valued Lorentz scalars. We assume, in the absence of inter
actions, that c/J(x) obeys the Klein-Gordon equation 

(11.6) 
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which is obviously invariant in form under the inhomogeneous Lorentz trans
formation 

( 11.7) 

We proceed now to introduce an inner product structure for the Klein-Gordon 
wave function c/J(x). Because the Klein-Gordon wave equation is second order 
in time derivatives, there are in fact two distinct relevant inner products. The 
first, which we denote by ( ¢, p ),, is local in coordinate space and is defined by 

(c/J.p),=./ d3x[¢a~oP- (a~o¢)PJ 

= j d3x{¢: 8~ 0 Pa- (a~orP:)Pc;+rPp 0~oPf!- (a~orPp)Pf! 
+J[c/J"a~oPr;- (a~orP")pf!- q'>r; 0~ 0 Px+ (a~orPr;)P"]} (11.8a) 

It is convenient to rewrite Eq. (11.8a) as the space integral of the time compo
nent 1~ of a four-current 1;., 

(11.8b) 

with 1;, having vanishing four-divergence by virtue of the Klein-Gordon equa
tions obeyed by cp and p, 

8'1:. = (8'¢)8,p + ¢ 8'"8,.p- (8'8v4J)p- (8,¢)(8''p) = ¢m2p- m2¢p = 0 

(11.8c) 

As consequences of Eq. (11.8c), when •P and p vanish at spatial infinity the 
scalar product ( cp, p) x is time independent, 

(11.8d) 

and moreover (as explained in Weinberg, 1972), (cp,p), is a Lorentz scalar. 
However, we immediately notice that Eq. (11.8a) does not obey all the axioms 
for the inner product given in Eqs. (2.2a)-·(2.2e) of Sec. 2.1. Specifically, taking 
the quaternionic conjugate of Eq. (11.8a) we get 

J 3 [( a _ \ _ a ] (cp,p),= d x axoP)c/J-poxOcp =-(p,c/J), (11.9a) 

which has the opposite sign from that called for in Eq. (2.2a); when cp = p, Eq. 
(11.9a) becomes 

(¢, ¢), = --(¢, ¢), (lli.9b) 

indicating that (¢, ¢), is quaternion imaginary! In addition to not satisfying 
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Eq. (2.2a), the inner product (c/J,p), does not satisfy I<:q. (2.2b). To see this, 
we note that if we specialize cp to be real, so that cp = cp = cjJ 0 , then 

( 11. 9c) 

and so in this case the vanishing of(¢,¢), docs not imply the vanishing of¢. 
Thus, neither of the axioms of Eqs. (2.2a) or (2.2b) is satisfied by the coordinate 
space-local inner product ( cp, p) ,, which evidently defines an indefinite inner 
product. -

At first sight this seems strange, until we recall that in the complex quantum 
mechanics specialization of Eq. (11.8a), in which 

P =Po+ ipi ( 11.1 Oa) 

the minus sign in Eq. (11.9a) is also present. In the complex case it is customary 
to eliminate 1 the minus sign by defining a new inner product ( cp, p )

1
, by 

(cp,p)~ = i(cp,p), (11.10b) 

so that 

( qJ, p) 1, = ( qJ, p) ,i = - (p, cp) x (- i) = (p, cp) xi = i (p, cp) x = (p, cp) ~ ( 11. I Oc) 

However, the inner product (c/J,p)~ of Eq. (11.10b), although it satisfies, Eq. 
(2.2a), still does not obey Eq. (2.2b), since ((p, ¢)~ vanishes for real-valued ¢, 
and so ( ¢, p )~ is still an indefinite inner product. Iri the theory of the interacting 
Klein--Gordon equation in complex quantum mechanics, ( ¢, (p )~ is interpreted 
as a measure of the total electric charge carried by the wave function cp (which 
can be positive, negative, or zero), rather than as a measure of the total prob
ability for finding the particle associated with the wave function ¢. Similarly, in 
the quaternionic case(¢.¢), can be written in the form 

( 11. I Od) 

with J~ the time component of a quaternion-imaginary gauge potential source 
current J;. introduced in Eq. (12.15a) [which is just the p = cp specialization of 
J~ ofEqs. (11.8b) and (11.34a)]. Thus in the quatcrnionic case also,(¢,¢), is a 
measure of total "charge," not of probability. We conclude that the coordinate 
space-local inner product ( ¢, p) x is related to the charge structure, and not the 
probability amplitude structure, of the quaternionic Klein-Gordon equation, 
just as in the familiar case of the complex Klein-Gordon equation. 

1 This trick does not work in the quaternionic case. since for a general quaternion·valued [as opposed to a 
complex (: (I. i) ·valued] inner product ( </>, p),, we have 

( p. <!>),; ic i(p. <b), 

Thus in the quaternionic case. the inner product of Eq. (11.8a) cannot be converted to one obeying Eq. 
(2.2a) by multiplication by i. or for that matter, by multiplication by any fixed (that is. QJ· and p-inde· 
pendent) quaternion imaginary unit. 
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In order to define an inner product related to the probability amplitude 
structure of the quaternionic Klein-Gordon equation, and that obeys the 
axioms of Sec. 2.1, we introduce a second inner product ( ¢, p), which is local in 
momentum or Fourier space. In transforming to Fourier space, we shall initially 
use a real Fourier sine and cosine basis, which ~voids singling out a p_referred 
quaternion imaginary unit. Writing ocp I ax 0 cp, we expand cp and (p in the 
form 

(p(x) = { d 3p [cfJ~(fi)cosji · 5! + cp_(ji)sinji · .'2] 
.!+ 

¢(x) = .[ d 3p [JJ+(ji)cosji <t + ¢_(ji)sinji · .i] (ll.lla) 

with cp_1 (ji) and ¢+(ji) even functions of fJ, with cp_ (ji) and ¢_(ji) odd func
tions of ji, and with J~ d 3p extending over half of f)-space (say, over p 1 > 0). We 
now introduce components of the wave function fCJcuJ(P) (with u,!! denoting 
"upper," "lower") by writing 

rP±(P) = 2N(p)ftcu(fi) 

¢±(P) = 2wp N(p) {H(P) (ll.llb) 

with p = I ji 1. with Wp = (p2 + m 2
) I/

2
, and with the normalization factor N( p) 

chosen for convenience to be 2 

(ll.llc) 

Although we have fl:Ot indicated the time dependence explicitly, the expansion 
coefficients ¢:1_(p), rP±(P) are still functions of the time x 0 = t, and so there
fore are the wave function components .f±uJ(P). Let us now find their 

2 With this choice of N(p), the "energy" functional 

which is the Hamiltonian corresponding to the noninteracting spcciali1.ation of the scalar Lagrangian of 
Eq. ( 12.33a). takes the form in Fourier space 

Since II and oJp transform under Lorentz boosts as the time components of four-vectors. this implies that 
the normalization integral 

is a Lorentz scalar. More generally. with the p-dependence of N(p) chosen as in Eq. (ll.llc), the 
Fourier space wave function components/,, 1 (ji) defined here correspond to w1~

1 : 2 times the analo
gous Lorentz scalar wave function components defined as in Newton and Wigner (1949). Since d 1pjo>p 
is a Lorentz scalar. this implies that both N and the momentum space inner product defined in Eq. 
(I 1.13a) are Lorent1. scalars. 
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equations of motion. Equating the expansion of¢ to that of 8¢/Dt gives 

(11.12a) 

while making use of the Klein-Gordon equation of Eq. (11.6) to evaluate 
82cpjfJt2

, we get 

( 11.12b) 

glVlng 

( 11.12c) 

We now define a four-component column vector wave function F(p) with 
components f-tu.e(p), 

F(p) = 

f+u(P) 

fte(fi) 

f--uCP) 

f~e(fi) 

( 11.12d) 

In terms of F(p), the equations of motion of Eqs. ( 11.12a) and ( 11.12c) take the 
form 

:t F(p) = -H(p)F(p) ( 11.12e) 

with H(p) the anti-self-adjoint Hamiltonian operator 

(11.12f) 

We can now introduce an inner product for the quaternionic Klein--Gordon 
wave function by the definition 

(11.13a) 
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with the adjoint wave function defined as usual by 

(11.13b) 

with T denoting the transpose of the four-component column vector defined in 
Eq. ( 11.12d ). The inner product of Eq. ( 11.13a) evidently satisfies all the axioms 
of Sec. 2.1, is time independent under the dynamics of Eqs. ( 11.12e,f). 

:t ((1), (2)) = 0 (11.13c) 

and is a Lorentz scalar.2 In terms of the inner product of Eq. (11.13a), the 
expectation value of an arbitrary quaternion linear operator A can be defined as 
usual as 

(A)q, =(¢.A¢)/(¢,¢) ( 11.13d) 

Because the inner product of Eq. (11.13a) obeys the axioms of Sec. 2.1, we 
can use it to construct a complete set of orthonormalized Klein-Gordon solu
tions p n obeying 

(11.14a) 

Letting cp and r; be any two Klein-Gordon solutions, the basis {p17 } can be used 
to write a completeness relation of the usual form 

(11.14b) 
n 

On the other hand, because the inner product of Eq. (11.8a) is indefinite, 
although we can use it to construct orthogonalized Klein-Gordon solutions, 
these solutions cannot be unit normalized. Thus if {Pn(x)} is a complete or
thogonalized set of Klein--Gordon solutions with respect to the inner product of 
Eq. (11.8a), we have 

(11.14c) 

with Kn = -Kn a quaternion-imaginary normalization constant. The fact that 
the Kn cannot be chosen to be unity is reflected in the form of the completeness 
relation. Expanding a general Klein-Gordon solution cp in terms of the Pn (x), 
we have 

c/J(x) = 2:Pn(x)Cn ( 11.14d) 
17 

with the C17 quaternionic expansion coefficients. The C11 can be evaluated by 
taking the inner product of Eq. ( 11.14d) with respect to jJ

17 
and using Eq. 

(11.14c), giving 

( 11.14e) 
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That is, the expansion coefficients are given by 

(11.14f) 

and so the expansion of Eq. (11.14d) becomes 

n 

(11.14g) 

Taking the inner product of cp with the Klein--Gordon solution T), the complete
ness relation with respect to the inner product of Eq. (!!.Sa) finally takes the form 

(11.14h) 

which differs from the usual form of the completeness relation by the quaternion
imaginary normalization constants ( p11 , p11 ); 

1 that are sandwiched in the middle. 
It is now instructive to rewrite the coordinate space-local inner product 

( ¢, p) x in terms of Fourier space wave functions and, conversely, to rewrite the 
Fourier space-local inner product ( ¢, p) in coordinate space. Substituting the 
expansions of Eq. (II. I Ia) for cp(x), and analogous expansions for p(x), into 
Eq. (11.8a), and using the formulas of Eq. (3.13c) to evaluate the .X-integrals, we 
find [noting that the b3(p + p1

) terms in Eq. (3.!3c) make no contribution 
because of the half-space restriction in Eq. ( 11.11 a)) 

( 11.15a) 

In this formula F(ji) and G(ji) are the column vector wave functions asso
ciated, respectively, with cp and with p, and I if is the matrix operator 

l~ 
-I 0 

~~1 Iii= 
0 0 
0 0 
0 I 

( 11.15b) 

The operator I if obeys 

( 11.15c) 

and, as the labeling suggests, is the quaternion imaginary unit operator asso
ciated with the Hamiltonian H(p) of Eq. (11.12f), 

H(p) = Ii1!H(p)! 

IH(p)l = Wp ( 11.15d) 
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Thus from the standpoint of Eq. (11.15a), the time in_dependence of (cp,p),. is 
simply a reflection of the fact that Iii commutes with H(p), 

(~t (¢, p ),. = l d3p{ [:/t (J?)] ( -Iif)G(p) + Ft (Ji)( -I if) gt G(P)} 

= l d3pFt(p)[Iif,H(p)]G(j}) o= 0 (11.15e) 

To carry out the converse calculation, of expressing ( cp, p) in terms of coor
dinate space wave functions, we use Eq. (3.13c) to extract formulas for the 
momentum space wave function components c/J±(ii), ¢±(P) of Eq. (II. I Ia), 

3 

cp+(jJ) =2j!!._;cosp·S!cp(x) 
(2n)· 

3 

¢~ (jJ) = 2!.!.._33 sin jJ · .\! cp(x) 
. (2n) 

3 · ( ~) J d X ~ ~ · ( ) rP+ p = 2 (
2

n) 3 cosp·xcp x 

J d
3-

• -1 X • -1 ---~· 
rP~(P)=2 - 3 smp·xcp(x) 

(2n) 
( 11.16a) 

Substituting Eq. (11.16a), and analogous formulas for p(x), into Eq. (11.13a), 
we get after some algebra the spatially nonlocal formula 

(cp,p) = j d3xd3x' [c/J(x)K1(.X,.'!')p(x') 

+ ¢(x)K2(i, i')p(x')] 
\ - -vf . o- .• o 

The kernels K1.2(x, .>!') that appear here are defined by 

( 11.16b) 

( 11.16c) 

with 6.1 the standard even Green's function for the Klein-Gordon equation 
[which is described in detail in Appendix C of Bjorken and Drell ( 1965)). Since 

')I 1 a 6.1 (x- x =- - 2- --Ko(mR), 
v ocv' 2n R 8R 
··O ··o 

R=[.\3-.X'I (11.17a) 

with Ko the Bessel function of imaginary argument, the kernels K1 and K2 both 
vanish for large separation [.X- .X'[ as 

( 11.17b) 
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Therefore the spatial nonlocality inherent in the inner product (¢, p) extends 
over distances of order the Compton wavelength m- 1

• To verify the time inde
pendence of ( ¢, p) from the coordinate space form given in Eq. ( 11.16b), we 
differentiate with respect to time to get 

:t (cp, p) = / d3x d3x' [¢(x)KI (.?, x')p(x') + ep(x)KI (x, x')p(x') 

+ ¢(x)K2(x, 5!')jJ(x') +¢(x)K2(x, x')p(x')] (11.18a) 

Eliminating¢ and p by use of the Klein--Gordon equations for cp and p, and inte
grating by parts so that the operators \7~- m2 and \7~, - m2 act on K2 , we get 

:t ( c/J, p) = / d3 x ~3 x' {¢(x) [KI (x, x ') + (\7~, - m2
)K2 (x, x ')]p(x') 

+ ep(x) [K1 (x, x ') + (\7; - m2 )K2 (.?, .? ')1(J(x')} 

which vanishes by virtue of Eq. (11.16c). 

(11.18b) 

Although we have worked up to this point exclusively with real Fourier bases 
cos jJ · x, sin f · x, the resulting formalism is somewhat cumbersome. In most 
applications it is m~o~e convenient to expand cp (x) on a q I, i) momentum basis 
proportional to e

1
p·x, even though this gives the quaternion unit i a preferred 

status. Proceeding in a like manner to the nonrelativistic analysis of Sec. 3.1, we 
introduce the quaternion-valued momentum space Klein-Gordon wave func
tion c/J(f) by writing3 

cp(x) = / d3pe'fi "¢(f) 

= l d3p [eifi "¢(f)+ e-ip "¢( -jJ) J 

=I d3p{cosf· x[c/J(f) +¢(-f)]+ sinf· xi[cp(f) _ c/J(-jJ)]} (11.19a) 

and similarly we introduce ¢(f) through the expansion 

ep(x) = / d3
pe

1P '(p(jJ) 

= I d3 P{ cos f. X [¢(f) + ep( -jJ )] + sin f. xi[ ep( f) - 1) ( -jl )] } . ( 11.19b) 

'If <j;(ji) were defined by ordering e'ri·<' to the right in Eq. (11.19a). then the factor of i would appear 
ordered to the right in Eqs. (11.20a,c), and would not cancel out in Eq. (11.2lc). In other words, the inner 
product defined with respect to a real Fourier basis corresponds directly to that defined naturally with 
respect to a left-ordered e1

''' basis, but not to that defined in an analogous manner with respect to a 
right-ordered / 11 1 basis. 
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Comparing Eqs. ( 11.19a,b) with Eq. ( 11.11 a), we get the relations 

rP+ (p) = cp(p) + ¢( -p) 

cp_ (p) = i[cp(p) - ¢( -p)] 
. . . 
cp+(j)) = cp(j)) + cp(-p) 

¢_(p) = i[¢(p)- ¢(-p)] 

Similarly, if we introduce wave function components f~.t(p) by writing 

cp(p) = 2N( p) J;,(p) 

cp(p) = 2wpN(p)ff(p) 

( 11.20a) 

( 11.20b) 

then these are related to the original wave function componentsf±u.R(P) by 

f+u(P) = f~(p) +./~( -p) 

f-u(P) = i[fu(P) -./~( -p)] 

.14-R(p) = ft(p) +./€( -p) 

f_p(p) = i[f{(p) --fe( -p)] ( 11.20r~) 

It is now a matter of simple algebra to express the time evolution and inner 
product formalism of Eqs. (11.12d-f) and (ll.l3a,b) in terms of the new wave 
function componentsf~.t(P)- Defining a two-component column vector 

:F(p) = [.!~(~)] 
J[(p) 

the Schrodinger equation of Eqs. (11.12e,f) takes the form 

:t:F(P) = -ii(p):F(p) 

- ( 0 7-i(p) = 
Wp 

while the inner product of Eq. (11.13a) becomes 

( 11.2la) 

(11.2lb) 

( 11.2lc) 

which is evidently time independent under the dynamics of Eq. ( 11.21 b). 
Let us now examine the energy eigens1lates of the Klein-Gordon Schrodinger 

equation, working for simplicity with the two-component form of Eq. ( 11.2lt b). 
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:FI = (:) e iwpt 

:F2 = c) e' wpt 

we immediately find that 

(11.22a) 

( 11.22b) 

which identifies :F1 and :F2 as positive- and negative-energy solutions of the 
Schrodinger equation. Note that by changing ray representatives, :F2 can also be 
written as a positive-energy solution, since multiplying byj from the right gives 

( 11.22c) 

In other words, if we choose ray representatives so that :F1 and :F2 arc both 
<C( I. i), that is, are both :x symplectic, then a complete set of states contains one 
positive- and one negative-energy state. On the other hand, if we choose ray 
representatives so that the eigenvalue of H(p) is always +iwp (which is the 
standard ray representative convention used throughout this book), then a 
complete set of states contains one state that is <C( I, i), or :x symplectic, and 
another state that is j x <C( I, i), or p symplectic. Thus in the qua tern ionic Klein
Gordon equation, "antiparticle" or negative-energy states can he reinterpreted as 
positive-energy states residing in the {3-symplectic component of the wavejimction. 
We will see in Sec. 11.4 that a precisely analogous statement holds for the 
guaternionic Dirac equation. 

Once we are no longer committed to using real Fourier space basis functions, 
we can transform to a basis that diagonalizes the Hamiltonian. Let U be the 
unitary matrix 

and let 9 be the new column vector defined by 

9(p) = U:F(p) = [Ku(J!.) J 
gt( p) 

In terms of 9, the Schrodinger equation of Eq. ( 11.21 b) takes the form 

:t 9( p) = - ii' ( p )9( p) 

(11.23a) 

( 11.23b) 

( 11.24a) 
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with the diagonalized Hamiltonian 

ii'(p) = UH(p)ut == (iooJp o ) 
-iwp 

(11.24b) 

while the inner product of Eq. (11.2lc) becomes 

( 11.24c) 

In terms of the Q basis, we can immediately write down the restriction of the 
formalism to C( I, i) positive frequency solutions. This is given by 

{) (~) . (~) atg" P = -cwpg" P 

((I), (2))positivefrequency = 2 j d3
pft(l)u(fi)g(2)u(j}) 

gu(P) = ~ [/~(p) + ijp(p)] = 2 ~{f~.u(P) +f--i(if) + i[f+t(P)- f--u(P)]} 

(11.25) 

and is the form in which the momentum space analysis of the Klein--Gordon 
equation usually appears in the quantum field theory literature [see, e.g., 
Akhiezer and Berestetskii (1965) and Newton and Wigner (1949)). 

11.2 THE INTERACTING KLEIN-GORDON EQUATION 

Having discussed the noninteracting Klein-Gordon equation, we turn next to 
the interacting case. To introduce interactions, we follow Lee and Yang as 
referenced in Yang (1957, 1983), Finkelstein, Jauch, Schiminovich, and Speiser 
(1963), Horwitz and Biedenharn (1984), Adler (1986), and Govorkov (1987) and 
proceed via a gauge principle. It shall prove most convenient to ignore the 
historical order of development and to start directly from the most general 
gauging, introduced by the author and by Govorkov, obtaining the other 
gaugings later on by specialization. We start from the assumption that the 
interacting quaternionic Klein-Gordon equation should be form invariant 
under the transformation 

cp(x) ---> w(x) (/J(x)w' (x), lw(x) I = lw' (x) I = I ( 11.26a) 

with wand w' independent quaternions of unit magnitude. To achieve covariance 
under the transformation of Eq. ( 11.26a)., one defines the covariant derivativc4 

( ll.26b) 

4 We have loosely used the term "covariant derivative" for a derivative with gauge compensation terms. In 
fact, Eq. (11.26b) is gauge wvariant but is not a derivation (it does not obey the Leibnitz product mle), 
and Eqs. ( 11.30a) define derivations but are not fully covariant under the transformation of Eq. ( 11.26a). 
Nonetheless, the intertwining relations of Eqs. (I L1la,b) relate these two types of actions for bilinear 
products of flC!ds with conjugated fields and permit the construction of source currents that have the 
correct Lorentz and gauge covariance properties. 
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with B11 (x) and s;,(x) independent quaternion-imaginary gauge potentials. 
Corresponding to the wave function transformation of Eq. (11.26a), the gauge 
potentials B1, and s;, are taken to transform as 

B11 _. w(x)B1,w(x) + w(x)811 (iJ(x) 

s;, _. w'(x)B~ w'(x) + w'(x)81,w'(x) 

Differentiating the equation 

w(x)w(x) = I 

( 11.26c) 

(11.27a) 

(11.27b) 

and so the inhomogeneous term in the transformation law for B1, in Eq. (11.26c) 
is an imaginary quaternion. Therefore since (as shown in Sec. 1.4) the quater
nion automorphism transformation B11 -+ wB11 oJ maps imaginary quaternions 
B11 back into imaginary quaternions, the total gauge transformation for B11 in 
Eq. (11.26c) also has this property. Corresponding statements hold for the two 
pieces of the gauge transformation law forB~. Substituting Eqs. (11.26a) and 
(11.26c) into Eq. (11.26b) and using Eq. (11.27b), we find that the covariant 
derivative D11 cp transforms as 

D11 cp _. 811 (wcpw') + [wB11 w- (811 w)w]wcpw'- wcpol(w' B~w; + w'811 w') 
- - - -

= (811 w)cpw' + w(811 cp)w' + wcp811 w' + wB11 cpw' 

- ( 81,w )cpw'- wcpB ~w' - wcp811 w' 

= w( 811 cp + Bp cp - cp B ~ )w' = w( D 11 cp) w' (11.28a) 

and so D11 cp transforms just as cp does. This allows us to iterate cp into D11 cp in 
Eq. (11.28a), giving the transformation law 

( 11.28b) 

for the covariant d'Alembertian D 11 D
11 acting on¢. Putting everything together, 

we see that under the combined transformations of Eqs. (11.26a) and (11.26c), 
the interacting Klein--Gordon equation 

(11.29a) 

transforms into 

(11.29b) 

and so is left invariant in form, as required. 

1 The argument here parallels the discussion of w 1 in Eqs. (2.55a,b) of Sec. 2.4. 



RELATIVISTIC SINGLE-PARTICLE WAVE EQUA TIOI\S: SPIN-O AND SPIN-I/2 311 

Let us now derive a number of identities involving the covariant derivative 
D

1
,, which will be used extensively in the sequel. To this end we introduce 

two new covariant derivatives,4 denoted by D11 and D~, defined as follows, 

(11.30a) 

for at:( quaternionic waveJunctio:; p. Because the nondcrivative terms in f\ 
and D are commutators, D11 and D 

1 
obey the product rule for derivatives when 

acting
11
on a product of two (or mar~) factors, 

D1,(pr1) = 811 (pr1) + [B11 , pr1] 

= (811 p )77 + p811 r! + fBw pJri + p[Bw r1] 

= (D 11 p )r1 + pD 11 77 

b~ (P77) = ( b:,P )77 + pb>, 

On the other hand, D 11 does not obey Eq. (11.30b), since we have 

( 11.30b) 

(11.30c) 

but in fact we will never have to apply D 11 to a product of factors in the analysis 
that follows. Instead, we will need the following two "intertwining identities" 
relating the action of D11 and D~ on products to the action of D 11 : 

D 11 (pf/) = 81,(pt!) + B1,pi) ~ pf!B11 

= (811 p + B11 p ~ pB'
11
)i) + p(811 f) + B~t) ~ f)B11 ) 

= (D11 p)f! + pD1,77 (11.3la) 

and 

D~CP77) = 81'(7577) + B~J577- iJ77B~ 

= (811 p + B~ p ~ pBp)r! + p(811 77 + B11 77 ~ 77B;,) 

(11.3lb) 

We note that in rearranging terms on the second line of Eq. (11.31 a) to give 
D 11 ·ry, and in rearranging terms on the second line of Eq. (11.3lb) to give D 11 p, 
we have made explicit use of the fact that B11 and B~ are quaternion imagin
ary. If p and 77 are both assumed to obey the gauge transformation rule of 
Eq. (ll.26a), and B11 and s;, are taken to transform according to Eq. 
( 11.26c), then 

p f/ ___, w p f)w, (11.32a) 
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and thus the terms on the left and right of Eqs. ( 11.31 a,b) have the uniform 
gauge transformation behaviors 

D 11 (pi]) -+ wD 11 (pi) )r!J, 

D~ (pr1) -+ w' D~ (pr1 )w', 

(D 11 p)fJ-+ w(D 11 p )fJw, pD1,TJ-+ wp(D11 r1)w 

(D 11 p )r1 -+ w' ( D 11 p )77w', pD 11 7J -+ w' p ( D 11 '7 )w' 

(11.32b) 

A useful specialization of the intertwining identities is obtained by acting with 
the trace operation defined in Eq. (1.22b). Since cyclic invariance of the trace 
[see Eq. (1.22d)) implies that 

we get 

811 tr(pfJ) = tr[811 (pinJ = tr[D11 (pfJ)] = tr[(D11 p )fJ + pD11 77] 

811 tr(pr1) = tr[811 (J5TJ)] = tr[D~(PTJ)] = tr[(D11 p) 7J + pD11 77] 

(11.33a) 

(11.33b) 

As an application of Eq. (11.3lb), let us use it to derive an interacting theory 
analog of Eq. (11.8d), which we recall stated the time independence of the 
coordinate space-local inner product ( ¢, p Jx. We begin by forming a four-' . current J v defined by 

(11.34a) 

which by the intertwining identity of Eq. (11.3lb) has the covariant diver
gence 

D'"J~ = DVcp Dvp + (pnv DvP- nv Dv¢ p- Dvr/JD" p = (pD"Dvp- nv Dv¢ p 

( 11.34b) 

Thus if¢ and p are both solutions of the interacting Klein-Gordon equation of 
Eq. (11.29a), so that 

D"D 2 vP = m p, v 2 D Dv¢ = m ¢ (11.34c) 

then Eq. (11.34b) implies that J~ is covariantly conserved, 

(11.34d) 

Defining now an inner product (¢,p), in analogy with Eq. (11.8a), 

( 11.35a) 
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we get by a spatial integration by parts and application of Eq. (11.34d), 

a j 3 a , -;:;-(c/J,p),= d x"' 0 1 0 ut ux 

= j d 3xa'1: = / d 3x{D"J;. + [1;., B''l} 

= J d 3 
x [ 1:., B"] (11.35b) 

Hence the quaternion-valued, coordinate space-local inner product ( ¢, p ), is 
time independent when B''' vanishes. Moreover, when B"' vanishes, Eq. 
(11.34d) implies that the current J'' has vanishing four-divergence, which as we 
have noted implies (Weinberg, 1972) that (cp .. p), is a Lorentz scalar. 

Farming corresponding real and com pi ex C( I. i) inner products 
(cp.p),R. (cp.p),c by analogy with Eqs. (2.20) and (2.19), 

(cp.p),R = tr(cp.p),. (¢. P)xc = tr(¢. p), ~ itr[(¢. p),i] (11.36a) 

we fmd from Eq. (11.35b) that 

gt (cp, p ),R = j d 3x tr[ 1; .. B'''] = 0 

:t ( ¢. p ),c = ~i J d 3 x tr{[ 1;., B"]i} = ~i ./ d 3x tr{l:. [B'', il} (11.36b) 

indicating that (¢, P)xR is time independent and Lorentz invariant for all B'~", 
and (cp,p),c is time independent and Lorentz invariant forB'' E C(l, i). The 
gauge transformation properties of (cp,p),. (cp,p)xR• and (cp,p),c correspond 
directly to these conservation properties. Gauge transforming cp and p accord
ing to Eq. (11.26a), and B11 and s;, according to Eq. (11.26c), we have 

(cp,p), ~ j d 3xw'(x)1Sw'(x) 

(cp.p),R _. ./ d 3xtr[w'(x')JSw'(x)] = j d 3xtr1S = (cp,p),R 

(cp.p),c-+ (cp,p),R ~if d 3 xtr[w'(x)1Sw'(x) i] (11.37) 

Thus (cp.p), is gauge invariant only for w' = 1 (consistent with B''' = 0), 
( ¢, p lxR is gauge invariant for general w' (corresponding to general quaternionic 
B'''), and (¢, p),c is gauge invariant for w' E C( I. i) [consistent with 
B"EC(l.i)] .. 

We conclude this section by giving the specialization of the preceding 
formulas to various alternative quaternionic gaugings that have been suggested 
in the literature: 

1. In Lee and Yang as referenced in Yang (1957, 1983) and in Horwitz and 
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Biedenharn (1984), a gauging is based on the transformation 

cp(x)-+ w(x)cp(x)((x), lw(x)l = i((x)l = I ( 11.38a) 

with w a general quatcrnion of unit magnitude 
Correspondingly, the gauge potential B~ is <C(l, i), 
formation rule forB~ in Eq. (ll,26c) simplifies to 

but with ( E <C( I, i). 
and the gauge trans-

B I B I + yl !1 "I 
!' _ _., I' s u!, ~ (11.38b) 

In this gauging ((p,p), is time dependent and gauge variant, but (cp,p),c 
and ( r/J, p ),R are time independent and gauge invariant. 

2. In Finkelstein, Jauch, Schiminovich, and Speiser (1963) and Nash and Joshi 
(1987, 1988), a gauging is based on the local quaternion automorphism 
transformation 

cp(x)-+ co(x)cp(x)w(x). lw(x)l = I ( 11.39) 

In this ga~ging w1 (~';:) = w(x) and B 1
'' = B', and the three covariant deriva

tives D', D'. and D1
'. are all the same. The inner products (¢, p), and 

(cp. p),c are time dependent and gauge variant, with only (¢. PlxR time 
independent and gauge invariant. 

3. Yet another gauging is motivated by an analogy with the covariance group 
of the nonrelativistic quaternionic Schrodinger equation. We recall that in 
our discussion of Sec. 4.2, we found that the quaternionic Schrodinger 
equation for the wave function 

f(5!, t) = (.il f(t)) ( 11.40a) 

was preserved in form under the two classes of change of ray representative 
given in Eq. (4.30),6 

(i) lf(t)) _. lf(t))rvr. 

(ii) (Yi-+w(oY.t)(.Yf, 

w1 = constant, lwrl = I 

lw(.Y, t) I = I ( ll.40b) 

which, when combined, give for the most general ray representative trans
formation of the nonrelativistic wave function 

lwl = lwrl = I ( 11.40c) 

Let us now require that the interacting Klein-Gordon equation should 
possess an analogous form invariance under the transformation 

lw(x)l = jw,pl = I (11.4la) 

1
' In Eq. (4.30) we omitted the vector arrow on x. which in a nonrclativistic context was understood to be 
three dimensional. Since we arc now using x to denote a l<,ur-veetor quantity. we have explicitly included 
the arrow in Fqs. (11.40a c). In Parts I and II the phase factor here denoted as '''twas denoted w 1. 
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which corresponds to the gauging 

¢(x) -+ w(x)cp(x)w', w' = constant, I w ( x) I = I w'l = I ( 11 .41 b) 

In this gauging the potential B'" can be consistently chosen to vanish, with 
the consequence that the covariant derivatives D'' and D'" reduce, respec
tively, to D'' = [)'' + B" and D'" =[)"_When B"' is zero and w' is unity, the 
quaternion-valued inner product ( ¢, p ), is time independent and Lorentz 
and gauge invariant, as of course also are its real and complex projections 
(cp,p),R and (cp,p),c-

4. Finally, there are two further gaugings 

cp(x)-+ ((x)cp(x)w'(x), cp(x) -+ wcp(x)w'(x), 

lwl = l((x)l = lw'(x)l == 1 ( 11.42) 

with ( E C( I, i) and with w a constant, which are analogous to the gaugings 
I and 3, but with the roles of B'' and B' '' interchanged. In these cases, as in 
gauging 2, (¢, p)..,R is the only time-independent and Lorentz and gauge
invariant inner product that can be formed by projection from ( ¢, p ),. 

11.3 NONRELATIVISTIC LIMIT OF THE KLEIN-GORDON 
EQUATION 

To recapitulate, of the various gauge principles we have used to construct an 
interacting Klein-Gordon equation, only the one given in Eq. (11.4lb) leads to 
a time-independent quaternionic inner product ( ¢. p) Y' and corresponds to the 
covariance group of the nonrelativistic Schrodinger equation. Continuing now 
with the discussion of this case, let us proceed to find the nonrelativistic reduc
tion of the corresponding Klein--Gordon equation, which we rewrite in nonco
variant form as 

( 11.43) 

Before analyzing the full problem, let us for orientation first consider the much 
simplified case in which the potentials B1, are zero and in which (/J is spatially 
constant, corresponding to a state of zero three-momentum. Equation (11.43) 
then simplifies to 

(I 1.44a) 

with e any fixed quaternion imaginary unit, which will be satisfied by any solu
tion of the nonrelativistic Schrodinger equation (for zero three-momentum) 

[) 
-:- cp = emqJ 
dt 

(I 1.44b) 

Thus in order to reduce the Klein-Gordon equation (11.44a) to Schrodinger 
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equation form, we must pick out a particular <C(l.e) subalgebra of the full 
quaternion algebra. We will henceforth take e = i, and correspondingly the 
<C( I, i) subalgebra will play a preferred role in the nonrelativistic reduction of 
the quaternionic Klein-Gordon equation. 

Returning to the full problem, we proceed by rewriting Eq. ( 11.43) as a pair 
of coupled first-order equations, to which we apply an analog of the Foldy
Wouthuysen (1950) method to get a systematic nonrelativistic expansion. (Our 
analysis is based on the procedure used for the complex Klein-Gordon equa
tion, as expounded in Feshbach and Villars, 1958, and Bjorken and Drell, 1964). 
Defining the auxiliary quantity p

4
, by 

(11.45a) 

the Klein -Gordon equation becomes 

(11.45b) 

To write Egs. (11.45a,b) in a more symmetrical form, we introduce new vari
ables 01 and 02 defined by 

( 11.46a) 

in which, as anticipated, the <C( I, i) subalgcbra has been given a preferred role. 
Defining a two-component spin or c!) with components 01, (h, 

we can rewrite Eqs. (11.45a,b) in terms of matrix operations on c!), 

() 
i-ci)=HcJ> at 

(11.46b) 

( 11.46c) 

The two-component matrix Hamiltonian H that appears here is defined by 

(11.47a) 

where we have written Bo = B10 i + B2of + B3o k, where 

( 11.4 7b) 

and where ru 3 are the Pauli,matrices defined in Eq. (6.97c). [We usc the nota
tion TJ2) instead of O"J.2J in the Klein-Gordon context to stress that there is no 
spin degree of freedom. Note that since ir 2 is real, there is no factor-ordering 
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ambiguity in Eq. (11.47a).) In the same two-component notation, the inner 
product of Eq. (11.35a) takes the form 

( 11.48a) 

with <I>c 11 , <I>c 21 , respectively, the two-component spinors corresponding to the 
Klein-Gordon wave functions ¢( 1) .qJ(2). In Eq. (11.48a), the adjoint <!> 1 is 
defined as usual by 

( 11.48b) 

with T denoting the two-component spinor transpose. We notice that H of 
Eq. (11.47a) does not obey H' = H, but instead obeys a self-adjointness con
dition7 of the form 

(11.49a) 

Hence the adjoint of Eq. (11.46c) reads 

( 11.49b) 

which in turn guarantees the time independence of the quaternionic inner 
product when written in two-component form, 

D ;· 3 [(D t ) . t . (a )] iJt (¢(!)' (/J(2llx =-2m. d X Dt <!>(!) lT3<1>(2) + <l>(l)lT3 iJt <1>(2) 

=-2m/ d 3 x[-<~>i 1 )r3H(r3) 2 <!>(2) + <~>i 1 )r3H<I>(2)] = 0 ( 11.50) 

Consider now the effect of transformations of the form 

<!> = S<!>' (ll.Sla) 

with S a 2 x 2 matrix operator. The unitarity condition for S is obtained by 
requiring that the inner product of Eq. (11.48a) be left form invariant under the 
transformation of Eq. (11.5la), which evidently requires 

Writing the dynamics of<!>' in the form 

a " 
i _!_ = H' <!>' 

Dt 

(ll.Slb) 

( 11.52 a) 

7 
The condition of Eq. (11.49a) just guarantees th.1t -iii is anti-self-adjoint with respect to the inner 

product of Eq. (11.48a), which b the needed condition since Eq. (11.46c) is equivalent to f!iP/iJt = ~-iH<P. 
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we can now express H' in terms of the original Hamiltonian H, 

H' = i(%ts- 1)s + iS- 1[HS 

·s- 1 8 s ·s- 1 'H" = -l - + l l .~ 
Dt 

(11.52b) 

( 11.52c) 

( 11.52d) 

Just as a check, let us verify that H' satisfies the self-adjointness condition 
analogous to Eq. (11.49a), 

(11.53a) 

by virtue of Eq. (11.5lb). Calculating from Eq. (11.52c), we have 

(11.53b) 

substituting Eq. (11.49a), as well as Eq. (11.5lb), in the forms 

(11.53c) 

Eq. (11.53b) becomes 

(11.53d) 

grvmg Eq. (11.53a). So the consistency of the formalism is verified, and we 
conclude that Eqs. (11.5la,b) and (11.52a,c) give the form of canonical trans
formations for the two-component, first-order form of the quaternionic Klein
Gordon equation. 

We now have the formal apparatus needed for developing a systematic 
nonrelativistic expansion of the Klein-Gordon equation. We begin by writing 
the Hamiltonian in the form 

11:2 
(:)=

2
m ir2 - (kB2o -)B3o)T1 

(11.54a) 

with [ and 0, respectively, the terms in H that commute with, and that anti
commute with, the matrix r3 appearing in the mass term, 
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( 11.54b) 

If the terms a were not present, the Schrcidinger equation of Eq. (11.46c) would 
diagonalize into two uncoupled quaternionic Schrodinger equations, with 
leading large-m behavior i8/Dt ~ m and i{}/Dt"' -m, respectively. To deal with 
the presence of the term a, we make the canonical transformation of Eq. 
( 11.51 a), and choose s so as to eliminate the leading Jar ge-m odd term a from 
the transformed Hamiltonian H'. After this adjustment of S, H' will still 
contain subdominant odd terms a', which can be eliminated by a further ca
nonical transformation, and so forth. 

To carry out the first step in this procedure, let us write 

so that8 

s S=e S I S =e 

(- a) -(- a) c H'=iS- 1 iH-
01 

S=ie5 iH-
01 

e-.s 

= H + i[.~, -iH] + i-~ S + O(S 2
) 

ut 

(IL55a) 

(I L55b) 

Hence to cancel the leading-order odd term a from H', we must choose S to 
satisfy 

- 8 -
[S, -ir3m] + - S = ia · · Dt ( 11.56a) 

where in the first term of Eq. ( 11.56a) we have replaced H by its leading large-m 
term r 3m. To solve Eq. (11.56a), it is convenient to split it into symplectic 
components by writing 

a= o, + ja13 

2 
J[C/.. 

0, =
2

m zr2 

2 

a{J = 
2
n{J ir2 + (B3o + iB2o)r1 
m 

so that Eq. (11.56a) becomes 

(11.56b) 

(11.56c) 

"The O(S 2
) corrections, which we are neglecting, are relevant for corrections to the nonrclativistic limit. 
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To leading order in m, the equation for Sx is solved by 

S _ T30a 

"'- 2m 

while the equation for sf! is solved by 

(11.57a) 

(11.57b) 

with the lower integration limit arbitrary. 9 To complete the demonstration that 
we can cancel 0 from H', we must show that the solution for S of Eqs. 
(11.57a,b) also satisfies the condition of Eq. (11.5lb), which in terms of S 
becomes 

(11.58a) 

that is, in the sector10 containing S = 0, 

(ll.58b) 

Breaking Eq. (11.58b) into its symplectic components, we get 

( 11.58c) 

(11.58d) 

Now from Eqs. (11.56b) and (11.57a), we have 

( 11.59a) 

and so Eq. (11.58c) is satisfied, and from Eq. (11.57b) we see that Eq. (11.58d) 
will hold if we have 

(11.59b) 

9 Since.~, is of order m 1
• the 8/Dt S, term in Eq. (11.56c) is a higher-order correction. In order that S~ be 

of order m--!, we must require that 0~ be of order m- 1 relative to 0,, which places a restriction on the 
magnitudes of the {J-symplectic components B/JO and Bpt of the scalar and vector potentials. 
10 This proviso is necessary because Eq. (11.58a) is equivalent to 

with ill any anti-self-adjoint operator with eigenvalues of integer magnitude. Hence Eq. (11.58a) does not 
uniquely imply Eq. (11.5Hb), unless a restriction to ·'small" Sis made, which of course is in keeping with 
the Foldy--Wouthuysen procedure. Similar remarks apply to the applications of the Foldy-Wouthuysen 
method given in Sees. 11.5 and 11.6. 
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Now since n2 is quaternion-self-adjoint, we have 

(11.59c) 

and son{;= -nf, which implies that 0~- == 0 13 . This, together with the fact that 
Or3 is a lmear combination of r 1 and r2, implies that Eq. (11.59b) is satisfied. 

To conclude, then, we can completely eliminate the term 0 from H', leaving 
to leading order in m -I, 

i !!_<I>' = H' <I>' at 
2 

' n H = T3 m + -- T3 + B10 I 
2m 

(¢(1), ¢(2)) =-2m/ d
3

x<I>(:Jir3<I>(2) ( 11.60) 

Since Eqs. (11.60) do not couple the components 8'1, 8; of <I>', we can set 8; to 
zero; denoting 0'1 now by I (and G( 1J 1, 8(2) 1 by I, g), we get as the leading-order 
nonrelativistic reduction of the quaternionic Klein-Gordon equation 

(11.6la) 

with the corresponding inner product 

(11.6lb) 

Although B 10 is a real scalar potential, Bt is still a general 11 quaternion
imaginary vector potential, and I is of course a quaternion-valued wave 
function, and so Eq. (11.6la) is a quaternionic (as opposed to a complex) 
Schrodinger equation. However, we see immediately that Eq. (11.6la) does 
not have the form of the nonrelativistic quaternionic Schrodinger equation 
deduced from Galilean invariance considerations in Sees. 4.1 and 4.2, 
although the two have the same complex quantum mechanics limit. The 
reason, of course, is that the analysis of Sees. 4.1 and 4.2 assumes, through 
its use of Eq. (2.58c) as the quaternionic Schrodinger equation, that the inner 
product is that of Eq. (2.18), which obeys the axioms for quaternionic Hilbert 
space given in Sec. 2.1. As we have already noted, the coordinate space-local 
quaternionic Klein-Gordon inner product of Eqs. (!!.Sa) and (11.35a) does 
not obey these axioms, and correspondingly, neither does its nonrelativistic 
reduction given in Eq. (11.61 b), which contains an extra factor of i sand
wiched between J and g. The alteration in structure of the nonrelativistic 
Klein-Gordon equation of Eq. (11.611a) is just what is needed, in fact, to 

11 That is. B, is quaternion-imaginary but not necessarily C(l.i). We will find in the semirclativistic 
reduction, discussed in Sees. 11.6 -7, that B0 remains a general quaternionic scalar potentia\. 
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guarantee time independence of the inner product of Eq. (11.6lb). Specifi
cally, writing Eq. (11.6la) as 

/) != hj' 
Dt · · (1!.62a) 

with 

. 1 3 ( 0 )2 h=hT=m-~L -.-1 +Br +BIO 
2m f=! ax 

( 11.62b) 

a Hamiltonian that is quaternion self-adjoint with respect to the usual inner 
product of Eq. (2.18), and remembering]= I 1 for a single-component wave 
function, we get 

Although Eq. (11.6la) differs in form from the nonrelativistic quaternionic 
Schrodinger equation discussed in Part II, it nonetheless gives a Galilean
covariant dynamics. To see this most easily, we can follow the same procedure 
used in Eqs. (4.39a-d) of Sec. 4.2 and rewrite the Schrodinger equation 
describing a particle in a frame moving with velocity v relative to our original 
frame in a form identical to that of Eq. ( 11.61 a), but with transformed poten
tials. Thus, defining the wave function in the new frame by 

](.'¥, t) = e~iA(\',t)j(x + vt, t) 

A( ~ ) ~ ~ I ~2 x.t =mv·x+ 2mv t (11.63a) 

we find by direct calculation from Eq. (11.6la) thatfobeys the Schrodinger 
equation 

,~ [ 1 -' ( Cl )2 l u ~ (J ~ ' ~ 

i-;::: f = m-~2 L -;:;--y + Br +Bio f 
ot m I=! ux 

(11.63b) 

with the moving-frame potentials B1, B10 related to the rest-frame potentials 
Be, Bw by 

~ I~ , ~ 
B10 = B10(5? + vt, t)- 2 ~ ve(iBp + Bri) 

f~ I 

(11.63c) 
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11.4 THE OUATERNIONIC FREE DIRAC EQUATION 

As our next example of a relativistic single-particle equation, we develop the 
quaternionic generalization of the Dirac equation for a relativistic spin-1/2 
particle. We denote by t/1

11 
a quaternionic four-component Lorentz spinor coor

dinate representation wave function, with n = I, ... , 4 the spin or index, so that 
in terms of real or of symplectic components we have 

( 11.64a) 

with 

t/1 An= lp An(x), A= 0, I, 2, 3 (11.64b) 

four real four-component Lorentz spinors, and with 

( 11.64c) 

two complex C( I, i) four-component Lorentz spinors. Following the usual 
convention, when the spinor index n is suppressed, a sum over this index is 
understood. The simplest way to develop the quaternionic generalization of the 
Dirac equation is to work initially in Majorana representation [see Govorkov 
( 1987) and Adler ( 1986, 1989)]. 12 Once we have constructed the interacting Dirac 
equation in Majorana representation (which will be denoted by a subscript M), 
we can obtain it in a general representation (denoted by subscript G) by trans
formation from the Majorana representation. 

Since the Dirac equation is a first-order equation, we can write the Major
ana-representation free Dirac equation in the standard form 

(11.65a) 

with the Hamiltonian H M anti-self-adjoint under the adjoint operation 
defined, as usual, by quaternionic conjugation followed by transposition, and 
also under the natural inner product to be introduced in Eq. (11.68a) and 
given by 

(11.65b) 

11 An alternative approach to a quaternionic Dirac equation has been discussed by Rotelli (1989a,b). 
Rotelli uses 2 x 2 Dirac matrices 

,.o = (I 0 )· 
' 0 ~I . A ~ I. 2. 3 

which satisfy {;"', ;.'} = -2g 1"' by virtue of the quaternion algebra. and he employs a C (I, i), rather than a 
quaternionic, inner product. Because the dimensionality of a complete orthonormal set is twice as large for 
the complex as for the quaternionic inner product (cf. Eqs. (2.72) and (2.73) of Sec. 2.5], Rotelli ends up 
with a spinor state space of the same dimensionality as that achieved in our discussion with 4 x 4 Dirac 
matrices, but the quaternionic ray structure is lost in his approach. Specifically, [x) and [x)j are orthogonal 
stales. rather than alternative ray representatives of the same state. in the Rotelli formulation. 
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Here m is the mass and r~.;w and f3M are the self-adjoint 4 x 4 matrices 

'll - (_~! -O"J). a7w = ( ~ ~I) M- 0 . 

'l3 - ( -~, -(~3} f3M = ( 0 ~2) (11.65c) M- 0"2 

with au.3 the usual Pauli matrices, so that r~.~ and if3M arc real. In Eq. (11.65c), 
0 and I are a shorthand for the 2 x 2 null and unit matrices 02 and 12, 

(11.65d) 

a notation that will be adhered to below. The matrices a;w and f1M obey the 
anticommutator algebra 

{3~ = I (11.66a) 

which guarantee that the second-order iteration of Eq. (11.65a) involves the 
same relativistic wave operator as appears in Eq. ( 11.6), 

( 11.66b) 

Following the notation we have employed before, the adjoint spinor t/J!w is 
defined as 

(11.67a) 

with T denoting the spinor index transpose and with the bar denoting quater
nionic conjugation. According to Eq. (11.65a), t/1~ obeys the equation of 
motion 

I (' ;- ) Dt/1 H I . P 0 · 
---;::;-, = - t/1 M L 'l :H -;--------) f - z p M m 

U f-~1 (X 

(11.67b) 

and so if V1
1
vt and T}M are any two spinors obeying Eq. (11.65a), we have 

3 ') 
=- ~~(~(i;,t 'lf T}W) 
~ iJxf I'M M 1 

1=- I 

(11.67c) 

Hence if we define the inner product of the two Dirac spinors t/J~v~,r/M by 

(11.68a) 
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then this inner product is left invariant by the dynamics of Eq. (11.65a), 

(11.68b) 

and jby the same reasoning applied to the Klein-Gordon case in Eqs. (11.8b--d)] 
is Lorentz invariant. The inner product of Eq. (11.68a) evidently obeys 

(11.68c) 

as well as the other axioms for the inner product given in Eqs. (2.2a)-(2.2e). As 
a consequence, the Dirac solutions can be unit normalized, and letting PM(n) be 
a complete orthonormalized set of Dirac solutions in the Majorana representa
tion, the completeness relation takes the usual form 

( t/J M, T}M) = 2.:) t/J M, P M(n)) (p M(n), T/M) (11.69) 
11 

Let us now introduce the transformation to a general representation G by 
writing 

(11.70a) 

with Uc a constant 4 x 4 matrix acting on the spinor indices, which is quater
nion unitary, 

(11.70b) 

Then the Dirac equation for t/Jc; is 

(11.7la) 

with fl c given by 

3 
- -..;:-' r a . 
He= L 'l(; ~-~' + zc; f3cm 

f.~ I cJX. 
(l1.7lb) 

where 

· u-I·u lG = G l G (l1.7lc) 

with i in Eq. (l1.7lc) denoting i times the unit 4 x 4 Dirac matrix. In the case of 
the transformations to the Dirac and Weyl representations (which are discussed 
in detail in Sec. 11.5), U c is <C( l, i), and so we have iu = i, but for general 
quaternionic Uu, ic is a 4 x 4 quaternionic matrix acting on the spinor indices. 
In all cases af, /3c; and ic; obey the algebraic relations 

[ic, aSJ = [ic;, Pel = 0 

{aS, IXc} = 2bfn' {IX~, f3c;} = 0 

{3~ = l ' i~ = - l (l1.7ld) 
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From the unitarity of Uc, we find that the inner product of Eq. (11.68a) IS 

representation independent, 

( 11. 72a) 

Hence the subscript M or G is superfluous in the inner product, which we 
henceforth write simply as (if;, rJ); similarly, the completeness relation can be 
written without representation subscripts as 

(11.72b) 
n 

Let us next discuss the transformation of the quaternionic Dirac equation to 
Fourier space. If we wish to retain the freedom to use a general Dirac repre
sentation G, the Fourier expansion should use real sine and cosine bases, as in 
the Klein- Gordon expansion of Eq. (II. II a). However, if we are only interested 
in representations (to be denoted by a subscript C) obtainable by transforming 
from the Majorana representation using a O::(l,i) matrix Uc = Uc, which as 
noted earlier include the Majorana, Dirac, and Weyl representations, then it is 
more convenient to use a 0::( I, i) momentum eigenstate basis. We thus write 

(11.73a) 

defining the momentum space wave function if; c(p, t) in the representation C of 
the Dirac matrices. Setting G = C, we can transform the inner product of Eq. 
(11.72a) to momentum space, 

I 3 1 I 3 ;· d3 pd3 p' t .~ ~ -·I ~ 
(1/!c,TJc) = d xi/Jc(x)rtc(x) = d x 3 1/Jc(j}, t)e-lp·xe'P x7Jc(p1, t) 

. . . (2n) 

= J d 3pd3p1 1j;~(ft, t)b3(p- p 1)7Jc(p1
, t) 

.I d 3plj;~.(ji, t)rtc(fi, t) (ll.73b) 

showing that the Dirac inner product takes a local form in both coordinate 
space and momentum space. 13 The G = C Dirac wave equation corresponding 
to Eqs. (11.7la,b), 

3 a 
He= L a~!)f + i/Jc·m 

f=l uX 

( 11. 74a) 

11 Note that because we have defined the Fourier transform in Eq. (11.73a) using !he measure d 1p, rather 
than the Lorentz invariant measure d 1p/wp. the momentum space wave function ljl,(jJ, 1) is no! simply a 
spinor under Lorentz transformations. See also !he discussion associated with Eqs. ( 11.11 b,c) of the Klein
Gordon case and Newton and Wigner (1949). 
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can now be transformed to a momentum space Dirac equation, 

(11.74b) 

glVlng 

i~t lj;c(p, t) = -Hc(j))lj;c(p, t), 
- , f 

[ 
3 l Hc(p) = i b rLcP + f3cm (11.74c) 

Since the matrices a2, an~ #r are self-adjoint and commute with i, the momen
tum space Hamiltonian H c( p) is anti-self-adjoint, 

- - i 
Hc(p) = -Hc(p) ( 11.74d) 

Using Eq s. (11. 7 4c) and (11. 7 4d ), the time independence of the Dirac inner 
product can be immediately demonstrated from the momentum space form 
given in Eq. (ll.73b). 

Let us now examine the energy eigenstates corresponding to the momentum 
space Dirac equation of Eq. (11.74c). Writing 

,/, ( ~ ) ,/ ( ~) -iEt 
'I' c p, t = 'f' c p e ( 11.75a) 

we see that if; c( p) obeys the time-independent Dirac equation 

Hc(fi)if;c(ji) == if;c(j))iE (11.75b) 

Separating lj;c(p) into symplectic components according to 

1/J c(ji) = 1/J ccJ fi) + j 1/J Cfi (ji) (11.75c) 

the fact that Hc(p) is C( 1, i) implies that Eq. (11.75b) separates into uncoupled 
equations for 1/Jccx and 1/Jcp, 

(11.76a) 

and 

Hc(j))Jif;cp(ii) =JI/Jrp(j))iE (11.76b) 

Changing the ray representative of Eq. (11.76b) by multiplying by -j from the 
right gives 

(11.76c) 
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which has the same form as Eq. (11.76a) apart from reversal in the sign of the 
energy eigenvalue E. Hence if no restriction on the sign of E is made, a 
complete set of solutions of Eq. (11.75b) can be found in which 
t/lc(i}) = t/JcAfi) E 0::(1, i). Multiplying Eq. (11.76a) by -i, we get 

3 

H c( ji) = L a~./ + H c m (11.77a) 
{=c} 

which is the usual complex Dirac equation and has a standard set of positive
energy ("particle") and ne ga ti ve-energy ("antiparticle") solutions 

,, ( ~) _ ,/, ( ~) _ { u(ji, s), vic P - 'I' Ccx P - ~ 
v( -p, s), 

s= ±, 

s = ±, 

E = (ji2 + 1112)112 

E = -(ji2 + 1112)112 
( 11.77b) 

with s the projection of the spin in the direction fi/lfil. (See, e.g., Itzykson and 
Zuber, 1980, and Bjorken and Drell, 1964, Chap. 3.) If instead of choosing ray 
representatives so that t/Jc is 0::( I, i), we choose ray representatives so that E is 
always positive, then the complete set of solutions of Eq. (11.75b) takes the 
alternative form 

t/1 ·(fi) = { u(ji, s), 
c ~ . . * ~ 

v(-p,s)J=Jv (-p,s), 

s = ±, 
s = ±, 

E = (ji2 + 111 2) I/2 

E = (ji2 + 111 2) I/2 
(11.77c) 

Thus, just as in the Klein-Gordon case, in the quaternionic Dirac equation, 
"antiparticle" or negative-energy states can he reinterpreted as positive-energy 
states residing in the {1-symplectic component of the wave function (Adler, 1989). 
This interpretation of antiparticles will be applied in Sec. 13.1 to an analysis of 
the Klein paradox. It is evidently a relativistic analog of the nonre1ativistic 
phenomenon studied in Eq s. (6.12a, b), in which bound states, in the standard 
ray representation convention, appear as positive-energy eigenstates with 
{1-symplectic wave functions. 

We turn next to the Lorentz transformation properties of the Dirac equation, 
working in coordinate representation with the general Dirac representation G. 
Multiplying Eq. (11.71a) from the left by He we get 

which by use of Eqs. (11.71b,d), and with the definitions 

takes the form 

,,0 _ R 
rG- fJG, 

f R f Yc = fJG ac, P. = 1' 2, 3 

( 
0 a ~.e a . ) 

]! G f) + ~ ( G -a f + lG 111 t/J G = 0 
ut £=! X 

(11.78a) 

(11.78b) 

(11.78c) 
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Rewriting Eq. (11.78c) in covariant notation, we then have 

( 
I' [) . ) ,/, 

~·c EJxfl +cern 'I'G = 0 ( 11.79) 

and taking the adjoint of Eq. (11. 79) gives 

=0 ( 11.80a) 

To simplify Eq. (11.80a). we note first that by Eqs. (11.70b) and (11.7lc), we 
have 

which together with Eq. (11.7ld) imply that 

l
·t _ .,o 

1
· ,o 

e--re ere 
,ot _ .,,o .,o .,,o 
tG-IGIGIG 

.,li - i f3 . - _,,f - .,0 ./ .,0 
IG - G G- IG- IG rG IG 

the latter two of which can be summarized as 

.,l't - .,0 .,1' .,0 
IG - rG IG IG 

(11.80b) 

( 11.80c) 

( 11.80d) 

Thus multiplying Eq. (11.80a) from the right by r·~. the adjoint equation takes 
the form 4 

(11.8la) 

From Eqs. (11.7ld) and (11.78b), we find that the matrices i'~ and ic; obey the 
algebra 

{ .,I' ",. } - - 2g~'" 
l(j•IG - ' i~ == -I' [}'~, ic] = 0 (11.8lb) 

We cone! ude from Eq s. (II. 79) and (II . 81 a, b) that the covariant q uaternionic 
Dirac equation in a general representation has a structure completely analogous 
to the complex case, apart from the replacement of the explicit i in the complex 
case by the 4 x 4 matrix ic in the quaternionic case. 

14 In the standard notation used in the literature for the C.: (I. i) Dirac equation. 1/J~, ;-~, is denoted by 1/!c;. We 
do not usc this notation in what follows. since we consistently employ the bar to mean the quatcrnion 
conjugate. All ;·~. factors present are explicitly indicated. 
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The formal analysis of Lorentz covariance of the Dirac equation proceeds 
now much as in the complex case. Let x 1 and x be related by the homogeneous 
Lorentz transformation 

(11.82a) 

or in shorthand, x 1 =ax. Let t/J~(x 1 ) be the Dirac wave function in the primed 
frame, which we expect to be related to t/Jc(x) by a linear transformation of the 
form 

(11.82b) 

where Sc(a) is a 4 x 4 matrix that obeys the group representation properties 

Sc(l)=l ( 11.82c) 

Substituting Eq. (I L82b) into Eq. (11.79) and using 

a c' tv !1 !1 ox u \' u 
--=----=a 
8xl' (}xl1 8x 1~" I' Dx~~' 

(11.83a) 

we get, after multiplying by Sc(a) from the left, 

(11.83b) 

Equation (11.83b) reduces to 

(y~ ()~ 111 + icm )t/l~(x 1 ) = 0 (11.83c) 

which is identical in form to Eq. (11.79), provided that Sr;(a) obeys the two 
conditions 

S ( ), 11 5 -1 ( ) v , ,, 
G a lc G a a 11 = 'lc· (11.84a) 

which can be rewritten as 

S -l()''S() ''il (; a Yc; G a =a !lYe• [Sc(a), ic;] = 0 (11.84b) 

We shall solve Eq. (11.84b) explicitly for the case of infinitesimal Lorentz 
transformations, where a11 v has the form 

( 11.85a) 

with 

(11.85b) 

To first order in t:.w =a- I, we assert that Sc(a) is given by 

S'G(a) - I - l [') J'] "cJJ-' - 8 IG• IG D IJJ ( 11.85c) 
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since by Eq. (II. 81 b) this commutes with ic, and, again by Eq. (II. 81 b), this obeys 

sc; 1 (a)y~ Sc(a) = y~- ~ [r~, [y~, y~J] ~wi_o-

= Yc - Y;;L~w/ = Yo+ Y~~w'11 
= (b'' + ~w" )y11 =a'' y~'. 11 11G pG 

From Eq. (11.85c) and Eq. (11.80d) we see that 

S t ( ) ,0 s -I ( ) ,0 c a = rc c a }c; 

(11.85d) 

( 11.85e) 

and hence corresponding to Eq. (11.82b), the infinitesimal Lorentz transforma
tion of the adjoint spinor is given by 

(11.85f) 

Finite proper Lorentz transformations can now be constructed, using Eq. 
(11.82c), by repeated application of infinitesimal Lorentz transformations, and 
they continue to obey Eqs. (11.82b), (11.85e), and (11.85f). Finally, it is easily 
seen (just as in the case of the complex Dirac equation) that the space reflection 
transformation 

~t ~ x = -x, 

which is an improper Lorentz transformation, is represented by 

with 

Defining Y~; by 

P == ~r~ 

"s 1· ,a ., 1 ,2 ,,3 ·yst 
rG = Grcrcrcrc; = ·c 

we see from Eq. (11.8lb) that y~ anticomnmtes with 'r'~· Thus 

[Sc(a).y~] = 0, 

( 11.86a) 

( 11.86b) 

( 11.86c) 

( 11.87a) 

(11.87b) 

which implies that Yb acts as a Lorentz pscudoscalar. Therefore forming the 16 
independent 4 x 4 matrices 

s rc. = 1 
3 ' 

rA _ Ys ., 
G11- GrGfl' 

r p y5 
G- G• 

( 11.88) 

when we sandwich the fc's between 1/J~;(x)y~. and 1/Jc(x) we get bilinear covar
iants with the expected scalar, pseudoscalar, vector, and so on, Lorentz trans
formation properties. 
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11.5 THE INTERACTING DIRAC EQUATION AND ITS 
NONRELATIVISTIC REDUCTION 

We proceed now to a discussion of the interacting Dirac equation. As in our 
analysis of the noninteracting case, we begin by working in the Majorana 
representation of the Dirac matrices, and then obtain results in the general 
representation by transformation from the Majorana representation. Just as in 
our discussion of the Klein-Gordon case, we introduce interactions by means of 
the general gauging of Adler (1986) and Govorkov (1987), and then obtain 
alternative gaugings afterward by specialization. We therefore require that the 
interacting Dirac equation should be form invariant under the transformation 

iw(x)l = 1(1/(x)l = I (11.89a) 

This is accomplished by replacing the ordinary derivative 811 by the two-sided 
covariant derivative 

( 11.89b) 

with the gauge potentials B11 and s;, transforming as m Eq. (11.26c). The 
Majorana representation Dirac equation now becomes 

3 
8t/f M H- ,/, ,/, B I """ f ,/, B I ---rJ{ = - M'l' .VI + 'I'M 0 + L...t aM 'I'M £ 

f=! 

with HM the anti-self-adjoint Hamiltonian 

( 11. 90a) 

(11.90b) 

If t/JM and T/!vf are any two spinors obeying Eqs. (11.90a,b), then a calculation 
paralleling that of Eqs. (11.35a,b) shows that 

Thus integrating Eq. (11.9la) spatially, we sec that the Dirac spmor mner 
product (t/l!vf,TIM) defined in Eq. (11.68a) obeys 

and hence ( t/J M, T/M) is time independent and Lorentz invariant only when 
specialized to a gauging with B ~ = 0. Correspondingly, when t/J.vt and T/M are 
both gauge transformed according to Eq. (11.89a), the inner product (t/JM, TIM) 
transforms as 
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(11.9lc) 

which corresponds to invariance of (t/JM,rlw) only in the specialization of Eq. 
(11.89a) with w1(x) = 1. 15 In addition to the specialization o/ =i.E~= 0, 
which corresponds to specialization 3 [Eqs. (11.40a~c) and (11.4la,b)] m the 
Klein-Gordon case, the general gauging of Eq. (11.89a) admits specializations 
corresponding to specializations I, 2, and 4 [Eqs. (11.38a,b), (11.39), and 
(11.42)] in the Klein -Gordon case. We do not pursue these further, since the 
discussion completely parallels that given in Sec. 11.2. 

Throughout the remainder of our discussion of the interacting Dirac eq ua
tion, we shall focus exclusively on the specialization of Eqs. (11.89a,b) with 
(,/ = L s;, = 0, for which the Majorana representation Dirac equation reads 
simply 

( 11.92) 

and for which the inner product (t/JM,'I]M) is time independent and Lorentz and 
gauge invariant. Let us now rewrite Eq. (11.92) in a general representation of 
the Dirac algebra by substituting Eq. (ll.70a) and multiplying from the left by 
U(; 1, giving 

- I -
l-fcJ = lf(; HM lfe (11.93a) 

To explicitly construct He, we express the potential B
1
, in terms of real compo

nents, 

(11.93b) 

and in analogy with Eq. (11.7lc) we define 

(11.93c) 

SO that the 4 X 4 masrices ic;, )c, ke obey an algebra isomorphic to the quater
nion algebra. Then He takes the form 

( 11.94a) 

and since ie, .ia, and ke all commute with :xt and f3c, there are no factor
ordering ambiguities in any of the terms of Eq. (11.94a). Using the matrices y~. 
defined in Eq. (ll.78b), we can immediately rewrite Eqs. (11.93a) and (11.94a) 
in covariant form as 

15 Since t/J'w~'.w and ~~.~x;14 t/l.w are real, and therefore commute with general quaternionic B;, and w', Eqs. 
(11.91b,c) tmply that the state norm (t/IM. t/J.w) is time independent, Lorentz invariant, and gauge invariant 
tn the general gauging of Eqs. (II .89a.b). 
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(11.94b) 

again with no factor-ordering ambiguities because ic, Jc, kc commute with y~. 
Because the totality of algebraic properties 

lG .lG = kc;' ·2 I lc; =-

[ic, ;~] = [Jc, y~] = [kc, y~] = 0 

11 = .,o 
G rG• 

r/ - .,,o ,,£ 
G- rGrG 

are invariant under a similarity transformation 

y~ ---> Vy~ v~I 

(i(i.Jc;,kc) _, V(iG,]G,kc)V~ 1 

f3 V/3 V ~-I Nrc~ ~ v,,,ec v~ I 
G -> G ' '-'- --- v. 

( 11. 94c) 

( 11.95) 

with a general quaternionic 4 x 4 matrix V, we can abstract from Eqs. 
(11.94a,b,c) a general statement of the quaternionic Dirac equation, inde
pendent of its construction by transformation from the Majorana representa-
t ·o 16,17 
1 n. 

Let us now focus our attention on the class of Dirac matrix representations in 
which the transformation matrix U c from the Majorana representation is 0::( 1, i) 
(as is the case for the physically interesting Dirac and Weyl representations, and, 
for that matter, for all representations defined within the framework of the 
standard complex Dirac equation). Within this class of representations, we shall 

---------~--

16 Davies (1990) has investigated the quaternionic Dirac equation of Eq. (11.94b) under the restricting 
condition that the only representation dependence is that associated with the Dirac matrices )'~;. The 
consequent re:;triction ic; = i arising from the mass term implies, via Eq. (11.7lc). that the transformation 
matrix U from the Majorana representation is C (I. i), and hence that)'~ commutes with i. If U is real, then 
fc = j and kc; = k, and so within this subclass of representations, Davies' condition is achieved for a 
general quaternionic potential Bl'; if U is general complex C (I, i), then in general fc i j and kc; # k, and so 
Davies's condition then requires B21' = B11' = 0, that is, lhe potential B1, must be C (I, i). These conclusions 
agree with the results obtained by Davies. 
17 We note at this point the form taken by the general interacting Dirac equation of Eq. (11.90a) in the 
general Dirac matrix representation G. Multiplying from the left by U (; 1, Eq. (II. 90a) becomes 

with Hc; as in Eq. (11.94a) and with B~ = B'11J + B;,, j + B;
1
,k. Th11s the right-acting potentials still carry 

quaternion units i.i. k, while the !ell-acting potentials contained in He carry 4 x 4 matrix quaternion units 
ic;. jc;, kc;. This is a concrete llnite matrix realization of the distinction between the right-acting quaternion 
units i. j, k and the left-acting operator units I, J, K that was introduced in Chapter 2. In particular, we can 
define formally real components •/leA• A~ 0. I, 2. 3, of 1/lc;. by writing 

which then satisfy (ic;,jc;.k&")l/lc 4 = 1/!c;A(i.j,k). A =0, 1.2,3. 
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follow the standard complex Dirac equation convention of omitting the repre
sentation label C. The Dirac equation now takes the form 

- -1 -
H= U H111U (11.96) 

with H 111 given by Eq. ( 11.90b) and with U from here on always <C( 1, i). It is now 
natural to introduce symplectic components for the potentials by writing 

(11.97) 

Then taking account of the fact that 

(11.98a) 

and defining 

U - I 'TT . 
Ju =n ( 11. 98b) 

the Hamiltonian operator H appearing in Eq. (11.96) takes the form 

H = B~o +fBrwY + t rl ("'8 
P + B~t +)Br11 r·) + imf3 

f~ I uX 
( 11.99) 

Certain general properties of the matrix}' follow from the defining equations. 
From Eq. (11.98b) we have immediately 

,,T- "' I ~ I ( 11.1 OOa) 

Transforming the commutator and anticommutator 

[j, ()(~] = 0, ( ll.lOOb) 

by multiplying by u- 1 
• · • U and using Eqs. (11.7lc) and (11.98b), we get 

[jy,/] = 0, {n,/3} = o ( 11.1 OOc) 

which can be rewritten as 

yf3 = ~{3*,, ( 11.1 OOd) 

We now proceed to explicitly compute y in the Dirac and Weyl representations. 
In the Dirac representation we have 

f=(o C5£) 
()( 0 ' C5f /3=(1 0) 0 ~ 1 (ll.lOla) 
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from which we deduce 

(ll.lOlb) 

Since f3 = [1*, Eq. (ll.lOOd) [or direct calculation from Eqs. (ll.lOla,b)] gives 

yf3 = ~f31' (ll.lOlc) 

while rewriting y as 

(ll.lOld) 

we get 

(ll.lOle) 

In the Weyl (or chiral) representation we have 

(11.102a) 

from which we deduce 

(11.102b) 

Again we have 

yf3 = ~f3y ( 11.1 02c) 

and rewriting ( as 

( 11.1 02d) 

we again get 

( 11.1 02e) 

We turn now to the development of a systematic nonrelativistic expansion of 
the Dirac equation, following the Foldy-Wouthuysen (1950) procedure. As in 
the complex case, we work in the Dirac representation, so that the mass term in 
the Dirac equation is represented by a diagonal matrix. Substituting Eq. 
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(11.101e) into Eq. (11.99), the Dirac Hamiltonian becomes 

H = im/3 +a+ [ 
3 

£ = B~o + L CJt(J2 j f3Bru 
bl 

(11.103a) 

with [ and a, respectively, the terms in H that commute with, and that anti
commute with, the matrix [1 appearing in the mass term, 

[/3, £] = 0, {f1.a} = 0 (11.103b) 

Let us consider now the quaternion unitary transformation 

t/1 = St/J', st = s-t ( 11.1 04a) 

which is evidently an in variance of the inner product 

(11.104b) 

and hence is a canonical transformation for the Dirac equation. Under th1s 
transformation, Eq. (11.96) is transformed into 

a t/1' = - fi'·', 
at '~" · ( 11.1 04c) 

which if we write 

(11.105a) 

with S quaternion anti-self-adjoint, becomes 

-, s ( - a) -s - - - as 1 [- - - as J -3 H =e H+at c =H+[S,H]-(}{+2_ S,[S,H]-at +0(5) 

(11.105b) 

Just as in the Klein-Gordcm case, we choose S so as to eliminate the leading 
large-m odd term a from H' (leaving subdominant odd terms a', which can be 
eliminated by a further canonical transformation). 

As the first step in this proced urc, we thus require S to satisfy 

- as [s imf3]- --=-a. 
' Cit 

( 11.1 06a) 
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To solve this equation, it is again convenient to split it into symplectic compo
nents by writing 18 

(11.106b) 

so that Eq. (11.106a) becomes 

- . as~ 
[S,, zm/3] -at= -0~, ( 11.1 06c) 

To leading order in m, these arc solved by 

S - - O~f3 
~- 2im' (11.107) 

with the lower· integration limit arbitrary. Evidently, in order to get a 
systematic ordering in powers of m, we must have Sp ~ -~~ ~ m- 1

, which (as 
earlie; in the Klein-;:Gordon case)/eguires t~at Op be of order m- 1 relative to 
0~. Smce 0"' = -0~ and Op = Or1, S~ and SfJ obey 

(11.108a) 

by virtue of which 

(11.108b) 

as required. We also note from Eq. (11.107) that 

{s, /3} = o (11.108c) 

and so Sis an odd quantity in the sense of Eq. (11.103b). [This can of course be 
inferred directly from the defining eg uation, Eq. ( 11.1 06a).] 

To complete the calculation to this order, we must compute the leading 
even terms in if' induced by the Foldy-Wouthuysen transformation generated 
by S of Eq. (11.107). Calculating from Eq. (11.105b), and using Eq. (ll.lOle), 
these are given by 

[S, OJ + ~ [ S, [S, im/3] - ~~] ~ ~ [S, 0] ~ ~ [S~ + }Sp, 0~] 
11 3 ( a )2 1 3 /t [ as (u)J 

=-2. La t+B~p +-2L(J£(J2if3 du 2BxtBrw(u)- ~iOf 
lm f=l X f=l . X 

(11.109) 

The first term on the right of Eq. ( 11.1 09) gives the nonrclativistic kinetic term, 
whereas the second term has the same structure as the CJ pCJ2 jf1Bru term in [ but is 
an order m- 1 correction (since it is proportional to Bpo _ -yOp), and can be 
dropped. Adding Eg. (11.109) to the even part imf3 + [of H, we have, to leading 
order, 

1
' We remind the reader at thts point lhat the 'ubscript fi, which is a symplecllc component label, has 

nothing to do with the Dirac matrix fi 1 
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( 11.11 Oa) 

Since the upper two and lower two spinor components are not coupled by Eq. 
( 11.11 Oa), we can introduce a nonrelativistic: two-component spinor wave func
tion f by writing 

f3f=f (ll.llOb) 

This gives for the leading-order nonrelativistic reduction of the quaternionic 
Dirac equation 

a [ i 3 ( a )2 3 ] -
8 

f(.~, t) = - im-~2 L ~ 1 + B:xl +B:xo + L CJeCJ2 JBru f(x, t) 
t mt=l ux 1=1 

(ll.llla) 

with the corresponding two-component spinor inner product given by 

(ll.lllb) 

Since the vector potential Bxf is <C(l, i), with only the scalar spin potential 
"£1 OfCJ2 jB!if having aj-dependence, Eqs. ( 11.111 a,b) have just the form antici
pated from the Galilean-invariance analysis of Sees. 4.1 and 4.2, and from the 
analysis of the structure of quaternionic spin potentials of Sec. 3.7. 

11.6 SEMIRELATIVISTIC REDUCTION OF THE INTERACTING 
KLEIN-GORDON AND DIRAC EQUATIONS 

In Sees. 11.3 and 11.5, we have given the quaternionic analogs of the standard 
nonrelativistic reduction of the Klein-Gordon and Dirac equations, in which 
particle and antiparticle solutions are completely decoupled. The conditions 
for validity of these reductions include the requirement [cf. the discussion 
following Eqs. (11.57b) and (11.107)] that the symplectic component Op of the 
odd operator 0 be of order m- 1 relative to Ox, which is more stringent than 
the validity conditions for the Foldy--Wouthuysen reduction in complex 
quantum mechanics. In this section we pursue an alternative reduction of the 
Klein-Gordon and Dirac equations, which remains valid under conditions for 
the quaternionic potentials analogous to those imposed in the complex case. 
In the alternative reduction, which we term semirelativistic, particle and anti
particle solutions remain coupled but their energy-momentum relations are 
reduced to nonrelativistic form. 

We begin with the quaternionic Kleiln-Gordon equation of Eq. (11.45b). 
Continuing to define Pq, by Eq. (11.45a), we now introduce new variables Ou 
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defined by 19 the transformation with real coefficients 

Again defining a two-component spinor <I> by 19 

we rewrite Eqs. (ll,45a,b) in terms of matrix operations on <I> as 

where 

a -
-<!:> = -H<I> 
rJt 

., 
- n-

H = it2m + B0 + 2~ (t3 + it2) 

( 11.112a) 

( 11.112b) 

( 11.112c) 

( 11.112d) 

and where n2 is defined, as before, by Eq. (11.47b). In this two-component 
notation, the inner product of Eq. (11.35a) becomes 

( 11.112e) 

Recalling now the notation [cf. Eq. (2.88c)] 

-I . ( 0 1) 
12 lT2 = -l O ( 11.113a) 

we split if into terms [ and 0, which, respectively, commute with i~ and anti-
commute with i~,20 -

H=£+0, 
.j 7[ ( 2) 

[ = !2 m +2m + Bo, (11.113b) 

The reduction of Eqs. (11.112c,d) to semirelativistic form consists of making_a 
transformation of Foldy-Wouthuysen type that removes the odd terms from H. 

We thus consider the transformation 

<I> = S<I>' ( 11.114a) 

19 We remind the reader that despite the use of identical notation, o,. lh, and <l> as defined in Eqs. 
(11.112a.b) differ from 0 1 , 02 , and <l> as defined in Eq. (ll.46a.b) of Sec. (11.3). 
'" Corresponding to the inner product structure of Eq. ( ll.ll2e). li sat1slles the anti-self-adjointness 
condition 

Hence E -~ -E 1 and 0 = 0 1. 
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where the requirement that the inner product of Eq. (11.112e) be preserved in 
form gives the unitarity condition 

(11.114b) 

Writing 

S --S :::::::e ( 11.114c) 

Eq. (11.114b) becomes 

·Ts· -itSi2 s·t-I~e·<;t z2 c2 = e 2 = ~ (11.114d) 

that is 10 

( 11.114e) 

Substituting Eqs. (11.114a,c) into Eq. (11.112c), we find that <I>' obeys the 
Schrodinger equation 

with 

0 ([>' = --if I{[>' 
or 

To cancel the term a to leading order, we take 

- ·r as [S c m] ~~~+a= 0 
' 2 Ut 

which to leading order in m is solved by 

r 
S '= ai2 

2m 

(11.114f) 

(11.114g) 

( 11.115a) 

(11.115b) 

Since Eq. ( 11.115b) obeys S = st and { S, i1} = 0, the unitarity condition of Eq. 

(11.114e) is satisfied. The condition for lSI« I is just ln2 /m21 «I, which has 
precisely the same form as the validity condition for the Foldy-Wouthuysen 
reduction in C()mplex quantl!_m mechanics. To leading order, the transformed 
Hamiltonian H' is simply H' = [, and so, to summarize, the leading-order 
Schrodinger equation and inner product are 21 

21 Since Eq. (II. I 14g) is identical in form to Eq. (II .I OSb). the order 0 2 contribution to if' is 

which is simply the fourth-order term in the nonrclativistic expansion of ii (m2 + n2
) 

112
. 
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8<I>' = - fl' <I>' 
8t 

H' = ij [m - -1 t (-/!--y + Br)
2

] 
2m f=l ax 

( rf.. 1 r~.' ) 2 fd3 if..rt ·T;rr ~'(!)' ~'(2) X=- m. X'¥(!)l2-i>(2) 

+ Bo 

(11.116) 

Equation (11.116) constitutes the semirelativistic reduction of the quaternionic 
Klein-Gordon equation. Although relativistic kinematics have been reduced to 
nonrelativistic kinematics, the two-component structure of Eg. ( 11.116) indicates 
that "particle" and "antiparticle" solutions arc still coupled to one another. 

We next turn our attention to the Majorana representation quaternionic 
Dirac equation of Eqs. (11.92) and (11.90b). Let us now define 

(11.117a) 

which is an analog of i~ acting on the spinor structure, so that i/3 M takes the form 

(11.117b) 

As is now familiar, we split flM into even and odd terms, 

(11.117c) 

which, respectively, commute with if3M and anticommutc with if3M· The reduc
tion of the Majorana representation Dirac equation to semirelativistic form 
consists of making a Foldy-Wouthuysen transformation to remove the odd 
terms in fl. Setting 

(11.118a) 

the inner product 

(11.118b) 

is preserved in form provided that Sis unitary, 

sts = 1 (11.118c) 

which writing 

S -s =e (11.118d) 

is equivalent to 10 

st = -s (11.118e) 



RELATIVISTIC SINGLE-PARTICLE WAVE EQCATIONS: SPIN-O AND SPIN-I/2 349 

Substituting Eg. (11.118a) into the Dirac equation of Eq. (11.92), we get 

{) tj/'vf - - ii' t/1' at - M ·~1 

with 

To cancel the term a to leading order, we take 

which is solved by 

- 01~11 
S=----

2m 

( 11.119a) 

(11.119b) 

( 11.119c) 

( 11.119d) 

Since a and I1T 1 are both anti-self-adjoint, S is also anti-self-adjoint and so 
the unitarity condition of Eq. (11.118e) is satisfied. Substituting Eq. (11.119d) 
into Eq. ( 11.119b ), we find that the correction quadratic in a to the even part 
of fi:'vf is 

giving for if;w 

(11.119f) 

At this point if'wt still acts on a four-component wave function, but we now 
note that the eigenvectors of Tt can be chosen to be real, 

( 11.120a) 

Hence by writing 

(11.120b) 

with t/JM± each a two-component wave function on which 1~ acts as in Eq. 
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( 11.117a), we get the decoupled two-component Schrodinger equations 

- I __ 1 1 a 
[ 3 ( )2] H M± - ±I 2 m - 2m&; axf + Bt + Bo 

( 11.120c) 

These have the same semirelativistic form as we found in Eq. (11.116) for the 
Klein-Gordon equation; the only difference in the Dirac case is that the inner 
product now has the definite form 

( ,// I ) J d3 (•i/T I ,//1 I ) 
'I' M• 77M = X 'I'M+ 7/M+ +'I'M- 7/:vt- ( 11.120d) 

rather than the indefinite form of Eq. ( 11.112e) with i; sandwiched in the 
middle. For a physical interpretation of the eigenvectors of TI, we use Eq. 
(II. I 0 I b) to transform them to the Dirac representation. where they become 

( 11.120e) 

Because both the upper and lower components of the column vectors in Eq. 
( 11.120e) arc nonzero, we learn that the TI eigenvectors are coherent mixtures of 
particle and antiparticle states. 

11.7 A SURVEY OF PROPERTIES OF THE SEMIRELATIVISTIC 
EQUATION 

As we have just seen, the quaternionic Klein-Gordon and Dirac equations can 
each be reduced to a two-component semirclativistic equation, as given in Egs. 
(11.116) and (11.120c). The properties of this equation differ in significant 
respects from those of the nonrelativistic Schrodinger equation that we studied in 
detail in Part II. In this section we give a brief survey of some of the more inter
esting properties of the semirelativistic equation, generally paralleling the order of 
topics discussed earlier in the book (and using the notational conventions for 
three-vectors of Part II), and concluding by showing that the semirelativistic 
equation can be explicitly transformed to a form involving a{:( 1, i) wave opera
tor. To standardize the notation, let f and g be two-component wave functions, 
with the definite inner product (as obtained from reduction of the Dirac equation) 

(11.12la) 

We take f (and similarly g) to evolve in time according to the semirelativistic 
quaternionic Schrodinger equation 

_ . t [ 1 
3 

( a )
2

] H=z 2 m--2.:: -e+Bp 
2m f=l ax 

+ V, it = ( 0 
2 -1 6) 

(11.121 b) 

with B1 and V = Bo local quaternion-imaginary potentials. 



RELATIVISTIC SINGLE-PARTICLE WAVE EQUATIONS: SPII'oi-0 AND SPIN-1/2 351 

(i) Self-adjoint Hamiltonian and Momerntum, Energy 
Eigenstates, and the Dynamics of Densities and 
Expectations (cf. Sees. 2.4, 2.6, 3.1, 3.2, 3.6, and 4.4) 

Multiplying Eq. (11.121b) by i1, which commutes with the potentials, we can 
rewrite it as 

·tar-· JUI' l J -· "1 -at . (11.12\c) 

with H the self-adjoint Hamiltonian operator 

I 3 ( " )2 ·t - "'""' 0 ·t -H=-z 2 H=m- 2mL......t fJxf+B£ +z 2 V 
{71 

(11.12ld) 

. ·1 f h' d r· If i. . (i~) d I In a simi ar as. 1on, we can e me a se1 -ac JOmt momentum p1 an angu ar 
(i' ) 

momentum L1 
2 by 

(11.12le) 

These commute respectively with a translation and a rotation invariant if and 
have simple commutation relations with the coordinates (with i1 replacing the 
canonical i ). 

When the potentials Bt, Bo are time independent, by substituting 

E?.O ( 11.122a) 

into Eq. ( 11.121 b), we get the time-independent Schrodinger equation 

Hl=fiE. ( 11.122b) 

Since if and i1 commute, Lemma 2 of Sec. 3.6 implies that they can be simulta
neously diagonalized with <C( I. i) eigenvalues; from (it) 2 

= -1 2, the eigenvalues 
of i1 must be ±i. We can thus write ~ 

f=f+ +f-., HI± =foJE, E?. 0, ( 11.122c) 

By Corollary 3 to Lemma 2, when E > 0 the ~igenstates f+ and f- are ortho
gonal. Using the eigenvail_!e equation for i!, H can be replaced by equivalent 
complex linear operators H± acting onf±, 

_ _ [ 1 ~~ (. a )2
] _ 

H/i_ =Hi f± = ± m- 2m f:r.' ,ax£+ Br f±i + VI± ( 11.122d) 

and similarly, pj';) and Lj';J can be related to the complex linear operators p~i) 
and Li') introduced in Chapter 3, 

(i ~) (i) . - . . 
P1 f± = ±pf f-1 = Cf'Ptf±z 

L(i~)l. -_ ±L(i)l. L I" . 
( . ± t . :1_ = Cf I . ± l ( 11.122e) 
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Let us now introduce a probability density panda probability currentjp for 
the semirelativistic equation, 

-J r/· p - .. ' (11.123a) 

By using the intertwining identity of Eq. (11.31 b), with B ;, = 0, we find 

3 8 1 { ·' 3 ( a )2 [ 3 ( 8 )2 J i } 
BDxlif=2m -ftii8 fJxf+Br f+ 8 axt+Bf f i1f 

(11.123b) 

which by Eq. (11.121 b) is equal to 

(11.123c) 

giving the local probability conservation equation 

~ 7 /)p 
\lx ·] + 8t = 0 ( 11.123d) 

Let us next set Br = 0 and derive the semirclativistic analogs of the Ehrenfest 
and vi rial theorems. Starting from (.?), we have 

( 11.124a) 

Differentiating again, and proceeding as in Eqs. (4.67a- c) with i and I replaced 
by i1, we get 

(11.124b) 

with the final step a consequence of the fact that i1 commutes with V. Hence the 
semirelativistic equation has an Ehrenfcst theorem of the usual form, apart from 
the replacement of i and I by i;. In a si1:nilar fashion, proceeding as in Eqs. 
( 4. 70a) ( 4. 72) with i and I replaced by i ~' we get the vi rial theorem for the 
semirelativistic equation 

( 11.124c) 

which again has the usual form obtained in complex quantum mechanics, apart 
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from the replacement of i by i1. The appearance of ii in Eqs. (11.124b,c) means, 
of course, that particle and antiparticle states are explicitly coupled in the 
semirelativistie Ehrenfest and virial theorems. 

(ii) The Feynman Path Integral (cf. Sec. 4-.5) 

Continuing with Bp = 0, we look next at the Feynman path integral derivation 
for the scmirelativistic Hamiltonian 

- ·t ( I ~ 2) -H = z2 m--y, + V(x) 
2m 

(11.125a) 

with time-independent potential V. We can take over ,our previous derivation 
<~f Eq~. (4.73)-(4.80) by making the substitutions I--> ii in the kinetic term and 
V--> V + i1 m, with the result 

Because i1 and V commute, we do not now encounter the difficulty of Eqs. 
(4.83a)-(4.85) when we combine the kinetic and potential terms into a single 
exponential. We can thus immediately rewrite Eq. ( 11.125b) as 

(11.125c) 

with S, Sr, and Sv. respectively, the total action and its kinetic and potential 
energy parts, 

- - -
S = Sr + Sv, S- _ ·i" ~Y_.,[J (.Xt-.Xt-1)2 ] T- !Jut L. --m -m 

- fc;{ 2 Llf 

JV 

Sv = -6.t L V(xf-1) (11.125d) 
(od 

and with Tp the time-ordering operator [cf. Eq. (2.57)] that orders later times 
to the left. Equation ( 11.125c) resembles the standard complex quantum 
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mechanics path integral but differs in two significant respects. Because of the 
presence of i1. (xr!U(t1, t 1)lx1) is still a 2 x 2 matrix acting on the two-compo
nent structure of the wave function, 22 and because of the quaternionic struc
ture of V, the potential energy contribution to the path integral is time 
ordered. 

(iii) Scattering Theory and Bound States (cf. Sees. 6.1-6.5) 

In surveying scattering theory and bound states for the semirclativistic equa
tion, we follow the presentation of Chapter 6: first we study the one-dimen
sional delta function model, and then we indicate how the results found there 
generalize to the three-dimensional case. Setting the vector potential to zero 
and diagonalizing i i as in Eqs. (11.122~,d), we get two one-dimensional cases 
to analyze. In the "plus sector" with ii eigenvalue +i, the Schrodinger equa
tion is 

E>O 

( 11.126a) 

:vhereas in the "minus sector" with i i eigenvalue - i, the Schrodingcr equation 
IS 

_ ( 1 d
2 

') ILJ'__ =- m-
2
m dx 2 f i + b(x)( V~ +JVr;) f- =f~ iE. E?_O 

(11.126b) 

Outside the range of the potential, that is, for x of. 0, these reduce to 

E?.O 

( 11.126c) 

from which we sec that scattering solutions e+1
P' c<:n exist only in/~. with 

energy E = m + p2 j2m, whereas bound-state solutions e -phcl can exist in both/~ 
andf"_, with energy E = m- p2 /2m for/,_ and E = p2 /2m- m forf_. We also 
sec that in the semirelativistic equation, unlike the situation in the nonrelativistic 
equation, both symplectic components of/+ (and off-) have the same kine
matical structure. This follows from the fact that the explicit i has canceled out 
ofEq. (11.126c), and so on substitutingfi_ =J:,_~ +ifJ-fi• Eq. (11.126c) separates 
into 

( m - 2~ ~
2

2) J+rx. fi = /~ rx.fi E, -- (m -_I d2 ) /' fi = /' fi E 2m dx 2 · -~. · -~. 

(11.126d) 

22 A complete specification of the system state is lx. ujf) with u(Y') denoting the upper(! ower) component of 
the wave function. Thus (Xt!U(rt.l;)lx,) is a 2 x 2 matrix with matrix clements (.~l.ut/ftiU(rt.l;)lt,.u,ji,). 
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To determine the scattering solutions, we substitute 

(11.127a) 

with the constants (x,p: C"r1, and c~.p all C(l, i), into the Schrodinger equation 
ofEq. (I Ll26a). The general form of Eq. (I Ll27a) corresponds to a wave with 

squared norm proportional to l(xl 2 + 1(11 1
2 incident from the left Solving the 

Schrodinger equation reduces, for the delta function model, to solving the 
junction equations 

0' 

ft 
I d . 

---/1 i + (V'I. +}Vp)J+(O) = 0 
2m dx· 

= 0, 
0 0 

which after some algebra (remembering V~ = -Vex) gives the results 

C - N".fi 
:<.fi- D ' 

N' 
C' --- ct.fJ 

"fJ -- D 

Net=~ v~ c;{J- (~vet+ I Val
2 +I Vpl

2
) ¢x 

Nr; = - ~ Vp ("- (- ~ Vx +I Vxl2 + I Vpl2) ¢r; 

N' Pv*~ P(P v)"" 
(X =- {Jc;{i +- -- -- CJ. "" m m m 

I p P/P )~ N fJ = -- Vr;(" +- 1 -- + V, c;fi 
m m'm 

It is now straightforward to check that the unitarity sum rule 

(IL127b) 

(11.127c) 

(11.127d) 

is obeyed by Eq. (I Ll27c). Since Din Eq. (I Ll27c) is a monotone increasing 
function of p, the scattering solution has no resonances. 

To determine the bound-state solutions inf+, we substitute 

(ll.l28a) 

into the junction conditions of Eq. (I L 127b). This gives the two equations 

( .P v*)n+ v n-c 1;+" {i=- {i ex ( 11.128 b) 
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which (again using v; = - V~) imply that 

D+ 
{! 

n+ 
1. ip/m- Vo: 

Similarly, to determine the bound-state solutions inf_, we substitute 

into the junction condition 

o' 
_I .!_ j:_ ( 2m dx i + V, +iVr!) j:_ (0) = 0 

0 

( 11.128c) 

( 11.128d) 

(11.128e) 

Since Eq. (11.128e) is obtained from Eq. (11.127b) by the substitutions 
J+--> j:_, V,,r1 -->- V~,r1 , the solution is obtained by making these substitutions 
in Eq. (11.128c), giving 

nr; vfJ 
D; ip/m + V'X 

( 11.128f) 

We see that there is always one bound state, which resides in thef+ solution for 
m 2:' /~2m, or equivalently 2 2:' I V~l 2 t I Vr11\ and moves to the f- solution 
when p /2m2:' m, or equivalently IV~I + !Vr11 2: 2. The bound states do not 
couple to the continuum scattering solutions; evidently, the phenomenon of 
bound-state-associated scattering resonances is not present in the semi
relativistic equation. 

Although both the a- and fj-symplectic components of the scattering states[+ 
propagate to infinity, these are in fact orthogonal states in the quaternionic inner 
product and do not mix coherently. Hence the S-matrix is still <C( I, i), rather than 
quaternionic, in accordance with our general result of Cpapter 8. To see that.f~~ 
andjf+r3 are orthogonal, we begin by noting that since ij is real we have 

·t /" j" . 12. +c< =. +c<l, ( 11.129a) 

More generally, let I fi+) and I h+) be any two eigcnstates of i1 with eigenvalue +i, 

(11.129b) 

Then 

( 11.129c) 

and so (fi +I f2+) is <C( I, i); that is, in terms of wave functions, 

(11.129d) 

which contains no interferences between a- and {J-symplectic components. A less 
abstract way of deriving this result is to recall that the eigenstate of i1 with 
eigenvalue i is () ); hencefi+(x) andh+(x) have the form 
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/i, (x) = [gt+>(x) +igHJ(x)] ~ ( ~} /2, (x) = [g2f-,(x) +jg2~/J(x)] ~ ( ~) 
( 11.130a) 

with gu+ single-component quaternionic wave functions with symplectic 
components gl.2+cx,fi· For the quaternionic inner product we find 

(Ji f lht) = t/ d3x( ~} [g!_,a +gl.uk-i)] [g2+e< +Jg2+fi] ( ~) 

= ./ d
3
x [~ (: Y (:) (gl+xg2LJ + gl+fig2t{i) 

+ ~ ( ~ y j ( : ) (gl-<-x g2t {i -. nt {J g2~x) l ( 11.130b) 

But since 

~ ( I )i ( I ) = I ~ ( I ) 1 
. ( I ) ,= . ~ ( I )t ( I ) = O 

2 i i ' 2 i 1 i 1 2 -i i 
(11.130c) 

Eq. (11.130b) gives 

Ul+lh~) = ./ d 3
x(gj+xg2+> +g},r;g2+fi) (11.130d) 

Returning now to Eq. (11.129a), lettingfi+ =f~ry_ and/2+ =Jf~r;, our general 
result of Eqs. (11.129d) and (ll.l30d) implies that these two wave functions arc 
orthogonal. 

All the general features we have just obtained in the one-dimensional delta 
function model carry over to the general three-dimensional case. The Schro
dinger equation in the plus sector is now 

£?0 (11.13la) 

whereas that in the minus sector is 

£?0 (11.13lb) 

Outside the range of the potential, these become 

( 
I ~2) 1. 1. 

m - 2m Vx . + = _, E. - ( m- 2~ V~) f- =f ... E, E? 0; 

(11.1311c) 

again, we sec that scattering solutions e'f·x can cxi§t only in f~, with energy 
E = m + p2 j2m, whereas bound-state solutions e-plxl can exist in both f+ and 
f, with respective energies E = m- p2 j2m and E = p2 j2m- m. Writing the/~ 
wave equation in terms of a two-component column vector 
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we get 

( 
I ~2) m- 2mv' :Ft-+V:Ft-=:F,E, v = vt = ( ~~ -cv11 

(11.13ld) 

(11.131e) 

Since Eq. (11.129d) for the quaternionic inner product in the plus sector becomes 

(11.13lf) 

the scattering problem in the plus sector is identical to that in complex quantum 
mechanics with a two-component column vector wave function and a 2 x 2 
matrix potential. Thus, for example, the forward scattering amplitude will have 
the usual cut E plane analyticity domain, as is indeed the case for the explicit 
solution to the delta function potential model given in Eq. (11.127c). 

(iv) Supersymmetric Quantum Mechanics 

As the next topic in our brief survey of properties of the semirelativistic equation, 
we show that it permits a direct quaternionic extension of the one-dimensional 
supersymmetric quantum mechanics model of Witten (1981 ), in which the Hamil
tonian is constructed from nilpotent charge matrices. Let V(x) be an arbitrary 
quaternion-imaginary function of x (multiplied by the unit matrix in the two
dimensional space acted on by i! ), and define (with' denoting djdx) the charge 
matrices 

Q+ = [~ -i~ d~ ~ V1

(x) l 
Q_ = Q~ [-it~~ v' (x) ~] (11.132a) 

2 dx 

Note that since i; is a 2 x 2 matrix, Eq. (11.132a) defines Q± to be 4 x 4 
matrices that commute with i!; 23 because of the upper (lower) diagonal struc
ture of Q+(-)• they are nilpotent, 

(11.132b) 

23 The following heuristic argument suggests that a 4 x 4 matrix structure is the minimal one for a 
quaternionic extension of the Witten model. Let Q c be a nilpotent charge, and let 

then ii = -li' requires 0 -' -0+. Imposing [Q". if]= 0 requires Q 1 p, Q~IQ~ = 0, which can be satis
fied if [0. Q\_j ~ cQ, + d, with c and d real numbers. (I wish to thank L. P. Horwit~ for pointing out the 
possibility df 0.) But using Eq. (1.22g) together with TrQ;- = 0, this implies 

which, since the traces on the right are positive, requires c = d ~- 0; hence we must have [0, Q, l = 0. The 
minimal structure is then to have Q t and 0 represented by 2 x 2 matrices acting in independent spaces. 
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Let us now define a Hamiltonian 

if= -fiT=~ (Q_,.i;Q~ + Q~i1Q+) 

which by virtue of Eq. (11.132b) obeys 

that is, 

( 11. 132c) 

( 11' 132d) 

(11.132e) 

ln other words, if has the nilpotent charges Q± as symmetry operators. Writing 

( 11.133a) 

with H the Hermitian operator 

(11.133b) 

we find, on substitution of Eq. (II. 132a) and algebraic simplification, that 

I [ d
2 

- 1 2] ( !2 H=- --- V (x) 
2 dx 2 0 

- I 't [ d
2 

-I 2] ( 12 H = -c --- V (x) 
2 2 dx 2 0 

0) 1-11 ('2 --- V (x) 
12 2 0 

(11.133c) 

with 12 the 2 x 2 unit matrix defined in Eq. (2.89a). These have precisely the 
form of quaternionic generalizations of supersymmetric quantum mechanics; 
when V(x) is <C( I, i) and H acts on a <C( I, i) wave function, the operator i1 acts 
in the plus (minus) sector as i(-i), and H of Eq. (11.133c) just reduces to the 
Hamiltonian of the Witten ( 1981) model. 2425 For further results concerning the 
model of Eqs. (11.132a-c), see Davies (1993). 

24 If we only require an Hermitian H which generalizes that of the Witten model. but not a corresponding 
anti-Hermitian if. then we can set up a 2 x 2 matrix structure within the framework of nonrelativistic 
quaternionic quantum mechanics, as follows_ We take 

[ 

d -1 ] _ 0 -1-+-V(x) 
Q_ - dx , 

0 0 
Q~ = 0: 

then with 

H=l(Q Q' -'- Ql Q ) =fit 2 r r -1 _,_ 

we have [Q +. H! = 0. Algebraic reduction of this H shows that when V11 # 0 there is a first-derivative term 
proportional to II, V'] djdx, in addition to terms with analogs in the Witten model. Such a term is not 
present in Eq. (II .133c) because [ii, r/ 'J = 0. 
75 We can also define a second quaternionic model with Q 1 as in Eq. ( 11.132a) and with 

which obeys {Q~c,H'} = 0. 

H-,- -tH' 
-/2 . 
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(v) Direct Transformation to Complex Form 

From the survey of properties of the semirelativistic equation in Subsections (i)-
(iv), it is evident that it behaves more like the standard complex Schrodinger 
equation than like the quaternionic Schrodinger equation studied in Part II. 
This suggests that the semirelativistic equation may be directly transformable to 
a complex form, and we shall show here that this is in fact the case. 

Referring back to Eqs. ( 11.121 a, b), we see that the semirelativistic equation 
involves the following five 2 x 2 matrices acting on a two-component quater
nionic wave function: 

(~I ~), 
( 

i 0) 
0 i ' 

. I -- J (. 0) 
J 2 - 0 j ' (k 0) 

ki2 = 0 k (11.134a) 

We shall now show that there is a 2 x 2 quaternion unitary matrix U2 that 
transforms the five matrices of Eq. ( 11.134a) to <C( I, i) form, deferring until Sec. 
13.4 an explanation of the method by which this matrix is constructed. Specifi
cally, consider the matrix and its adjoint 

-~( i-k -1 +}) t ··~(--i+k i+k)· (11.134b) lh - . k I . . U2 - I . I . ' 2 --!- +J . 2 - - J - J 

then by explicit computation we find 

u1u2 = u2u~ = 12 ( 11.134c) 

indicating that U2 is unitary. Denoting the q I, i) Pauli matrices acting on the 
two-component wave function by au.3 [given explicitly by Eq. (3.9la) with i 
replacing 1], further explicit computation verifies that 

while 

U2(a1,a,)u! = (ki2,fi2) 

Equation (11.134d) shows that by making the substitution 

in Eqs. (11.121a,b), these are explicitly transformed to the form 

( 11.134d) 

( 11.134e) 

(ll.l35a) 
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which involves a totally <C( I, i) wave operator if'. (The wave functions/' and g1
, 

of course, remain quaternionic.) Equation (ll.l34e) shows that the transfor
mation of Eq. (11.135a) does not make the exact Klein-Gordon or Dirac equa
tions <C( I, i), since before reduction to semirelativistic form they contain terms 0 
that anticommute with i ~, and hence contain terms proportional to 0"3, to <T 1 , or 
both [cf. Eqs. (11.113b), (ll.ll7c), and (11.65c)). Equation (11.134d) also 
implies that the quaternionic supersymmetric quantum mechanics model 
constructed in Eqs. (11.133a--c) of Subsection (iv) is transformable to complex 
<C( I, i) form; this anticipates the related but more general result, demonstrated 
in Sec.l2.3, that all nonzero energy quatemionic representations of the Poincari: 
group (or algebra) and its supersymmetric extensions are transformable to 
<C(l,l) form. 



12 

More on Relativistic Wave 
Equations: The Spin-1 Gauge 

Potential, Lagrangian Formulations, 
and the Poincare Group 

In this chapter we continue the discussion of relativistic quaternionic wave 
equations that was initiated in Chapter II. In the first section we discuss the 
relativistic quaternionic spin-! equation, including the source terms that relate it 
back to particles obeying the quaternionic Klein ~Gordon and Dirac equations. 
In the following section the various relativistic quaternionic equations are 
formulated as variational equations for real-valued Lagrangian densities, and 
the symmetries of the corresponding C( I, i) relativistic field theories are 
analyzed. In the final section, we analyze quaternionic representations of the 
Poincare group and prove that for energy p0 > 0 there always exists a quantum 
mechanical representation in which these red ucc to the usual C( I, i) Poincare 
group representations. In the free-particle case, this result shows that the wave 
operators constructed in Sees. 11.1, 11.4, and 12.1 are the most general ones 
consistent with Poincare invariancc. In the interacting case, the representation 
in which the Poincare group has a C( I, i) matrix representation is in general not 
one in which locality takes a simple form, which is why relativistic quaternionic 
quantum mechanics may have physical implications that differ from those of 
relativistic complex quantum mechanics. 

12.1 THE OUATERNIONIC GAUGE POTENTIAL 81, 

In Chapter II we introduced interactions of the quaternionic Klein-Gordon 
wave function cp and the quaternionic Dirac wave function t/1 by coupling them 
to quaternion-imaginary gauge potentials B1, and .B~. As our final ex~mpl~ of a 
rclatJvJstlc quaternJonJc wa vc equatiOn, we cons1der now the equatiOn (mtro
duced by Finkelstein, Jauch, Schiminovich, and Speiser, 1963) obeyed by the 
quaternionic gauge potential B1,, with the second gauge potential B ;, obeying 
precisely analogous equations. Since we have consistently coupled B11 to the 
spin-0 and spin-1 /2 quaternionic wave functions in a manner that is covariant 
under the gauge transformation 
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Bu(x) --> w(x)B1,(x)w(x) + w(x)D1,C:u(.Y) = w(x)Bp(x)w(x)- [811w(x)] w(x) 

(12.1) 

the wave equation for 8 11 must be constructed so as to be covariant under Eq. 
(12.1) as well. To accomplish this, Finkelstein and colleagues (motivated by the 
construction of Yang and Mills, 1954) introduce a quaternionic field-strength 
tensor1 defined by 

( 12.2) 

The field strength transf arms under Eq. (12.1) as 

F111. __, 811 (wB,.w + wiJJv)- Dv(wBp(!J + wo1,{u) + [wBI'w + wD/iJ, wBJv + w8,.w] 

= w{811 B,.- 8,.811 + [BwB,J}w (12.3a) 

where in deriving Eq. (12.3a) we have used the fact that 

In other words, F11 v obeys the homogeneous gauge transformation rule 

(12.4) 

analogous to the local quaternion automorphism transformation introduced in 
Eq. (11.39). We thus expect to be able to write gauge covariant equations of 
motion for F11, using the two-sided covariant derivative D11 = 811 + [811 , J intro
duced in Eq. (11.30a), in a manner completely analogous to the formulation of 
equations of motion for a Yang--Mills field. 

We begin by considering the combination 

DiF11v + D,.Fi 11 + D11 Fvi = 8;.F11v + [Bi,F11v] + DvFAfl + [B,,FJ. 11 ] 

+ 811 F,;._ + [B11 ,Fvi.] (12.5a) 

Substituting Eq. (12.2) and regrouping terms, the right-hand side of Eq. (12.5a) 
becomes 

{ 8i (81,8, - 8vB11 ) + 8v(DJ.B1, -- opBJ.) + 811 (8vBJ.- O)Bv)} 

+ { [8iB11 , Bv] + [811 , 8iBv] + [B;._, 811 Bv- 8vB11 ] 

+ [8vBi, 8 11 ] + [B;, 8vB11 ] + [Bv, 82811 - 811 8)] 

+ [8flBV, B;] + [Bv, DpBA] + [Bfl, DvBi.- aiBvJ} 

+ {[Bi,[B1,,Bvl] + [Bv,[B),B11 l] + [B11 ,[Bv,B).J]} 

=0 (12.5b) 

with the first two curly brackets vanishing by cancellation of the exhibited 

1 Finkelstein and colleagues actually follow the fiber-bundle terminology of calling B
1
, the quaternionic 

connection and FJtl" the quaternionic curvature. 
In Eq. (12.2) and subsequent equations, we suppress the space--time argument x of Bp, Fp,·· w. and so on. 
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terms, and with the third curly bracket vanishing by the Jacobi identity. Hence 
Fl'v obeys the homogeneous field equation 

' A ' 

D i.F1JI" + DvF;.Jl + D I'F,,i. = 0 (12.5c) 

In analogy with Yang-Mills theory, we expect the second field equation to be of 
the form 

(12.6) 

with J,, the source current for the quaternionic gauge potential. A number of 
important proper:ties of J,, and F11v follow from Eq. (12.6) and from the prop
erties of Bl' and D~'. First of all, since Bl' is quaternion imaginary, we learn from 
Eq. (12.2) that 

(12.7a) 

and so F1,v is also quaternion imaginary. Consequently, we have 

:J., = 8~' Fv)l + [ Bil, Fv11 ] = 8~' Fv11 + [Fv1;, B~'J = -81' FVJl + [Fvl', B~'J = -J v 

(12.7b) 

and so the source current J .. is correspondingly quaternion imaginary. From 
Eqs. (12.4) and (11.28a ), we learn that under the gauge transformation of Eq. 
(12.1) we have 

(12.7c) 

in other words, the source current must be constructed to gauge transform 
like the field strength. Next, taking the covariant divergence fj'' of Eq. 
(12.6), we have 

Now for any cp we have 

(Dv J5!1 _ J5!1 J5v)cp 

= 8v(8~'cp + [B~', cp]) + [Bv,8 11 cp + [B~', c/JJJ- 8~'(8vcp + [Bv, cp]) 

- [B~', 8v cp + [Bv, ¢]] 

= [a"B~'- 8~'Bv + [Bv, B~'], c/JJ = [F"~', c/JJ 

(12.8a) 

(12.8b) 

where we have again used the Jacobi identity, and so Eq. (12.8a) becomes 

D, v '7 - 1 [F"~' F ] - 0 
J V - J: , VJl - (12.8c) 

indicating that the source current :fv must be covariantly conserved. We 
consider next infinitesimal gauge variations. Under a small variation of the 
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gauge potential, the corresponding variation of the field strength is 

bF11v = 8116Bv- 8vbB11 + [bB11 , Bv] + [B11 , bBv] 

= aflbBv + [Bfl, bBv]- (8vbBfl + [Bv, bBfl]) = f\bBv- DvbBfl (12.8d) 

giving a formula that will be used in the next section in deriving the equations of 
motion from a Lagrangian. The infinitesimal gauge potential variation bB11 
appearing in Eq. (12.8d) can itself be expressed in terms of an infinitesimal 
gauge parameter bw by substituting uJ = 1 + bw into Eq. (12.1), giving the 
further useful formula 

(12.8e) 

Adding a prime to the quantities uJ, B1,, F11 v, D11 , and .J,. appearing in Eqs. 
(12.1 )-( 12.8e) gives the corresponding formulas for the second gauge potential 
B~. There is one additional formula of interest (Govorkov, 1987) that involves 
both B11 and B~. Letting Dl' be the covariant derivative of Eq. (11.26b) that acts 
as D11 cp = 811 ¢ + B11 cp- cpB~, a calculation analogous to that of Eq. (12.8b) 
shows that 

(12.9a) 

with F11 v g1ven by Eq. (12.2) and with F~v the corresponding primed field 
strength 

(12.9b) 

We turn next to the construction of a quaternionic inner product admitting a 
probability amplitude interpretation, working in the linearized approximation 
in which self-interactions of the gauge: potential B11 are ignored. Since the wave 
equation of Eq. (12.6) is second order in time derivatives, we expect, as in the 
analogous Klein-Gordon case studied in Sec. 11.1, that the inner product will 
be local in Fourier or momentum space and nonlocal in coordinate space. 
Dropping nonlinear terms in B11 , the field-potential relation of Eq. (12.2) 
becomes 

(12.10a) 

while the field equations of Eqs. (12.5c) and (12.6) simplify to 

(12.10b) 

Qefining quaternion-imaginary "electric" and "magnetic" field strengths {and 
B by 

!!= 1,2,3 (12.10c) 
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the linearized field equations of Eq. (12.10b) take the familiar Maxwellian form 

(12.10d) 

In transforming to Fourier space, we again use a real Fourier sine and 
cosine basis. both because it avoids singling out a preferred quaternion 
imaginary unit and because the condition that E(x) and B(x) are quaternion 
imaginary then takes an equally simple form in Fourier space. Thus we write 
the Fourier expansions of E(x) and B(x) as 

{(x) =I d 3p[{+(p)cosj)· 'r+E~(p)sinp·x] 

B(x) = ;· d3p[B:_ (p) cos p · x + B-'_ (p) sinp · ""(] 
·+ 

(12.lla) 

with {+(P) and B:(p) quaternion-imaginary even functions of p, with [~(p) 
and l:f__(p) quaternion-imaginary odd functions of p, and again with Jf- d 3p 
extending over ha(f of f)-space (say, over p 1 2: 0) and with the time depen
dence on the right of Eq. (12.lla) not indicated explicitly. Expressing Eqs. 
(12.10d) in terms of the Fourier coefficients, we get 

~ a ~ 
p X B_ = -;--) [+ 

( t 
~ a~ ~ a~ 

F x B+ = - a/-, fi x L = - at B+ 

p · {, = ji · £~ = ji · B: = ji · B-'_ = 0 (12.llb) 

We now introduce components of the wave functionf±u.f(p) (with u, fi denoting 
"upper," "lower"), which are still imaginary quaternions, by writing 

E:un = 2N(p)l+u(fi), 
a ~ ~ 
a/+(P) = 2pN(p)f+f(fi) 

L(p) = 2N(p)j_u(fi), 
a ~ ~ a/- (p) = 2pN(p)f-t(P) (12.llc) 

with p = I ji I and with the normalization factor N(p) now2 chosen to be 
N(p) = p 112 j(4n312

). From Eqs. (12.llb) and (12.llc), we find that the compo
nents of the wave function obey the equations of motion 

;, f~e(F) = -pJ±u(P) (12.lld) 

2 In an analogous expansion for the potentials, rather than the field strengths, the factor p 112 would be 
replaced by p--l/l. in agreement with Eq. (ll.llc). 



'VIORE 0~ RELATIVISTIC WAVE EQl1ATIONS: THE SPIN-I GAUGE 361 

since, for example, 

a _, ( ~ a2 ~ ~ 
2pN(p) 8t.f+f p) = 8t2L(p) 

=pX %tB-'_(p) =pX [px [:(p)] = -p2{T(p) 

= -2N(p)p2~11 (ji) (12.llc) 

Therefore the four-component wave function F(p) defined by 

F(fl) = 

obeys the matrix equation of motion 

f+u(fl) 

J+i(fl) 

f'-u ( jJ) 

.i~~(fl) 

a ~ - ~ 
atF(jJ) = -FI(p)F(p) 

with H(p) the anti-self-adjoint Hamiltonian operator 

-p 0 0 1 
~ ~ ~ 

(12.12a) 

(12.12b) 

(12.12c) 

We can now define a quaternionic inner product for the linearized field F
11

,. by 
writing 

(12.13a) 

where ft (p) = F7 (ji), with T denoting transposition of the column vector of 
Eq. (12.12a). Using Eqs. (12.12b) and (12.12c), we see that this inner product is 
time independent, 

gt ((1), (2)) = 0 (12.13b) 

as desired. Just as in the Klein-Gordon analysis of Sec. 11.1, by singling 
out a preferred quaternion imaginary unit (say i), we can transform Eqs. 
( 12.12)-{12.13 )_ to a form in which the translation generator f5t and the 
Hamiltonian H(p) are diagonal. 

In the construction of Eq s. ( 12.12 )-( 12.13) we have not made any use of the 
fact that Fw is quaternion imaginary, and so the same inner product is applic-
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able if Fl" is a general quaternion-valued field, with nonzero real part. In this 
more general case, the quatcrnion linearity of the inner product 

((1), (2)).) = ((1), (2))/ (12.13c) 

corresponds to an allowed transformation 

(12.13d) 

of the field strength. However, when F11v is quaternion imaginary, the new field 
strength F11,J is not in general quaternion imaginary, and so Eq. (12.13d) is not 
an allowed transformation. In other words, the quaternionic gauge field 
strength F11 , does not have an associated ray structure of the type encountered 
in the Klein-Gordon and Dirac cases, even though we can endow F11 v with a 
quaternion-linear inner product structure. 

We turn finally to an examination of how the source current :fv can be 
constructed in terms ·of either a scalar quaternion cp obeying the wave equations 
formulated in Sec. 11.2 or a spinor quaternion t/J obeying the wave equations 
formulated in Sec. 11. 5. In either case, the construction must obey the condi
tions imposed by Eqs. (12.7b,c) and (12.8c). We begin with the scalar case, 
assuming that the scalar wave function cp obeys the interacting Klein-Gordon 
equation 

(12.14a) 

with D11 the covariant derivative of Eq. (11.26b), that is, 

(12.14b) 

This corresponds to the most general gauging introduced in Sec. 11.2; 
other gaugings are obtained by specializing to s;, = 0, s;, = B1,, or 
s;, = A 11 E <C(l,i), as well as to B11 = 0 or B11 =AI' E <C(l,i). As we recall, the 
gauge transformation rules for cp and Dpc/J are 

We consider now the source currents J,. and J~. defined by 

:r:. = ± [r/J D,.cp- (D,cp) ¢] 

By construction, both of these currents arc quatcrnion imaginary, 

:r: = -:r:. 
and under the gauge transformation of Eq. (12.14c) they behave as 

ql I ql -, 
..;

1
,--> W..;

1
,W 

( 12.14c) 

(12.15a) 

(12.15b) 

(12.15c) 

Let us now calculate the covariant divergences f)'' J,. and iY "J ~., using the 
intertwining identities of Egs. (11.31a,b) to get 
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2D'J,. = D'cpD,cp + cpD"D,.cp- (D"D,.cp){p- (D,cp)D'cp = 0 (12.16a) 

2D''J:. = (D'cp) D,.cp + rpD'D,cp- (D'l'J;cp) cp- D,cpD"cp = 0 (12.16b) 

Equation (12.16b) is of course just the p == cp specialization of Eq. (11.34d)]. 
Hence Jv satisfies all the conditions to be the source current for F11 , in Eq. 
(12.6), and :r;. can similarly be used as the source current in the equations 

(12.17) 

So we have obtained both of the source currents needed for the dynamics of the 
potentials that appear in the most general gauging of¢. 

The source currents needed for the dynamics of the potentials appearing in 
the other gaugings of cp are obtained by specialization of the preceding formu
las. In the gauging with s;. = 0, only the current J, couples dynamically as a 
source current, while the covariant conservation of :r;. in Eq. (12.16b) reduces 
to ordinary conservation, 

8'' ql = 0 ..;,, (12.18a) 

In the gauging with s;. = B,., the derivatives fjl' and iJ'fl become identical, and 
so in principle any real linear combination of J,. and :r;. can be used as the 
gauge potential source term. However, we will see in the next section that when 
the equations of motion for this gauging are derived from a Lagrangian, the 
gauge potential source current is proportional to :fv + J~. In the gauging of cp 
in which s:. = Av E <C( I, i), the current .J ,. is the source for Bv. To get a source 
for A,., we form the 0::( 1, i) projection of .J;., 

J~ - i tr(iJ~) (12.18b) 

This is quaternion imaginary, is gauge invariant under Eq. (12.14c) with 
w' = ( E <C(l, i), and by virtue of Eq. (12.16b) obeys 

8' J~ = itr(8''i :r: + A''i :r:.- iJ:A") = itr[i(8"J:. + A'J;.- :r:A')] = 0; 

(12.18c) 

hence it is a suitable source current for the potential A,. The specializations to 
the gaugings with B,. = 0 or with B,. = A,. E <C( I, i) are similar to those with 
s;. = 0 or s;. = A,., but with the roles of],. and :r: interchanged. 

We turn next to the spinor case, working throughout in Majorana repre
sentation. We assume that t/1 M obeys the interacting Dirac equation of Eq. 
(11.90a), which we write in covariant form as 

(12.19a) 

corresponding to the spinor gauging 

(12.19b) 

We note that since i/~ is real, it can be ordered to either side of the quaternionic 
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potential B11 in writing Eq. (12.19a). Multiplying by the real quantity -i~·~ from 
the left, we rewrite Eq. (12.19a) in the equivalent form 

(,,o ,y D + im·•0 )·'' = 0 rMtM f1 tM 'I'M (12.19c) 

which again involves only real matrices I~Y~ and i(~· In addition to Eq. 
(12.19c ), we will also make use of the corresponding Dirac equations for the 
adjoint spinor t/J ~' the transpose spinor t/J ~. and the transpose of the adjoint 
t/J~. Taking the ~djoint of Eq. (12.19c) and using Eqs. (11.80c,d) in the form 

+ 0' () 
( !< 1 y T _ , (fl 

M M- fM M (12.20a) 

we find 

(D ,,,T ) ,o .,.1' - ,,, i im"0 - 0 
fl'I'M tMIM 'I'M rM- (12.20b) 

and taking the transpose of Eqs. (12.19c) and (12.20b) gives 

(12.20c) 

where explicit usc has been made of the rcalitl of y~/~ and i];~if· 
As a first guess in constructing source currents for the gauge potential from a 

spinor field, we consider the currents 

K - ,,,T' 1 .,OT,,,tT 
v- 'I'MfMvtM'I'M• 

v 1 _ ,1, j· 1
,o ., ,1, 

l>v v- 'I'M Mi Mv'l' M 

Under the gauge transformation of Eq. (12.19b) we have 

t/J M _ __, w t/J M (1)
1

' 
,,, t -> wl,,, t w 
I'M 'I'M 

T T-
t/J M ->W t/J MWI' 

tT 1 tT-
t/JM -> W t/J M OJ 

and hence Kv and K :. transform as 

v ,1,T-1 T OT 1,1,tT. v -
1'-'v-> W 'I'MW tMvfiMW 'I' MW = Wl>vvW 

VI-> (1)
1•/,t wy0 y ())''' W1 = o/K 1w' 1'-' v 'I'M M Mv 'I'M v 

( 12.2la) 

(12.2lb) 

(12.2lc) 

as desired. However, these are not suitable source currents because they arc 
quaternion real rather than quaternion imaginary, since taking the quaternion 
conjugate and using the fact that Kv and K :. have no uncontracted spinor 
indices gives 

(12.2ld) 

1 0 . . . ( 0 ) T f I 7 OT b . . 0 . For example, since /' \1 ts nnagwary. }' ul/1 M - !'1 .H ~·,u . ut smcc If' ,it IS 
r(.())T T-01 Vi 11 t;' M ~ 1/1 w1i' l1 · 

real, 
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as a consequence of which Eq. (12.2lc) trivializes to 

(12.2le) 

and as a further consequence of which K, and K: arc equal, 

K;. = trK:. = tr (v~;w/~rAfltf;M) = tr (t/1~;·~,/iJ'lj;;J) = trK, = K,. (12.2lf) 

To get acceptable source currents, we must modify the recipe of Eq. (12.2la) 
in order to make the currents quaternion imaginary. There are two ways of 
doing this. The first is to introduce a pair of spinors lp (l)M• lp (2)M• both of which 
satisfy the Dirac equation of Eq. ( 12.19a ), and then to define currcn ts J,., :r: by 
antisymmetrizing with respect to the spinor pair, 

T T OT iT T T OT "T 
J, = t/1 (I )M I' Ml I'M t/1 (2)M -- l/J (2)Mf Ml /' M t/1 ( I)M 

J' _ l'' i "o ., ,1, __ ,1, t .,o .. ,1, 
1- I'(I)MI/vltMv'1'(2)M '1'(2)/vJI.'vftMv·'I'(I)M ( 12.22a) 

We evidently now have 

(12.22b) 

while under the gauge transformation of Eq. (12.19b ), as applied to both VJ (I )M 

and lf( 2JM• we have 

ql I ql-1 
J ,. -+ (1) J ,.w (12.22c) 

To verify covariant conservation, it suffices to show that the first term in :fv and 
in J :. is covariantly conserved, since covariant conservation of the second term 
then follows from the interchange ( 1) +--+ (2). Starting with the first term in Jv. 
and remembering that t/J(LM = ~(2 )AI• we have by usc of the intertwining iden
tity of Eq. (11.3la), 

fY(·;,T . .T .,OT,1,tT ) (Dv,;,T ).,T .,OT,1,tT +,;,T .,T ,or(D'",/, ) 
'1'(I)MIMviM'I'(2)M = 'I'(I)M 1MviM'I'(2)M 'I'(I)MYMvfM '1'(2)M 

(12.23a) 

which on substituting the Dirac equations of Eq. (12.20c) gives 

,1,r . .,or,1, tr 1,r . .,or,1 iT _ 
-'I' (I)M l/ny M 'I' (2)M + ll' (I)M zm, M <jl (2)M - 0 (12.23b) 

Si.milarly, starting from the first term in :r;., and remembering that 
t/I;I)M = ~[I)M• we get by use of the intertwining identity of Eq. (11.3lb) 

/j' v (''' t 'Yo 'Y ,1, ) (D'' ,1, T ) •. ,o •. ,1, + ,1, t .. 0 .. Dv ,1, 'I'(I)M M Mv'1'(2)M = 'I'(I)M tMIMv'I'(2)M 'I'(I)MiMYMv '1'(2)M 

(12.23c) 

which on substituting the Dirac equations of Eqs. (12.19c) and (12.20b) gives 

,;,t ... o ,;, ,;,t . 0 ,;, - 0 
'I' (I )M 1111 ' M'l' (2)M - ''I' ( I)M m1'YM'I' (2)M - (12.23d) 
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Hence we have 

iJ"· '7' = o ..;,, (12.24) 

and so J, and :r:. are suitable source currents for the gauge potentials B1, B~ 
used in the general gauging; the specialization to the other gaugings precisely 
parallels that discussed earlier in the bosonic case. In the two-field model, in 
addition to the two quaternion-imaginary currents of Eq. (12.22a), there arc 
three real currents formed on the model of Eq. (12.2la), 

Kf') _ ,/, T T OT,/, j·T _ ,d .,0 ,. ,1, _ K 1 (s) 
v - 'I' (s)MY Mv Y M 'I' (s)M - 'I' (s)M t M f Mv'l' (s)M - v ' s = 1, 2 

K(12)- ,,,T .,T ,.OT,,,tT + l&T J YOT,,,tT 
v -'I'(I)MrMviM'1'(2)M 1·(2)M1Mv M'I'(I)M 

- ,j,T .,o }' ,/, + ld ,,o ') ,,,tT -- K'(I2) 
- '1'(2).wiM M1•'1'(I)M ~'(I)MIMtMv'1'(2)M- ,. (12.25) 

By calculations parallel to those of Eq. (12.23 ), these currents are covariantly 
conserved, 

D'K(l) = jjvv-(2) = jjvv-(12) = 0 
~, 1~v 1~v (12.26a) 

However, since the preceding currents are real, they commute with B", and so 
covariant conservation implies ordinary conservation, 

8'K(IJ = 8'K(2J = 8''K( 12l = 0 
\' \' \' 

(12.26b) 

The antisymmetrized construction of Eq. (12.22a) evidently achieves quater
nion-imaginary currents by sandwiching the real 2 x 2 matrix representation of 
the imaginary unit, 

(12.27a) 

between two-component doublets (with four-component spinor elements) of the 
form 

( t/J(I)M) 
t/J (2)M 

(12.27b) 

A second way of modifying Eq. (12.2la) to give quaternion-imaginary source 
currents uses only a single spinor field t/J, but requires inserting a preferred 
quaternion imaginary unit, which we take to be i, into the currents K,. and K:. of 
Eq. (12.2la). There are two consistent ways of carrying out this construction. In 
the first we define 

(12.28a) 

whereas in the second Jv gets the external, and J~ the inkrnal, factor of i, so 
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that we define 

A qiA -,,,t 0 ,/, J,. = J v = l'l' Mt'.rv(!Mv'l' M 

ql _ ,1, j 1
-,,0 ., ,1, 

J ,. - 'I'M I M 1 Mv'l' M (12.28b) 

This gives in both cases currents that are quaternion imaginary, 

.J·Ii ~~ _ qiA 
\' J v 

(12.28c) 

Under the gauge transformation of Eq. (12.19b), the currents of Eq. (12.28a) 
transform as 

'7 ,1, T (-1 · 1) T OT, 1, tT-
J I' --> W 'I' M (1) lW J! M v /' M 'I' M W ., 

ql A __, ql A 
J \' J \! 

whereas those of Eq. (12.28b) transform as 

ql I /, t ( -- · ) 0 ,/, -1 
...; ,, --> w 11' M wcw I Mr'Mv'l' M w 

(12.28d) 

(12.28e) 

Hence Jv has the correct gauge transformation property J,, --> w:fvw only 
when w 1iw

1 
= i, which requires w

1 
E <C(l, i); similarly, :r:. has the correct 

gauge transformation property :r;, --> w1.J;. w 1 only when wiw = i, which 
requires wE <C(l. i). Therefore the recipe of Eq. (12.28a) can be used only in 
gaugings in which o/ E <C(L i), whereas that of Eq. (12.28b) can be used only 
in gaugings in which wE <C(l, i). We proceed next to check the conservation 
laws obeyed by the currents of Eqs. (12.28a,b). By calculations paralleling 
those of Eqs. (12.23a-d), we find 

together with 

D'v '7 n'v,,,T · T OT, 1,iT 
J v = 'I'M l( .\1'" Y M 'I' M 

'T· T OTiT T·T OT-c---,--,-
= D'(t/JMc)";M,:1Mt/IM + t/IM 1YMv"i'M (D't/JM) 

= t/J~y:ft,r·~[B 1 ''. i]t/I~J 
8" J~A = iW K~ = 0 

ifJ~ = i8'Kv = 0 

b1 1 J~ = D1"1p ~iy~y Mvt/1 M = (D"t/J ,~) illt 1"1.11 t/JM + If ~~-~·/M,D' ( ilj; M) 

(12.29a) 

= t/JltY~i'Mv[B'·, i]~IM (12.29b) 

Thus the current Jv of Eq. (12.28a) obeys D" :fv = 0 only when 
B~ = A 11 E <C(l, i), which corresponds to gaugings with w1 

E <C(L i); similarly, 
the current J~ of Eg. (12.28b) obeys D1":J: = 0 only when B1, = A 11 E <C(l,i), 
which corresponds to gaugings with w E fj:(l, i). In the former case J ~A, which 
is <C( 1, i), is a suitable source current for B ~' whereas in the latte_r case J~ is 
the source current for Bw We conclude, then, that when only a smgle quater
nionic spinor t/1 is present, the gaugings t/1 M --> wt/f M ( [corresponding 
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to Eq. (12.28a)] and ~~M--> (t/JMw' [corresponding to Eq. (12.28b)], with 
lwl = lw'l = 1(1 = 1 and ( E <C( I. i), are the most general gaugings4 that are 
compatible with the construction of gauge field source currents from the spinor 
field by insertion of a factor of i. 

There is one further possibility for the construction of gauge field source 
currents from a single spinor t/J, which is to use the fact that the matrix 
i;·~ = -/i11•lt;~;·~ is real and anti-self-adjoint [cf. Eq. (11.87a) and Eq. 
( 12.61 b)]. Hence forming the source currents as axial-vector currents leads, in 
the m = 0 case, to covariantly conserved source currents without placing 
restrictions on the gauging of B11 and B ;,. Although formally satisfactory in the 
c-number wave equation context of this section, the use of axial-vector source 
currents is likely to be inconsistent in the quantum field theory case because of 
chiral anomalies, as discussed briefly in Sec. 13.7. 

12.2 LAGRANGIANS AND €(1,i) STRUCTURE AND 
SYMMETRIES 

Up to this point we have developed the various relativistic quaternionic wave 
equations strictly from an equations-of-motion point of view. In this section we 
show that all the interacting quaternionic wave equations can be derived as the 

4 In Eqs. (12.28a.b) we have considered two ways of inserting factors of i into the currents IC, and IC; of 
Eq. (12.2la). There arc two other ways. but these do not lead to consistent gauge transformation proper
ties. The first other way is to place both factors of ion the outside. so that 

In this case ..7 1 and .J~, arc gauge invaria11t, and conserved. for general oJ. m', B,~~. and 8;
1

• However, since 
J, and J; are now both C(l. i), they are not consistent source currents for general quatcrnion-valued 
gauge potentials B1, B;,. 

The second other way to insert the factors of i is to place them both on the inside, so that 

J ' -· ,,,1 i"ll -· ·& \' -- r.r r\4 r t\-11 ,V1·'1· t\-1 

In this case J,. and J :. are gauge covariant, and covariantly conserved. only when w. w'. B1,, and B ;, are all 
{: (I. i). But since J,. and J ;. arc now quaternion-valued currents with nonzero j and k components, they 
are not consistent source currents for C( I. i)-valued gauge potentials B1,. B;,. 

Not surprisingly. we will find in the next section that the consistent i-insertions of Eqs. (12.28a,b) can 
both be derived from Lagrangians. which is not the case for the inconsistent i-inscrtions just described. 

We note, finally. that no extra generality can be achieved by inserting a factor e(x) or e'(x) chosen to 
satisfy 

since these imply 

iJ,.e(x) = 0. n;e'(x) = 0 

[D1,. D,.Je(x) ~ 0 c-? [F1, .• e(x)l = 0 

[D;,.n;.]e'(x) = 0 '* iF;,,e'(x)] ~- 0 

that is. F
1
, E <!.'(! e) and F;,. E C(I e'). By a gauge choice, we can then always achieve (at least locally) 

e(x) 'i, 

e'(x) = i. 

Bp E C(l, i). 

B ;, E' Cf:( 1. i). 

as assumed in the discussion of Eqs. (12.28a) -(12.29b). 

F1,. E <!.: ( 1. i) 

F ;, E CC( 1 , i) 
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variational equations for appropriate real-valued Lagrangian densities. We 
begin with a useful technical lemma: 

Lemma 3: Let 5 be a real-valued action, and let the variation of 5 with 
respect to a particular quaternion-valued wave field cp(x) have the form 

35 = ./ d4x [J(J>(x)O(x) + 6(x)i5cp(x)] ( 12.30a) 

Then stationarity of 5 implies 

O(x) = 6(x) = 0; (12.30b) 

that is, we can treat cp(x) and {p(x) as independent in taking the variations. 

To prove Lemma 3, we note that since 65 is reaL we have 

35 = tri55 = 2./ d4xtr[i5¢(x)O(x)] 

Writing 3¢ and 0 in terms of real components, according to 

we have 

i5cp(x) = i3cp 0 (x) + ii5¢ 1 (x) +ji5cp2(x) + ki5cp 3(x) 

O(x) = Oo(x) + i01 (x) + J02(x) + k03(x) 

(12.3la) 

(12.3Ib) 

35 = 2./ d4
' [i5¢0 (x)Oo(x) + 3¢ 1 (x)OI (x) + i5cp2(x)02(x) + i5¢3 (x)03(x)] 

(12.3lc) 

Since the four real components of bcp are independent, stationarity of 5 requires 
the vanishing of the four real components of 0, which implies Eq. (12.30b). 

We begin by constructing a Lagrangian density for the interacting quater
nionic Klein- Gordon equation. We write the action 5 as the space-time integral 
of a Lagrangian density £, 

5 = ./ d
4

x L (12.32a) 

and construct L as a sum of bosonic and gauge potential pieces, 

(12.32b) 

The bosonic piece L,/J is given by 

(12.33a) 

where we have included a nonlinear self-interaction of cp with coupling g. The 
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gauge potential pieces are given by 

Ls' = 1 F' F'vl' 
4(G') 2 

'
11 

(12.33b) 

where we have introduced gauge field coupling constants G and G', and where 
the reality of £ 8 and LB' follows from the fact that F11 v and F;

11
, are quaternion 

imaginary. Under the most general gauging 

cp -+ wcpw' 

B 11 -+ w B 11 (iJ + wD1,iJ) 

B' 'B'-'+ ,,~-, 11 -+ ()) I' (JJ (J) u I' ()) (12.34) 

the Lagrangian pi~ces £ 1,, L 1-J, and L 8 ' are individually in varian L Since L is real, 
we can replace L by tr £, just as in the proof of Lemma 3; using then the cyclic 
invariancc property of tr when forming 6£ simplifies the bookkeeping of 
combining terms of similar form. Varying£, we get 

6£ = - ~ tr [ (D 11 b(p + bB11 cp - cp bB ~) D1'cp + D1,cp (D 11 bcjJ + bB11 qJ- f/JbB '11 )] 

- ~ ( m2 + g(pcp) tr( i5(pcp + (/Jbcp) 

+ - 1
-tr[F, (D"1JBI'- DI'1JB")] 2G2 II' 

+ 1 
tr[F', ( iJ "' i5B 'I' - D'11 6B")] 

2(G')2 '11 
( 12.35a) 

where use has been made of Eq. (12.8d) in varying £ 8 and £ 8 ,_ Rearranging Eq. 
( 12.35a) by using both cyclic in variance of the trace and the trace form of the 
intertwining identities given in Eq. (11.33b), we get 

+ [D 11 DI1cp- (m2 +g(~1J)(/J]6cp 

+ bB''[(D,.cp)(/J- c/JDvc/J + ~2 D11 F, 11 ] 

+ bB 11
[ D,.cp cp - (jJD,,cp + _}:2 D'11 F:,I'J} 

( G') 
(12.35b) 

Hence equating bS to zero, and using Lemma 3, we get the equation of motion 
for ¢, 

(12.36a) 
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for the gauge potential Bv, 

(12.36b) 

and for the gauge potential B :, 

(12.36c) 

Note that since the real components of cp here are c-numbers, we have 
(pep= cp(p, and so the interaction term in Eq. (12.36a) can be written either 
as (pcpcp or cpepcp. When g = 0, Eq. (12.36a) reduces to Eq. (12.14a), and in 
Eqs. (12.36b) and (12.36c) the gauge potential source terms are propor
tional to J,. and J~ of Eq. (12.15a), as expected. 

Equations (12.36a-c) give the equations of motion for the most general 
gauging. To get the specializations to the other gaugings introduced in 
Chapter 11, one must first make the appropriate specialization of Eq. 
( 12.35b) and then equate the remaining independent variations to zero. For 
the gauging with B~ = 0, this gives Eq. (12.36a) with D 11 cp = (811 + B11 )cp, 
and gives Eq. (12.36b) as the gauge field equation of motion. For the 
gauging with B~ = Bv, this gives Eq. (12.36a) with D11 cp replaced by D11 cp, 
while setting (G )-2 = 0 in Eq. (12.35b), the gauge field equation of motion 
becomes 

(12.37a) 

which involves the sum :fv + J~ as source current. For the gauging with s:. = Av = iA 1v, with Ah real, the bB'" term in Eq. (12.35b) becomes 

(12.37b) 

So in this case we get Eqs. (12.36a) and ( 12.36b ), with B ~ replaced by iA 1 v in Dv, 
while Eq. (12.36c) becomes, when multiplied by i, 

(12.37c) 

in agreement with Eq. (12.18b). The specializations to the gaugings with Bv = 0 
and with Bv = Av are obtained in similar fashion. 

We next construct a Lagrangian density for the interacting Dirac equation, 
for the case in which there are two quaternionic Majorana representation 
spinors t/J(I)M and t/f( 2)M· The Lagrangian density is now a sum 

(12.38a) 

with LB and LB' as in Eq. (12.33b), and with the fermion doublet Lagrangian 
density £1/!(Ul given by 
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L - I [·'' t "0 yf1 D ,/, + (D ,/, )L,O ,,/1 ,/, 
1/1(12) -2 '1'(2)MfM M l''l'(l)M fl'l'(l)M IMIM'1'(2)M 

,,,t yo ,11 D ,,, (D ,,, ) l·.,o .,1' ,1, J 
-'I'(I)M MrM f1'1'(2)M- f1'1'(2)M l!vJrM'I'(I)M 

(,,,t . ,0 ,/, ,,,t ·, 0 ,/, ) + m '1'(2)M 1i'M'I'(I)M- 'I'(I)Ml tM'1'(2)M ( 12.38b) 

The reality of Lt/1 
121 

is an immediate consequence of the fact that y~ y~ is a real 
symmetric matri*-, while iy~ is a real skew-symmetric matrix. Under the most 
general gauging 

L,/1 
1 2

, transforms as 
( . ) 

B11 -+ wB11 w + w81,oJ 

B 1 
_. w1 B 1 w' + W 1 fJ w1 

I' I' I' 
(12.39a) 

(12.39b) 

and thus is invariant. Following the procedure used earlier of replacing L by tr£ 
and taking variations, we get 

bL = total derivative 

+ tr{bt/fi2)M(l11;:~DI' + im"i~)t/I(I)M 

+ [ ( D I' t/J (I )M )t ')!~ r~~f - t/J i 1 )Mimy~f j bt/J (2) M 

- bt/Jil)M(Y~11r~Df1 + imy~11 )t/J(2)M- [(Dut/J(2)M)t';)~\1~;~- t/Ji 2 )Mimy~wJbt/J(I)M 
. T 1 oT · 1 T 1 or rT 1 , + 1JB'[t/J(I)MfMitMV1(2)M- t/J(2)Mf,'vfvi'Mt/J(l)M + G2 DJ'Fvp] 

bB "[·',i ,,o ' ,/, ,/ t () "' ,/, I fjlllFI l} + '1'(1).\11MYMv'1'(2)M- Y1 (2)Mi'WIMI•'I'(I)M + (G1)2 ''f1 ( 12.40) 

Equating the independent variations to zero gives the Dirac equations for VJ(l) 

and t/1( 2), 

( 12.4la) 

and the equations of motion for the gauge potentials, 

(12.4lb) 

with the gauge potential source terms proportional to J,. and J~ of Eq. 
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(12.22a). as expected. The calculation just carried out is for the most general 
gauging; the specialization to the other gaugings introduced in Sec. 11.2 is 
completely analogous to the specialization of the Klein-Gordon case, as given 
earlier in Eqs. (12.37a-c) and the related discussion. 

We finally construct a Lagrangian density for the interacting Dirac equation, 
for the two cases in which there is a single Majorana representation spinor t/J M· 
Corresponding to Eq. (12.28a), we take 

L = Lt/1 + LB + Ls' (12.42a) 

with the fermion Lagrangian density L,/1 given by 

r -I [c·ld .. o .,11 D l'' (1) ,;, )t"O ,11 ,;, c'] Ll/f -2 I'MIMrM fli'M- !''I'M IMtM'I'M 

I ( ·,; t · 0 ,; ,;, i · 0 ,;, ') + 2 m l<jl Ml}' MY/ M + 'I' MltM'I' Ml ( 12.42b) 

which again is real by virtue of the reality and symmetry properties of the 
matrices (~(~1 and iy~1 . Because of the explicit i used to form L>j,, Eq. (12.42b) 
is not invariant under the most general gauging 

lp --+ wt/J w' 

B11 --+ wB1,w + w811 iiJ 

B~ --+ w' B~ w' + o/ a11 w' ( 12.42c) 

but is invariant when w' is restricted to be q I, i). Imposing the corresponding 
restriction s;, = iA 111 , with Alp real, and again replacing L by tr L before taking 
variations, we get 

bL =total derivative+ tr{ibt/J~((~1 r·~DI' + iml}v~)t/IM 

- [(D11 t/JM)t./t(·~- t/Jtrimy~Jbt/JMi 

b B" (·'' 7· . T OT,;,F I [JI' F ) + 'I' M 1i Mv)' M 'I'M + Gi ''I' 

(12.42d) 

Equating the independent variations to zero (and multiplying the bA\ equation 
by i) give~ the Dirac equation for t/J, 

(12.43a) 

and the gauge potential equations of motion 

ail (a 'A a 'A ) -· (G') 2 ·,;, t 0 · ,;, vl lf1- fll l1·- l'I'MfMtMv'I'M (12.43b) 
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The source terms on the right of Eq. (12.43b) are proportional to Jv and :r:.A 
of Eq. (12.28a), as expected. 

In a similar fashion, corresponding to Eq. (12.28b), we take 

( 12.44a) 

with the fermion Lagrangian density now given by 

( 12.44b) 

which is still real. Again, because of the explicit i in the derivative terms and the 
i implicit in~·~ in the mass term, Eq. (12.44b) is not invariant under the general 
gauging of Eq. ( 12.42c), but is now invariant when w is restricted to be C( I, i). 
Imposing the corresponding restriction Bl' = iA 111 , with A 111 real, and again 
replacing L by tr L before taking variations, we get 

bL = total derivative + tr{ bt/f ~1 ( iy~yitD1, - my~ )t/1 M 

- [(D1,t/J M h~Y~i + t/Jttm~·~ J bt/f M 

+ bAI ( -t/I~Y~YMvVJM- ~2 811 (8vA1 11 - D11 Alv)) 

"B'" ( ,,,t ·. o , ,,, 1 n''~'F'' ) } + o -'1' MltMrM,·'I' M + (G')2 l'fl 
( 12.44c) 

Equating the independent variations to zero (and multiplying the bAI equation 
by i and the bt/Jlt equation by --i from the left), we again get the Dirac equation 

(12.45a) 

and the gauge potential equations of motion 

(12.45b) 

As expected, the source terms on the right of Eq. (12.45b) are proportional to 
J~ and J~ of Eq. (12.28b). Since in forming a Lagrangian density from a single 
fermion field t/J M we must insert the explicit i either exterior to, or sandwiched 
between, the factors t/J~ and D1,t/J M• the Lagrangian densities Lt/1 of Eq. (12.42b) 
and£~ of Eq. (12.44b) are the only two constructions possible. 

We next show that when the gauge potential B~ or B11 is restricted to be 
C( L i), the two-field Lagrangian density £1/!(i, 

21 
reduces to two uncoupled one

field Lagrangian densities of the form Lt/1 or £~, respectively. When B~ is 
C( I, i), the gauging of the two-field model agrees with the gauging that leaves 
L,/1 invariant. We can then make the change of variables 

(12.46a) 
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which, when [B~, i] = 0, implies that 

Dpt/J (1 )!'A = D,,V1 ( + )M + D,,V1 (- )M• Dpt/J(Z)M = [Dp'P(+)M ~ Dplf(-)'vf]i 

( 12.46b) 

Substituting Eqs. (12.46a,b) and their adjoints into £¥(1 
2

, and again expediting 
the algebra by using the fact that £,1,112

, = tr L.p
11 

~/ together with cyclic 
invariance of the trace, we find that · 

(12.46c) 

with L,h
1

• obtained from Lv, of Eq. (12.42b) by the substitution 1p-+ t/J(±J· 
Similarly, 

1
whcn Bl' is <C( I, i), the gauging of the two-field model agrees with the 

gauging that leaves £~ invariant. We can then make the change of variables 

which, when [Bp: i] = 0, implies that 

D,lt/l(l)M = D,,t/J(+)M + Dl,t/J(-)M' 

t/J(2lM = i[t/J(+)M ~ 'P(-JM] (12.47a) 

Dpt/J(2)M = i[DpVI(+)M ~ D 1,t/J(-)M] 

(12.47b) 

Substituting Eqs. (12.47a,b) and their adjoints into L.pr
1

• 21 , and proceeding as 
before. we get 

(12.47c) 

with L~r~l obtained from£~, of Eq. (12.44b) by the substitution t/J-> t/J(±)· The 
reduction of £,/J(t.

21 
in these two cases just corresponds to a transformation to 

new bases that diagonalizc the real, skew-symmetric matrix i2 of Eq. (12.27a). 
Since this transformation involves an explicit i, it breaks the left and right 
quaternionic gauge group SU(2) x SU(2) of L,P(t.

21 
down to the smaller 

invariance group SU(2) x U(l) or U(l) x SU(2) characterizing L.p or 1:~, 
respectively, depending on the factor ordering used. 

Since all the Lagrangian densities derived in this section are real-valued 
(provided that the real components of the fields on which they depend arc clas
sical, commuting entities), they can also be regarded as real-valued Lagrangian 
densities in a complex quantum mechanics, in which the independent <C( 1, i) 
dynamical entities arc the <C(l, i) symplectic components of cp, t/J(1, 2)M• and t/JM 
together with the real components of Bl' and B~. As the next topic of this 
section, we analyze the structure and symmetries of the various Lagrangian 
densities from this point of view, using the extensive body of knowledge and 
methods dealing with the symmetries of complex quantum mechanics and 
complex quantum field thcory. 5 For example, since the <C(l, i) forms of the 
Lagrangian densities constructed in this section are all5 local Lorentz scalars, 
they are all PCT invariant (where P = parity, C =charge conjugation, T =time 
reversal) when the fermion symplectic components are quantized using anti
commutators. In fact, an even stronger statement can be made: We shall see that 

' See, for example, Sakurai ( 1964) and Streater and Wightman ( 1964). 
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the <C( 1, i) forms of the Lagrangian densities derived in this section are all P 
symmetric, C symmetric, and T symmetric, when analyzed according to the 
rules of <C( 1, i) quantum field theory. 

To proceed with a complex field theory analysis, we reexpress the fields in the 
various Lagrangian densities in terms of independent <C( 1, i) dynamical entities, 
continuing to assume at this stage that the fermion field symplectic components 
are classical (commuting) objects. Since reality of the Lagrangian densities 
implies that their [3-symplectic components are zero, we can then rewrite them in 
a form in which there is no longer any reference to a quaternionic structure. We 
begin with the gauge boson Lagrangian densities of Eq. (12.33b), which 
expressed in terms of the real components of the potentials take the form 

- 1 "'""""' v f1 Ls-- 4G2LFcvf1Fc, 
c 

with 

(12.48a) 

F~Vf1 = a,B~II- af1B~v + 28AscB~,B~f1 
(12.48b) 

where BAv are the real components of the imaginary quaternion 
B, = iBt v + }B2v + kB3v· We consider next the Lagrangian density Lq, of Eq. 
(12.33a). Expressing this in terms of the symplectic components ¢rx R of¢ and 

I •I' 
the real components of Bv and B,. gives 

Lq, =-! { 1811 ¢rx + i(Bt 11 - B'111 )¢rx ·- (B211 + iB3 11 )¢~ + (B;11 - iB;11 )¢/JI
2 

+ 1811 ¢{!- i(Bt 11 + B~ 11 )¢f! + (B211 - iB311 )¢a- (B; 11 - iB; 11 )¢~1
2

} 
- ~m2 (1¢xl 2 + ic/Jl)- ~g(l¢rxl 2 + i¢l)

2 
(12.49) 

where we have used the notation IV/11 2 
= v/1 v* 11 for v/1 E <C( 1' i). It is conve

nient to rewrite Eq. (12.49) in a more compact form by introducing the two
component column vector 

(12.50a) 

and the covariant derivative 

(12.50b) 

with M 11 and M~ the 2 x 2 matrices 

(12.50c) 
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In terms of these definitions, Eq. (12.49) takes the compact form 

(12.51) 

We turn next to the fermion Lagrangican densities. Introducing column 
vectors formed from the symplectic components, 

\ji _ (t/J(I)M~) 
(I)M- t/J(I)M(3 , 

•Tr _ ( t/1(2)/Vf~) 
"' (2) t1 - ,/, 

' 'I' (2)M(! 
(12.52a) 

the Lagrangian density £1/1
1121 

of Eq. (12.38b) becomes 

L _I [w t "o "~' 'D w + (I> w )t .. o ··'' w 
</1(121 -2 (2).tttMrM fl (I)M I' (I)M l.tf/M (2)t1 

wt .,o .,1' 'D \fi ('D \f' )t.,o .. 1' w J - (I)MiMrM I' (2)M- ,u (2)M 1,tfiM (I)M 

+ m (\jib) Mi'(''lt \ji (I) M - \ji; I) Mi~·~tf \ji (2) M) ( 12.52b) 

The covariant derivative 'D11 w ( !2) t1 is now 

(12.52c) 

with Mp and M~ the same 2 x 2 matrices as in Eq. (12.50c). Finally, defining 
the column vector 

(12.53a) 

and the covariant derivative 

(12.53b) 

the Lagrangian densities £,/1 and£~ of Eqs. (12.42b) and (12.44b), respectively, 
take the form 

r _ I 1·[·T,T .,0 .,1' '[) ,T, ('[) ,T, )T,,0 .,!' ,T, l nz•T,T .,0 ,T, 
'--ljl - 2 'l' MiMI M I' 'l' M - ,, 'l' M I M i M 'l' M J - 'l' M I M 'l' M ( 12.54a) 

and 

(12.54b) 

In Eq. (12.54a) the covariant derivative 'D1, is specialized by setting A1. 1
, = 0 

[corresponding to s;, E <C( I, i)], while in Eq. (12.54b) 'DI' is specialized by s~tting 
the off-diagonal elements of Ml' to zero [corresponding to Bl' E <C(l, i)]. The 
matrix r 3 in Eq. ( 12.54 b) is, as usual, 

(12.54c) 
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and acts on the column vector of Eg. (12.52a) formed from the .symplectic 
components: it arises because the i in Eq. (12.44b) stands between t/J·~ and t/J:vr. 
and consequently the symplectic reduction leads to factors I il = i and 
-.iii= -i. respectively, multiplying the contributions to L:/J coming from the 

'l- and {1-symplectic components of the spinors. 
Having reduced the six Lagrangian densities LB. £ 8 ,, L,p, £,11 (, 

2
,, L,/J. and 

£~1 to a <C( I, i) form, we can now proceed to discuss their symmetries using the 
methods of complex quantum field theory. Up to this point we have treated the 
symplectic components t/1 'v!CJ.fl, tj; (I. 2):vrx 13 of the fermion wave functions as 
e-n umber, commuting quantities 6 However, in complex quantum mechanics, the 
correct discussion of charge conjugation symmetry requires a transition from 
classical wave functions to second quantized quantum field operators, at least to 
the extent of assuming that the fermion wave functions anticommute under inter
change. 7 We will carry this assumption over into the ensuing discussion of charge 
conjugation, by now taking the symplectic components of the fermion wave 
functions to anti-commute under interchange. 

We begin our symmetry analysis with parity, denoted by P. which describes 
the behavior of the system under the space ret1ection '( ___, -.?, x 0 

___, x 0
. We 

consider the transformations 

s:40 0t x0
) ___, B~ 0 ( -.?, x0

) 

B ' ( ~ o) B' ( ~ o) AIX.X --->- Af-X,X 

<f;> (.\'. x0 ) ---> ryp<J? (- .\!, x0 ) 

w(I2Jw(-?,x0) ___, rl~iy~IJI(l2JW(-.?.x0 ) 

ljf \1 (-\!. X
0

) ---> f/~ i/~ lfJ M (- \!, x 0
) (12.55a) 

with T/p, T)~. and r1~ arbitrary real phase factors. (Complex phases are not 
permitted in the general gauging in which VI' of Eqs. (12.50b) and (12.52c) 
contains both linear and antilinear terms.] Substituting these transformations 
into Eqs. (12.48)-(12.54), we find that the six Lagrangian densities transform as 

(12.55b) 

and hence the corresponding actions 5' = .[ d 4 xL are invariant. 
We consider next charge conjugation, denoted by C, which in conventional 

phenomenological terms describes the behavior of a system under reversal in 
sign of the electric charges, and in the present context describes the behavior of 

1
' ThiS assumption has played a role in the reduction to ~- ( !. i) form: !·or anticommullng fermion 
~ymplectic or real components. the quatern1onic fermion wave functions or fields ohcy the conjugation rule 
of Eq. (I. 3! f) ra I her than that of F.q. (I .28b ). and the fermionic Lagrangian demitics £,1 1 0 

• L,p and (> 
have non1ero /i-symplcctic componenb. The ([' ( !. i) Corms of the Lagrangian densities then coincide with 
their -:<-symplectic componcnh. 
7 There arc of cour~e nontero c-numbcr canonical ant!commutator term<.,_ hut thc"lc can he ignored in 

discussing the symmetries of the Lagrangian density. They generally either cancel or contnbute to unob
servable vacuum subtraction terms. 
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the system under sign reversal of the imaginary terms in the symplectic compo
nents. Remembering that the symplectic components of B11 and B~ are 

charge conjugation corresponds to the transformation 

B1 1, ---> - B1 11 • 

B21, ---> B211 , 

B31, ___, - B31', 

"T <f> ---> 1') C <f> I 

,T, I ,T, tT 
"'(IJM---> 7/C"'(l)M' 

•T• II ,T, tT 
"' M ---> 17 C "' M 

B' ~' -- B'1 ill I' 

s;
1
, _, s;

11 

B~ 1 , -• - s; 11 

T, I •T• tT 
\p (2)M ---> -1')c"' (2)M 

(12.56a) 

( 12.56b) 

with 1')c, T/~. and 1')~· arbitrary real phase factors, and where we have assigned 
opposite charge conjugation behavior to \fi (I )M and \fi (2)M. In Eq. (12.56b ), the 
transpose T acts on the two-component column vector structure of <I> and on the 
two-component column vector structure and the four-component spinor struc
ture of iJ!(I.2)M and WAf. Under, the gauge potential transformation of Eq. 
(12.56b), the matrices M 11 and M

1
, transform as 

* tT M 11 ___, /vf. 
11 

= M 
1
, , J\.1' ---> M'* = M'tT 

I' 11 .U 
(12.57a) 

as a consequence of which8 

(12.57b) 

Substituting the transformations of Eq s. (12.56b) and (12.57b) into Eqs. 
(12.48)-(12.54), using 

o,)o J __ o,,O 
i/1.1 - IA1 (

o,Q 0 ,11 ) T _ o,Q o,/1 
tMtM - IMIM (12.57c) 

and including the minus sign that arises from transposing the order of a pair of 
fermion factors, we find that the six Lagrangian densities are all left invariant. 
We shall see in Sec. 13.7 that when the gauge couplings G, G' are equal, the 
c-number Lagrangians of this section are invariant under a second conjugation 
operation involving the interchange B1, +-> B',, which is not in general equivalent 
to the conjugation operation defined by Eq~ (12.55a). This second conjugation 
operation is more naturally expressed in quaternionic form than in the 
symplectic component notation used here to analyze Lagrangian symmetries. 

We consider finally time reversal, denoted by T, which describes the behavior 

'Remembering that for complex matrices (A B)' ~ 11t A1. (A B) 1 
= B1 A 7 , which imply (AB): 7 = A; 1 Jit1. 
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of the system under the time inversion ~>! -> .X, x0 
___., - x0

. As has already been 
noted in Sec. 4.6, time reversal in complex quantum mechanics is a C( I. i) anti
unitary transformation, which replaces each explicit i by -i. 9 Hence we consider 
the transformation 

' . 
1--+ -1 for each i in L (12.58a) 

including the i implicit in/'~ and the i's in M 1, and M', ('('~/~~is real, and so is 
unaffected), together with the gauge potential transforfnations 

BAo(~'i!,xo) ___., £ABAoC'i!,-xo) 

BAf(.'i!,x0 )-> -eABArCX:, -x0
) 

B ' (~ o) . B' (~ o) AO X,X -> 1-A AO X,-X 

B~tC\!, xo) ___., -cAB~fC\!, -xo) 

E} = I 

and the boson and fermion field transformations 

<I> (Y, x0 ) -> T/T<I> (X, - x0
) 

IJ!(I)M(.X, x
0)-> r/rAMIJ!(l)M(.K, -x0) 

IJ!(2JA1(Y!,x
0)-> -7)~AMW(2)M(Y, -x0

) 

WM("X:, x 0
) ___., IJ~AMIJ!M(X:, -x0

) 

(12.58b) 

(12.58c) 

again with T/T, T)~. and 11~ arbitrary real phase factors, and with opposite time 
reversal behavior assigned to W(I)M and W(2JM· In Eq. (12.58c), AM is the 4 x 4 
Dirac matrix 

(12.59a) 

with 0 and I the 2 x 2 null and unit matrices, which by reference to Eq. (11.65c) 
obeys 

{AM.f1A.r} =0 

{AM, et.:~.-r} = 0, £ = I, 2, 3 

Equations (12.59a,b), together with Eq. (11.78b), imply that Aw obeys 

(12.59b) 

( 12.59c) 

which give the properties of AM needed for the time reversal transformation. 
Under the transformation of Eqs. ( 12.58a) and (12.58b), the matrices M 1, and M;, transform as 

lJ Of cour:-.e. over the quaternions. i _ __,. -i is induced hy unitary transformations, .;;;uch as j i j = -i. 
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A A ( ~ 0) ( 1) /j~ A A ( ~ 0) Jvt1, x,x ___, - ,/vt
11 

x,-x 

M ' (~ o) ( 1 ),5~M' (~ o) f1 X, X ---> - , .U X, -X (12.60a) 

showing that the covariant derivatives transform as 

(12.60b) 

and so on. Substituting Eqs. (12.58a-c), Eq. (12.59c), and Eg. (12.60b) into Eqs. 
(12.48)-(12.54), we find that the six Lagrangian densities transform as 

(12.60c) 

and so the corresponding actions are again invariant. 
We conclude, then, that when viewed as Lagrangian densities for <C(l.c) 

quantum field theories, all the Lagrangian densities constructed in this section 
are T invariant. This in turn has implications for the relativistic quaternionic 
equations of motion that are obtained as variational equations for the various 
Lagrangian densities. Since invariances of a Lagrangian correspond to invar
iances (or covariances) of the corresponding classical equations of motion, we 
conclude that at the level of first quantized equations of motion, all the relati
vistic quaternionic e~uations of motion we have derived in Chapter II and Sec. 
12.1 are T invariant. This in turn implies that if the possibility of a quaternionic 
mechanism for time reversal violation, discussed in general terms in Sec. 7.5, is to 
be actually realized, it must depend on kinematic or dynamical effects associated 
with quantization of the relativistic q uatcrnionic equations of motion. Kinematic 
time reversal violating effects could arise from conflicts between a quaternionic 
quantization recipe and the time reversal transformations of Eqs. (12.58)
(12.60), but we find no evidence for them in the quaternionic field theory analysis 
of Sec. 13. 7. Possible origins of dynamical symmetry breaking effects in quantum 
field theory include vacuum spontaneous symmetry breaking and anomalies, 
which lead to perturbative symmetry breaking effects, as well as various 
nonperturbative symmetry breaking mechanisms. 10 

As the final topic of this section, let us briefly consider what happens when 
we attempt the chiral reduction of the Lagrangian Lv1 1 

, in the massless (i.e., 
· d I d · d · · "

1 
· 

21 
h · m = 0) case, mto two ecoup e Lagrangpn ensttles tOrt e ch1ral components 

of the Dirac wave functions. Given a Q:( 1. i) Dirac wave function lp, the chiral 
components VJ L and tf; R are defined by 

t/1 L = ~ (1- ls)t/1. 

t/Jt = 'Pt ~ (1- Ys). 

1/1 R =~(I+ ls)t/1 

t/Jk = t/Jt ~(1 +is) (12.61a) 

with Is = ys the self-adjoint matrix defined in Eq. (11.87a), which anticommutes 
with J!o.I.2.3 . In the Dirac and the Weyl representations Is is represented by a real 
matrix [as is readily ascertained from Eqs. (11.101a) and (11.102a)], but in the 
Majorana representation Ys is given by the imaginary matrix 

1° For a pedagogical introduction to both vacuum ~.pontaneous symmetry breaking and nonperturbative 
effects, see Coleman (I98S), and to anomalies, see Adler (1970) and Jackiw (1972). 
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" - ( 0"2 
rMS- O (12.61 b) 

as a result of which 

IMs(J,k) = -(j,k)YMs 

* fMS = -!'MS (12.62a) 

This has the consequence that y MS fails to commute with the covariant derivative 
D I' [because of the j, k terms in the potentials Bl' or s;, depending on whether 
IMS• in the quaternionic analog of Eq. (12.6la), is ordered to the left or to the 
right of if;], and that IMs also fails to commute with the covariant derivative Dl' 
[because the M~ term acts on the complex conjugate of the fermion 
wave function, and so VI' has an antilinear component]. We conclude from this 
that neither the quaternionic form of L,/1 u, given in Eq. (12.38b), nor the 
<C(l, i) form, given in Eq. (12.52b), can be( split into uncoupled chiral compo
nents by inserting a resolution of unity, 

(12.62b) 

between the fermionic factors. Even when the mass term vanishes, the interac
tions with Bl' and B~ give rise to cross-couplings between the left and right 
chiral components. 

12.3 REPRESENTATIONS OF THE POINCARE GROUP 

The guiding principle in the construction of relativistic quaternionic wave 
equations in the preceding sections has been the imposition of the requirement 
of Lorentz invariance, together with the requirement of space-time translation 
in variance. Taken together, the group of Lorentz transformations and the group 
of space-time translations form the Poincare group, and it is our object in the 
present section to characterize the structure of quaternionic representations of 
the Poincare group, or more precisely, the part of the Poincare group continu
ously connected to the identity, by abstract, algebraic means. This will have 
implications, which we discuss, for the asymptotic particle spectrum, for the 
structure of relativistic quaternionic wave equations, and for the existence (or 
nonexistence) of a nontrivial relativistic quatcrnionic dynamics. 

We begin by introducing the generators of the Poincare group, in the forms 
in which they act on spin-0 and spin- 1/2 wave functions. As we have already 
seen in Chapters 2 and 3, symmetry transformations in quaternionic quantum 
mechanics are associated with anti-self-adjoint symmetry generators. The 
generators for space translations are the familiar operators 

(12.63a) 

and to these we adjoin the time translation generator 

- a 
Po= axo (12.63b) 
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so that together Eqs. (12.63a) and (12.63b) form the four-vector 

P,u axil 
(12.64a) 

The proper, orthochronous 11 Lorentz generators, in the form in which they act 
on spin·-0 wave functions, are just the six generators of space-time rotations that 
leave Xw'(11 invariant, 

iJ 8 
l\lf II" = X 1, -;:;---;; -- X,. "' II 

UX uX 
(12.64b) 

The Poincare group is the ten-parameter group spanned by the generators of 
Eqs. (12.64a,b), that satisfy the commutator algebra 

[;51, p,] = [CJw D,] = 0 

[:W1" ,fiu] = [x11 D, - x,.81,, a0 ] 

= go,.811 - gul'a" =' gu\'P11 - go-11 fi,. 
[ .--, M- ] [ " '~ ., . q • 
JVlpn i,o = X 11 u,. - X,.u,u: X,-0 0 - XuOi.J 

= g,;_(x11 Du- xua1,)- g,u(xpo;,- x;iJ11 ) 

-- g 11;Jx,.8u - Xai:!,.) + gl' 0 (x,.CJ;_- x;_8,) 
- - - -

= g,.;_M110 - g,uM1,;_ - g1,;_Mvu + g11 uM,;,_ (12.65a) 

In abstract terms, the Poincare group is still characterized by the commutator 
algebra 

[fil,,fi,] = 0 

[MI"·Pu] =go" P1'- go-11 fi, 
[MI"'' M;_u] = g,,;M11u- g, 0JlJ11;_- g1,;,_M1•0 + g1,uMvi. (12.65b) 

even when acting on systems of spin greater than zero. For example, in acting 
on spin- I /2 Dirac wave functions, the Lorentz transformation generators must 
be augmented by generators with the form of Eg. (11.85c), which act on the spin 
structure. The Poincare generators appropriate to this case, in the general Dirac 
representation G, are 

(12.65c) 

11 In terms of the Loren!£ transformation matrix a1," of Eq. ( 11.7), proper means de\ a= I, and orthochro· 
1wus means a0° > 0. The proper. or!hochronous component of the Lorentz group is the component that is 
continuously connected to the identity; we a»ume henceforth !hat we are dealing exclusively with this 
component, without further use of the terms proper and or!hochronous. 

We caution that the identification of !he anti-self-adjoint operator fto with iJjiJx0 in Eq. (l2.63b) cannot 
be taken literally, since our Hilbert space inner product involves J d 3 x, no! Jd4 -c. We usc Eq. (12.6.lb) 
solely as a heuristic device. which incorporates !he correct algebraic properties, to construct the more 
general Poincare commutator algebra of Eq. (12.65b). The classification of qua!ernionic representations of 
the Poincare algebra, which l'ollows. is based entirely on f'q. (l2.65h), and does no! use Eq. (\2.63b). 
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By making use of the Dirac matrix anticommutator { ')'e
11

, Yer} = -2g111·, the 
generators of Eq. (12.65c) are readily verified to satisfy the algebra of Eq. 
( 12.65b ). Reflecting the fact that finite-dimensional irreducible representations 
of the Lorentz group arc not unitary, the term proportional to [leo, reel iJ2 Eq. 
(12.65c) is a self-adjoint, rather than an anti-self-adjoint matrix, and thus Moe is 
not anti-self-adjoint. [This feature of the Lorentz generators that act on Dirac 
spinor indices has already been encountered in Eq. (11.85e).) However, the 
adjointness properties of the generators Moe are not used in the analysis that 
follows; we assume only that the space-time translation generators p11 are anti
self-adjoint, and all that is actually required for the argument is the anti-self
adjointness of the time translation generator p0 . 

The Poincare algebra of Eq. (12.65b) is often written in an alternative form, 
by introduc:ing angular momentum generators ]p, £ = 1, 2, 3, and "boost" 
generators Kf, £ = 1. 2, 3, defined by 

- -
M12=h, 

Moe= Kt, £= 1,2,3 (12.66a) 

In terms of these generators, and fJe and p0 , the Poincare algebra takes the form 

[Pt,p,.,] = [Po,h] = 0 

[le.Po] = 0 

[Ke,Po] = h 

[Jr,Pm] =- L£fmnPn 
n 

[Ke,Pm] = bmePo 

[Jc)m] =- L F.£mn Jn 
n 

n 

[Kc,Km] = LF.cmnjn 
n 

(12.66b) 

Since the time translation generator, or energy operator, p0 plays a special role 
in the subsequent analysis, it is convenient to employ the noncovariant form of 
the Poincare algebra given in Eq. (12.66b). 

Let us consider now an arbitrary matrix representation of the algebra of Eq. 
( 12.66b), which can be irreducible or reducible. Since the anti-self-adjoint 
operators p0 and fJe form a mutually commuting set, we can invoke Lemma 2 of 
Chapter 3 to conclude that by a suitable quaternion unitary transformation, we 
can find a basis on which the matrices p0 and fJe are diagonal and <C(l, i), with 
p0 = -po having nonnegative energy eigenvalues po, 

( -po)qq' = bqq'iPoq, 

(Pe)qq' = bqq'iPeq, 

Poq = Poq =::: 0 

(12.67) 
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Let us call this basis the standard basis. We will now prove that in the standard 
basis, all matrix elements of Kt and Jf are also <C( 1, i), with the possi~le excep
tion of matrix elements between states of zero energy p0 . For 1£, which 
commutes with Po, 

[hPo] = 0 (12.68a) 

this conclusion follows directly from Lemma I of Chapter 3. For Kt, which has 
a nonvanishing commutator with p0 , 

(12.68b) 

the conclusion follows from a generalization of the argument of Lemma I, as 
follows. Taking matrix elements of Eq. (12.68b) in the standard representation, 
and using Eq. (12.67), we get 

(Kt)qq' t/Joq' - t/Joq(Ke)qq' = bqq'iPiq (12.69a) 

Let us now split (Kt)qq' into 'l· and /3-symplectic components, 

(12.69b) 

with Ktqq''l..{J E <C(l, i). Substituting Eq. (12.69b) into Eq. (12.69a), the 
{3-symplectic component of Eq. (12.69a) becomes 

(12.69c) 

where we have used the anticommutativity of i and j, together with the fact that 
the right-hand side of Eq. ( 12.69a) has a vanishing fJ-symp1ectic component. But 
since p0 is nonnegative, Eq. (12.69c) implies that either 

Keqq'fJ = 0 ( 12. 70a) 

or 

Poq = POq' ''" 0 (12.70b) 

Thus, except possibly between states of zero energy, (Kr)qq' is <C(l.i). We 
conclude that, except possibly in the zero-energy sector, an arbitrary quater
nionic representation of the Poincare group can be transformed to a <C( I, i) 
representation. 12 One can then invoke the classic analysis by Wigner ( 1939) of 
the <C( 1, i) irreducible representations of the Poincare group, which shows that 
these irreducible representations arc characterized by a mass m ~ 0 and spin 
s = 0, 1/2. 1, ... , with 2s + 1 independent helicity 13 states /. = -s, 
-s + 1, ... , s- I, s for m > 0, and 2 independent helicity states ), = -s, s for 
m == 0. All known elementary particles, of course, conform to the results of the 
Wigner analysis. The analysis just given generalizes immediately to super-

---~--

1 
2 This result is postulated, but not proved, in Emch ( 1963). 

13 Helici!y. we recall, is the component of !he spin angular momentum along !he directiOn of motion. 
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symmetric extensions of the Poincare group or algebra (sec, e.g., Wcss and 
Bagger, 1992), in which there arc fermionic generators Q, Q1 that commute 
with Pp and that close back under anticommutation into ]51,: From 

[Q,fto] = [Q1 ,po] = 0 (12.70c) 

the argument of Lemma I of Chapter 3 implies that except possibly in the zero 
energy sector, matrix elements of Q and Qi in the standard basis of Eq. (12.67) 
are necessarily <C( I, i). Similar reasoning can be applied to the conformal group 
or algebra (for a review, sec Das 1989), in which the Poincare generators of Eqs. 
(12.64a,b) are supplemented by a dilatation generator D and a conformal boost 
generator C11 , defined by 

D - I'J -X (I'' 

which obey the following commutators with p0 , 

(12.70d) 

(12.70e) 

By applying the Lemmas of Chapter 3 and the results we have obtained earlier 
for the Poincare generators, we conclude in this case also that except possibly in 
the zero energy sector, the matrix clements of D and C11 in the basis of Eq. 
(12.67) are <C(l. i). 

The preceding discussion can also be generalized to apply to quatcrnionic 
projective or ray representations of the Poincare group, in the case in which the 
extra phase operator is multicentral. Let us recall some definitions that were 
introduced in Sees. 3.5 and 4.3. Let A be a group with elements a, to each of 
which we associate a guaternion unitary operator U0 . The operators U0 are said 
to form a vector representation of A if the Ua obey the multiplication law of Eq. 
(3.67), 

(12.7la) 

whereas they are said to form a ray or projective representation if 

(12.7lb) 

with !2(b, a) a guaternion unitary phase operator. In our discussion of ray 
representations of the phase space translation group, we made the strong 
assumption that ll(h, a) is central, 

[ll(h.a).U,] =0 alla,h,c (12.7lc) 

and found a nontrivial projective representation structure. However, as discus
sed in Sec. 4.3, the definition of Eg. ( 12.71 b) still makes sense as a generalization 
of Eq. (12.7la) under the weaker assumption that ll(h, a) is multiccntral, as 
defined by the requirement 

[ll(h, a), U~;j = [!l(h, a), U0 ] = 0 all a, h (12.72a) 
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nd>which by virtue ofEq. (12.7lb) also implies 

[n(b,a), Uba] = 0 (12.72b) 

We will make the weaker assumption of Eq. (12.72a) in analyzing ray repre
sentations of the Poincare group. Continuing for the moment with the discus
sion for a general group A, let us now express Eqs. (12.7la,b) and (12.72a,b) in 
terms of the algebra of anti-self-adjoint generators Gt characterizing the 
group in question. Let the generator algebra corresponding to Eq. (12.7la) be 

[Gp, Gm] = L= CtmnGn (12.73a) 
n 

with C1 m n real numerical constants. Then the modified generator algebra 
corresponding to Eq. ( 12.71 b) is 14 

[G£. Gm] = L CtmnGn + j[m (12.73b) 
n 

with lcm an anti-self-adjoint operator (a generator of the phase operator n) 
obeying, in the multicentral case, 

(12.73c) 

As applied to the Poincare algebra, the commutators of Eq. (12.66b) involv
ing p0 (which are the only ones essential to our analysis) are changed in the 
multicentral extension to 

14 The reasoning leading to Eq. (l2.73b) parallels the reduction to a generator algebra in the C(l. i) case, as 
given in Bargmann (I 954) and Hamermesh (1962), Eq. (12--82). The argument, briefly, is as follows. Let 

Uh = e111,t;, and U, = i"c;", with Ci, h the corresponding generators. Using the Baker--Campbell-H<tuS
dorff formula [cf. Eq. (4.83a)] to leading order, we get 

Now when h = Uh =I or a= U, co I. Eq. (12.71b) implies that !1(I.a) = D(b.l) =I, and hence the 
leading-order term in D(b. a) has the form 

for some anti-self-adjoint l;,,. Finally, U1"' has in general the form 

with 1/1{,(01,.0,) a function ofOh and 0,. Thus to order !!1,e,, Eq. (12.7lb) takes the form 

[c". c,J = )= c,"" c, + 1"" 
' 

with 
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(12. 74a) 

together with 

(12.74b) 

and 

r - K- j - /-(3) _Po. t = -Pr + 1 

[ - /-( 3)] = [K- /-(3)1 = 0 Po· 1 I· I 1 ( 12. 74c) 

We can now proceed much as in the analysis of the vector representation case. 
We start by transforming to a standard basis on which p0 is diagonal, is C( I. i), 
and has nonnegative energy eigenvalues p0 , 

Poq = Poq ~ 0 (12.75) 

We do not need to assume that any other operators arc diagonal on this basis. 
We now examine the commutators of Eqs. (12.74a-c). The commutators 

[ - I-( 1.2.3)1 -- 0 Po· 1 - (12.76a) 

imply, by invoking Lemma I. that 11 ( 1.2.)) arc <C( I. i) outside the zero-energy 
sector. The commutators 

[ - -j /-(I) 
Po,PI = 1 · (12. 76b) 

then imply, by reasoning analogous to that of Eqs. (12.69a--c). that fj 1 and J1 are 
C(l, i) outside the zero-energy sector. Finally, the commutator 

(12.76c) 

implies, again by reasoning analogous to that of Eqs. ( 12.69a- c), that Kp is 
<C( I. i) outside the zero-energy sector. We conclude that in the multi central case, 
and outside the zero-energy sector, the study of quatcrnionic ray representations 
of the Poincare group is equivalent to the study of <C( I, i) ray representations. 
This latter topic is also dealt with in the classic paper of Wigner (1939), who 
shows that for Poincare transforrpations, ray representations can always be 
reduced to vector representations. 1

) 

The reasoning which we have used in our analysis of both the vector and the 
ray representation cases can be generalized, and succinctly expressed, in the 
form of a lemma; 

1
' In full generality, Wigner shows that<!_'(!. i) ray representatiOns of the Poincare group with general 

phase,., can be reduced to representations with ''' -· 1-l_ When all ("scan be deformed to unity, r:J must 
then be--'-!_ 
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Lemma 4: Let G be an operator, assumed to be defined on some nontrivial 
domain, which has vanishing n-fold multiple commutator with j50 , 

[fio, [fio, .... [f5o. (i]· · ·]] = 0 (12.77a) 

Then in a standard representation in which fio has the matrix elements 

Poq = Poq 2' 0 ( 12.77b) 

the matrix elements of G on the domain of definition arc <C( I, i), except 
possibly within the zero energy sector. 

To prove the lemma, we take the {3-syrnplectic component of the q to q' 
matrix element of the multiple commutator in Eq. (12.77a), which can be 
expressed in terms of the matrix element 

Gqq' = Gqq'a +jGqq'fi (12.77c) 

as follows, 

( 12.77d) 

Hence Eq. (12.77a) implies that Gqq'fi vanishes, unless both Poq and Poq' are 
zero. 16 

Let us now return to the vector representation analysis of Eqs. ( 12.69a-c) and 
(l2.70a,b), and examine what happens in the zero-energy sector. To maintain 
invariance under Lorentz transformations, we will assume that the momentum 
pp vanishes as well, so that we are dealing with the sector with vanishing eigen
values of the four-vector fiw In this case, no useful information is obtained from 
the commutators with fio or with fip, and we are left with the problem of deter
mining the quaternionic representations of the Lorentz group, which is char
acterized by the final three commutators in Eq. (12.66b). This is a harder 
problem, for which we have no firm results, but we make the conjecture that all 
representations are transformable to <C( I, i) form in this case also. To motivate 
this conjecture, let us consider first just the rotation subgroup of the Lorentz 
group, characterized by the commutator algebra 

[Jf,Jm] = --'L~'-fmnjn ( 12.78a) 
11 

In this case, there are quaternionic representations, as described in Finkelstein, 

16 The :<-symplectic component of the q to q' matrix element of Eq. (12.77a) implies that 

This docs not imply the vanishing of Gqq'"• but rather only 

with P'' () an nth-order polynomial of its argument. 
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Jauch, and Speiser (1959, 1963). The simplest is a one-dimensional representa
tion, with 

j(l) = _.l . 
2 2 .J, ( 12.78b) 

which satisfies Eq. ( 12. 78a) by virtue of the quaternion algebra, which itself 
involves the antisymmetric tensor t:emn· However, when we try to extend Eq. 
( 12. 78b) to the full Lorentz group, we encounter a difficulty. The natural guess 
is to try 

K
- (I) . 

I = Cl, j((l) = Cj·, 
2 .. ( 12.78c) 

with c a real constant. Equation (12.78c) satisfies 

( 12.78d) 

for any value of c, but we find 

[j((I) j((I)] = _ 4c2 "'l:f j(l) 
f ' m L mn n ( 12. 78e) 

II 

which for any choice of cis incompatible with the final equation in Eq. (12.66b). 
The problem, of course, is that the Lorentz group is noncompact. This is the 
reason for the sign reversal in the final commutator of Eq. (12.66b), and also the 
reason why the construction of Finkelstein and colleagues, which yields all 
finite-dimensional quaternionic representations for a general compact Lie 
group, breaks down in the case of the Lorentz group. We evidently can satisfy 
the final commutator in Eq. (12.66b) by going up in dimensionality to a two
dimensional representation 

j( 2) - -11 0 
A - 2 2LA: A= I, 2, 3 (12.78f) 

with 12 and i2 the real2 x 2 matrices given in Eq. (2.89a). However, the analysis 
of Eqs. (11.134a-e) shows that we can then construct a 2 x 2 quaternion unitary 
matrix U2 [given explicitly by Eq. (11.134b)], such that U2 J~) u; and 
U2K}u;,A = 1,2,3, are all <C(l,i)! 17 It seems likely that there are no intrinsi
cally quaternionic representations of the Lorentz group, but it would be nice to 
have a proof. 

As we have repeatedly noted, the results which we have derived on <C( 1, i) 
reducibility always have a zero-energy exception. To see that this exception can 
be of physical relevance, let us briefly discuss the quaternionic generalization of 

17 The two-dimensional Lorentz group representations or Eq. ( l2.78f) thus are equivalent to the 
(I /2, 0). (0. I /2) representations in the standard c!assillcation or C (I, i) Lorentz group representations. In 
footnote 12 of Chapter II, we mentioned the Rotelli (l989a,b) Dirac equation based on 2 x 2 quaternionic 
Dirac matrices. The corresponding Lorentz generators - ~ iYw y,.] have precisely the structure of one of the 
two cases of Eq. ( 12. 78f), and therefore we see that the Rotelli equation is based on the (I/ 2, 0) E'0 (0, I /2) 
([: (I. i) representa lion of the Lorentz group, with the a ppcarance of a pair of complex con jugate repre
sentations the result of the mechanism explained, in the context of the rotation group, in footnote 12 of 
Chapter 3. 
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the Goldstone theorem for spontaneous symmetry breaking, following the 
standard analysis of Goldstone, Salam, and Weinberg (1962). Let G be an anti· 
self-adjoint conserved symmetry generator in the Heisenberg picture, which is 
the space integral of the time component of a conserved current ]1,, 

(12.79a) 

where we have used the fact that pi' generates space-time translations. Let cp be a 
self-adjoint operator and X a second self-adjoint operator defined by the 
commutator of G with¢, 

[G, ¢]=X (12.79b) 

and let us suppose that the field theory vacuum state IO) breaks the symme
try genera ted by G, so that 

(OIXIO) c1 o ( 12. 79c) 

Substituting Eqs. (12.79a,b) into Eq. (I2.79c), and inserting a complete set of 
intermediate states {In)}, we get 

11 

(12.79d) 

The right-hand side of Eq. (12.79d) is nonzero and time independent, but the 
only way the left-hand side can pick up a time-independent contribution is for 
there to be a zero-energy state which contributes. If either ]0 or cp has a 
vanishing vacuum expectation, then this zero-energy state must be a state other 
than the vacuum state, and we conclude that there must be a nontrivial zero
energy state in the system. For this zero-energy state, the exception to the 
various <C( I, i) reduction lemmas becomes relevant. 

As Bargmann and Wigner (1948) have shown, in complex quantum 
mechanics the various nonzero energy irreducible representations of the Poin
care group correspond to the various free-particle wave equations for particles 
of different spin. The fact that the irreducible representations of the Poincare 
group over the quaternions are just those over the <C( I, i) subalgebra means that 
we can expect to get all relativistic quaternionic free-particle wave equations as 
d1rect extensions of the corresponding complex-<C( I, i) wave equations. In our 
explicit constructions in the spin-0, spin-! /2, and spin-! systems, we have seen 
that this is in fact the case. Thus the group theoretic results of this section give 
us assurance that we have not missed a possible new, intrinsically quaternionic 
relativistic free-particle wave equation. 

At the same time, the results of this section do not imply that relativistic 
quaternionic quantum mechanics is trivially reducible to complex quantum 
mechanics. In fact, we have direct evidence that it is not: The quaternionic 
single-particle Dirac equation, with fixed local potentials, reduces in the nonre
lativistic limit to a nonrelativistic quaternionic Schrodinger equation, still with 
local potentials, which makes predictions for scattering (such as T-violation and 
lower half-plane singularities in the scattering amplitude) that differ from the 
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standard results of Schrodinger potential theory. The key word here is local· 
although there always exists a basis in which an arbitrary positive-energy Poin
care group representation is C( I, i), and in which the S-matrix is C( I, i), this 
basis is essentially an energy eigenstate basis, and is not the one in which the 
boundary conditions associated with the locality of interactions can be imple
mented. The transformation to a representation in which locality can be imple
mented (such as the coordinate representation in potential scattering) involves 
quatcrnion-valucd transformation functions and brings quatcrnionic quantum 
physics into play in a nontrivial way. 

When we generalize to quantum field theory, however, the results of this 
section suggest that to get a nontrivial quaternionic field theory, the Poincare 
group generators cannot be represented by a commutator algebra as in Eq. 
(12.65a). constructed from finite-order polynomials in the local fields. We will in 
fact sec in Sees. 13.5 and 13.7, where we propose a method for constructing 
quaternionic field theories, that the Poincare algebra is realized as an algebra, 
under a generalized bracket operation, of total trace finite order polynomial 
functionals of the local fields, to which the C( I, i) reduction argument of this 
section does not apply. If, as we conjecture, quaternionic field theories reduce 
asymptotically to <C( I, i) field theories, then in the asymptotic regime the Poin
care group will be represented through a commutator algebra of complex 
generators, which themselves will be nonlocal functionals of the underlying 
qua tcrnionic fields. 



13 

Quaternionic 
Quantum Field Theory 

Up to this point our discussion of relativistic quaternionic wave equations has 
dealt with the first quantized case, in which the wave fields are quaternions in 
the right-acting algebra spanned by I, iJ k, with c-number-valued real compo
nents. We now turn to quaternionic quantum field theory, in which the wave 
fields are left-acting operators. We begin with an analysis of the Klein 
paradox for the c-number quaternionic Dirac equation, which, as in its 
complex analog, leads to the conclusion that the one-particle relativistic wave 
equation should be extended to a second quantized formalism. We proceed next 
to an analysis of the embedding of some standard complex quantum field 
theories in quaternionic Hilbert space, followed by a discussion of free fields 
formed as quaternionic superpositions of <C( 1, I) quantum field components. In 
Sec. 13.4 we discuss quaternionic irreducible representations of compact groups, 
developing the criterion for the reducibility over the quaternions of complex 
irreducible representations of compact groups and showing how this problem 
relates to that of finding a nontrivial quaternionic embedding of a complex 
quantum mechanical system. The arguments of this section suggest that new, 
intrinsically quaternionic, quantum field theories will be obtained by gauging 
the one-dimensional, quaternionic irreducible representation of SU(2). 

Since such gaugings necessarily involve operator-valued gauge transforrna
tions, they require an extension of the usual quantum field theory formalism for 
gauge fields, which is developed in Sees. 13.5~13.7. In Sec. 13.5 we develop a 
generalized quantum operator dynamics based on a total trace Lagrangian and 
Hamiltonian and a generalized bracket operation, and show how this formalism 
naturally accommodates operator-valued gauge transformations. In Sec. 13.6 
we apply this formalism to complex quantum mechanics, showing that the usual 
dynamics of a single bosonic or fermionic degree of freedom is recovered, with 
the canonical commutation or anticommutation relation emerging naturally 
from the formalism as a constraint. In this context the standard "canonical 
quantization" procedure appears as an algorithm for constructing an operator
valued gauge transformation from the Heisenberg to the Schrodinger picture. In 
Sec. 13.7 we apply the total trace formalism to constructing quaternionic 
quantum field theories, which are the second quantized versions of the c
number wave equations and Lagrangians discussed in Sees. 12.1--2. We show 
that the minimal, chiral anomaly-free fermionic theory, with maximal operator 
gauge invariance, as well as discrete P, T and C symmetries, has two Dirac 

399 
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fermion fields, has a single coupling constant, and in the zero mass limit has a 
chiral symmetry. 

In the final section of this chapter we depart from the main line of develop
ment to give a summary of results from the theory of quaternionic determinants 
and their application to the computation of quaternionic Gaussian integrals. 

13.1 THE KLEIN PARADOX AND THE NECESSITY FOR 
QUANTUM FIELD THEORY 

We begin our discussion of quantum field theory in quaternionic quantum 
mechanics by analyzing the quaternionic generalization of the Klein paradox, 
formulated as a potential scattering problem within the framework of the 
quaternionic Dirac equation. By demonstrating the limitations of the single
particle relativistic equations, this calculation indicates the need for their exten
sion to second quantized operator equations, just as in the familiar complex 
quantum mechanics case. 

We start from th.e quaternionic Dirac equation in one dimension, using the 
Dirac representation for the Dirac matrices, as formulated in Eqs. (II. 96)
(II. I 0 I e). For the time-independent Dirac equation with energy eigenvalue E 
[cf. Eqs. (11.75a,b)], we have (denoting B~.f!O by V'l.,fi• and setting the vector 
potentials equal to zero) 

E>O 

- 3 d 
H = Vx(z) + JVrJ(z)~· + 'l - + im{J 

dz 

rr3) ( I 0 ) 
0 ' fi= 0 -1. 

We assume that to the left of z = 0 the potentials vanish, 

z<O 

(13.1) 

(13.2a) 

whereas to the right of z = 0, the potentials are constant, with positive v,, 

V:x(z) = iVt, 

v11 (z) = vfi. 

v, > 0, 

z > 0 

z>O 

(13.2b) 

For this potential we wish to calculate the scattering of a wave of unit amplitude 
incident from the left. This calculation is carried out by determining the left 
(z < 0) and right (z > 0) solutions of Eq. (13.1), subject to appropriate bound
ary conditions, and then imposing the condition of continuity at z = 0. 

Solution of Eq. (13.1) on the right half-line is facilitated by the observation 
that the real Hermitian operator C5 defined by 

i5 = ( O"j 0 ) 
0 -(J, (13.3a) 

commutes with all terms in if, and so 

[c), if] = 0 (13.3b) 
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By Lemma 2 of Sec. 3.6, this implies that i5 and if can be simultaneously diag
onalized. Let tj;, denote the eigenstate of i5 with eigenvalue 1:, which (since 
i5 2 '= I) can take the values 1: = ±I, 

( 13.3c) 

Then a simple calculation using Eqs. (13.3a) and (13.3c) shows that tf;, has the 
general form 

(13.3d) 

with Xr and x1 respectively up and down Pauli spinors acted on by the matrices 
0'1.2.3· 

X~ == ( ~) (13.3e) 

and with c~ fi and d~.fi complex C( I, i) functions of z. Projecting the energy 
eigenvalue equation of Eq. ( 13.1) on i5-eigenstates, we have 

Ht/J,: = tj1,:iE 

with tf;r. given by Eq. (13.3d), which in terms of the column vector 1 

c~(z) 

d~(z) 

c(J(z) 

d(J(z) 

is equivalent to the differential equation 

with B the 4 x 4 matrix 

B" ri(E ~- Vt) 
iV13 
0 

---

dO 
-=Bn 
dz 

i(£ + m- v,) 
0 
0 

iV(1 

0 
0 

- iV(J -i(m+E+ Vt) 

0 

-iV~ 
i(m- E-

0 

(13.4a) 

(13.4b) 

( 13 .4c) 

Vt)j 

( 13.4d) 

1 

Our procedure here is 'imilar to that employed by Davies and McKellar ( 1989a) in solving the nonrela
tivistic quaternionic square well. 

Equation (13.4a) leads to four independent one-component differential equations, two of which are 
independent of 1: and two of which contain a factor of 1: in every term. Canceling the 1:-factors in the latter 
gives Eqs. (13.4c.d). in which 1: no longer appears. 
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We look for solutions of Eq. (13.4c) in the form 

( 13.5a) 

with the possible values of). the eigenvalues of the matrix B. By some algebra, 
which we omit, we find that the four eigenvalues and eigenvectors of B consist 
of two modes with 

Cx = I, d~ -= -i/.1 D_ 

cp = v11il) n _. ct11 = vp 
D_=E+m-V v11 =Vrd(V+VI) 

and two modes with 

. - v' * Lx - - fi · 

dx = V(;iJ.ID+· 

Cfi = i)) D L 

dfJ = I 

D, = E+m+ V. 

where we have defined 

(13.5b) 

(13.5c) 

( 13. 5d) 

The eigenmodes of the Dirac equation on the left half-line arc obtained from 
the preceding expressions by equating V 1 and v13 to zero. We assume henceforth 
that E 2: m and impose the boundary condition that the wave incident from the 
left is in the eigenmode of Eq. (13.5b), with unit amplitude in the ex component. 
The gcneral1eft half-line solution, including rcf1ectcd waves, then has the form 

. [ (pI ( E + m) ) ( - [pI ( E + m)] ) J _ ipc 
+J I zr-r. I xre rfi• 

(13.6) 

with ~'cx.fl two <C(1,i) rcf1ection coefficients. According to Eq. (11.67c) (as 
specialized to rJ = lj1 = a stationary state), the Dirac equation of Eq. ( 13.1) has 
an associated probability current 
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(13.7a) 

which is conserved, 

d 3 
_J_ ~~ 0 
dz 

(13.7b) 

Substituting the left-hand expression for t/Jc given by Eq. (13.6) into Eq. (13.7a), 
we find that in terms of r,.fi, the probability current is given by 

'3 -
4
p (I- lr 12 - lr 12 ) 1 -E+m '' fi 

(13.7c) 

To complete the calculation, we must determine the most general right half
line solution compatible with the left incoming wave boundary condition and 
match it to Eq. (13.6) at z = 0. For this purpose, it is convenient to consider 
three regimes, distinguished by the magnitude of V: 

Regime 1: 

Regime 2: 

Regime 3: 

O:S:V:~E-m 

E-m< V<E+m 

E+m :S: V (13.8) 

In regimes I and 3 the wave number q 1 defined in Eq. (13.5b) is positive real, 
whereas in regime 2 the wave number q 1 is imaginary. In all three regimes the 
wave number q2 defined by Eq. (13.5c) is positive real. 

Working first in regimes I and 3, and imposing outgoing wave boundary 
conditions for the eigenmodes of Eqs. (l3.5b) and (13.5c), the right half-line 
solution has the form 

( 1 ) ( 1 ) .A [(-q/D-) (q/D-) ] 
X1(q)= qjD_ Xr+c: -qjD_ Xi+JVfi I Xi- 6 I Xr 

A* [ ( I ) ( I ') ] . [ ( -q2/ D~) 
X2=-V!J q

2
/D+ Xr+c: -q2/Dc.Xl +J I Zt 

( 13.9a) 

with t1.2 two <C(1, i) transmission coefficients. Substituting Eq. (13.9a) into Eq. 
(13.7a), we find that in terms of t 1,2, the probability current is given by 

(13.9b) 

Since Eq. (13.7b) implies that} is a constant over the line -oc < z < c>e, 
equating Eq. (13.7c) to Eq. (13.9b) gives the sum rule, in regimes I and 3, 

(13.9c) 
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where we have defined 

.I'J 

q2 E+m 
,\'2 =-

p E+m+ V 
( 13.9d) 

Equating the right half-line wave function of Eq. (13.9a) to the left half-line 
wave function of Eq. (13.6) at z = 0, we get a system of four simultaneous 
equations that can be solved for rct.~ and tu, with the results (for regimes I and 
3) 

r = ~ [V + V1 + V- V1] _ I 
Y. v I + SJ I + 52 ) 

Vfi S2- SJ 

rfi =v (I +s1)(l +s2) 

V + V1 Vfi 
tl = . t2 = - -------'--

( I + s I ) v ( I + S2) v ( 13. 9e) 

Substituting Eqs. (13.9e) into Eq. (13.9c), it is easy to verify that the current 
conservation sum rule is indeed satisfied. 

Turning next to regime 2, and imposing the boundary condition that the 
eigenmode of Eq. (13.5b) should be bounded at +oc, together with an outgoing 
wave boundary condition for the eigcnmode of Eq. ( 13. 5c), the right half-line 
sol uti on takes the form 2 

( 13.10a) 

with X 1(q) and X2 as in Eq. (13.9a), with 

( 13.10b) 

and again with t1,2 two <C( I, i) transmission coefficients. Substituting Eq. 
(13.10a) into Eq. (13.7a), we find that the probability current in regime 2 is 
given by 

·3 2 v 4q2 lt212 
J = V + V1 E + m + V 

(13.10c) 

and the current conservation sum rule takes the form 

( 13.1 Od) 

Equating now the right half-line wave function of Eq. ( 13. I Oa) to the left half
line wave function of Eq. (13.6) at z = 0, we get a system of simultaneous 
equations that can be solved for rct,fi and t1.2 in regime 2. The results are 
identical in form to Eq. (13.9e), but with SJ now given bl 

2 Equation (13.10a) is obtained from Eq. (13.9a) by making the substitution q 1 __, ilq 1 I throughout, which 
is why the transmission and reflection coefficients in regime 2 are obtained from those of Eq. ( 13.9e) by the 
same substitution. 

The coefficient X2 is of course a function X2 (q2 ) of the momentum argument q2, but since the q2 
dependence does not play a role in the subsequent discussion, we suppress it. 
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ilqii E+m 
.I'J = -- --~---

p E+m-V 
( 13 .I Oe) 

and s2 still given by Eq. (13.9d). Substituting Eqs. (13.10e) and (13.9e) into Eq. 
(13.1 Od ), we can again verify that the current conservation sum rule is obeyed. 

Let us now discuss the physical interpretation of these results. focusing on the 
behavior of the reflection and transmission coefficients as the absolute value of 
the barrier height is increased from 0 to ex::. In regime I, where the magnitude of 
the potential V is smaller than the incident wave kinetic energy E- m, trans
mission of the incident wave past the barrier is allowed, giving rise to trans
mitted amplitudes t 1 and t2 in the two right half-line modes. All coefficients in 
the sum rule of Eq. (13.9c) are positive, and so the reflected wave magnitudes 
hr11 are smaller than unity. In regime 2, where the potential magnitude V 
exceeds the incident wave kinetic energy E - m (but is smaller than E + m), 
transmission of the incident wave past the barrier is forbidden in mode I and 
allowed (when v11 i 0) in mode 2. All co<:fficients in the sum rule of Eq. 
(13.1 Od) are again positive, and so the ret1ected wave magnitudes are still 
smaller than unity. Note that in the <C( I, i) limit, where v11 = 0, the transmission 
and reflection amplitudes t2 and rfJ (which correspond in this limit to the exci
tation of antiparticle states) are zero, and Eqs. (13.9d,e) reduce to the standard 
complex quantum theory formulas. 

When the magnitude of the potential V increases beyond E + m, as in regime 
3, peculiar behavior appears, for which there are two different interpretations in 
the literature. In formulating the outgoingwave boundary condition for regime 
3 by assuming that mode 1 chooses the e''~ 1 ': behavior of Eq. (13.9a). we have 
followed the approach of Bjorken and Drell (1964) and Itzykson and Zuber 
( 1980). In this interpretation, as V increases into regime 3 the coefficient s1 

defined in Eq. (13.9d) becomes negative, and consequently the sum rule of Eq. 
(13.9c) has a negative term on the right. This permits the reflection coefficients 
to become larger than unity in magnitude; to sec that this actually occurs, let us 
pass to the <C( I, i) limit by setting Vr1 = 0 and thus V = V1, in which case Eq. 
(13.9e) reduces to 

I -· SJ 
r =--
" I +s1 

(13.11) 

which exceeds unity in magnitude for V in regime 3. This constitutes manifestly 
paradoxical behavior. 

An alternative interpretation of the regime 3 behavior, which we prefer, has 
been given by Greiner (1990), and is based on the observation that fixed-energy 
scattering solutions are meant to be interpreted as wave packets [see, e.g., 
Goldberger and Watson (1964) and Newton (1982)], constructed by the super· 
position of solutions with a narrow spread of energies. Proceeding in the 
quaternionic case as in Sec. 8.3, by using superposition coefficients that 
commute with the eigenvalue iE of if, the wave packet corresponding to tfi~: has 
the forrri 

t/J(z, t) = J dEt/1,e-iF:tc(E) (13.12a) 

with c(E) a <C(1, i) coefficient peaked around E =E. Substituting Eq. (13.9a) 
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and focusing on the mode I contribution, for which we change integration 
variable from E to q 1 , we get 

(13.12b) 

with w(q!) a prefactor (carrying spinor and quaternionic structure) that peaks 
around the value iii obeying £(iii)= E, and with · · · denoting the mode 2 
contribution. Shifting to w = q1 ~ ii1 as a new integration variable, and Taylor 
expanding E(q 1) to first order around ii 1, we get 

(13.12c) 

with Vg the group velocity 

( 13 .12d) 

which describes the centroid motion of the mode I wave packet. To calculate 
the group velocity we use Eg. (13.5b), 

( 13 .12e) 

which implies 

(13.12f) 

We now see that although the group velocity for mode 1 is positive in regime 1, 
it is negative in regime 3, where thus t/J" of Eq. (13.9a) describes an incoming 
mode I wave packet! To implement the left incoming wave boundary condition, 
Greiner (1990) proposes choosing the ~q 1 branch of mode 1 in regime 3, so that 
Eq. (13.9a) is changed to 

(13.13a) 

with X 1 (q) and X2 as before. This changes Eqs. (13.12b,c) to 

t/J(z, t) = l dql W( ~ql )ei[~q,z-E(~qJ)t] =.I dww( ~iii + w)eiw[z~jvgjt]e~i(q,z+Et) 

(13.13b) 

with lvgl the negative of Eq. (13.12f), which corresponds to an outward moving 
wave packet. Reversing the sign of q1 in t/J" has the effect of reversing the sign of 
q 1 in Eqs. (13.9b) and (13.9d), so that s1 becomes 

q 1 E+m 
SJ =--

p E+m~ V 
(13.13c) 
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and is positive in regime 3. In terms of this s 1, the reflection and transmission 
coefficients are still given by Eq. (13.9e) and obey the sum rule of Eq. (13.9c), 
which now contains only positive terms and implies that the magnitudes of 
the reflection coefficients remain bounded by unity. Thus, in the Greiner 
interpretation, the "paradox" consists not of a ret1ection coefficient that 
exceeds unity, but rather of the facts thai. (i) one must choose the -q 1 

branch, as in Eq. (13.13a), to get an outward moving wave packet, and (ii) 
increasing the potential magnitude V from regime 2, where the t1 part of the 
wave function decays exponentially at infinity, to regime 3, where the t1 part 
of the wave function propagates to infinity, has increased the penetration of 
the infinitely wide barrier by the mode incident from the left. This increased 
barrier penetration has [in the <C( I, i) limit] the physical interpretation of 
particle--antiparticle creation at the barrier, indicating a need to extend the 
one-particle relativistic wave equation to a second quantized formalism in 
which particle creation and destruction processes are explicitly taken into 
account. 

We can draw two general conclusions from the foregoing analysis. The first 
IS that the quaternionic extension of the Klein paradox calculation leads to 
results similar to the familiar complex quantum theory calculation. In partic
ular, our usc of the ray representation convention of Eq. (13.1), in which the 
energy E is always positive and the antiparticles lie in the f:i-symplectic 
component of the free-particle wave function, has led to no surprises: In the 
<C(l.i) limit in which V(J vanishes, the final formulas of Eqs. (13.9c,d,e) and 
(13.1 Od) reduce to the corresponding formulas obtained using the standard 
complex Dirac equation. The second conclusion, following from this, is that 
the quaternionic single-particle relativistic equations, like their complex coun
terparts, do not have an unambiguous physical interpretation for all potentials; 
in general they must be extended to quantum field equations in which particle 
number can change. In other words, we must admit the necessity of quater
nionic quantum field theory. 

13.2 QUATERNIONIC EMBEDDINGS OF COMPLEX 
QUANTUM FIELD THEORIES 

In this section we discuss the simplest forms of quaternionic quantum field 
theory, obtained by embedding standard complex relativistic quantum field 
theories in a quaternionic Hilbert space. This will serve as a useful preliminary 
to the investigation, in subsequent sections, of whether one can formulate new, 
intrinsically quaternionic, relativistic quantum field theories. 

Let us begin by using the analysis of Sec. 2.5 to formulate conditions that 
permit the embedding of a complex quantum dynamics in a corresponding 
quaternionic one. 3 Let w 1 be a two-component <C( I, i) coordinate representation 
wave function 

( 13.14a) 

'The analogous embedding of real quantum mechanics in complex quantum mechanics was discus;ed in 
Sec. 2.6. For a related discussion focusing only on the inner product structure, see Sharma ( 1988). 
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with a complex inner product 

(13.14b) 

which is left invariant by the Schrodinger equation with 2 x 2 matrix self
adjoint Hamiltonian H(x), 

ow 
i-=HW at 

Suppose now that H has the special form4 

}{ = -iH, 

( 13.14c) 

( 13 .14d) 

with the self-adjointness of H, or equivalently the anti-self-adjointness of ii, 
reqmnng 

( 13 .14e) 

In terms off~.fJ and Hx 11 , the Schrodinger equation of Eq. (13.14c) becomes 

af, 1. H* 1. at = -H~ ~ + fJ fJ• 
7j' 
S_1_ - - H f. - H' f. at - fJ. ~ ,. fi ( 13.15a) 

In addition to leaving Eq. (13.14b) invariant, the dynamics of Eq. (13.15a) also 
leaves invariant the symplectic inner product 

as can be readily verified, 

a w w _;·(of; + ·Tog11 _of~ _ ·Tagx) 
at ( 1' x ls - at g11 f, at at g~ f fi Dt 

= J [ (f'[ H~ + f}H~)gfi +f'[( -Hrigx- H~ gri) 

-( -f'[ H11 + f~H,)g, -/};( -H,go: + H~gfi)] = 0 

(13.15b) 

(13.15c) 

4 Equation (13.l4d) is just the condition that the complex dynamics generated by ?i be embeddable in a 
quaternionic dynamics with a quaternion linear time evolution operator. and it can be reexpressed 111 the 
equivalent form g1ven in Eqs. (2.74f.g). If the condition of F.q. ( l3.14d) is not imposed. the dynamics of Eq. 
(13.14c) can still be rewritten as a quaternionic dyn<~mJCs. but will involve a complet linear time evolution 
operator. which leaves invanant the complex inner product ( f.K)c of Eqs. (2.66b) and (l3.16b), but not 
the symplectic and quaternionic inner products ( lii)s and ( f, x) of Eqs. (2.66c,d) and ( 13.16b). Note that 
a spinor index transpose T appears 1n Eqs. (l3.l4c-e). which was absent in Eqs. (2.66a-d), because the 
wave functions now include spinor structure. 
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This permits us to embed the complex quantum dynamics of Eqs. ( 13.14a-e) in 
a quaternionic quantum dynamics defined, in coordinate representation, by the 
quaternionic wave function 

f=fx +jf~ ( 13 .16a) 

with a quaternionic inner product 

([,g)= jftg = (fg)c + J([,g)s (13.16b) 

which is invariant under time evolution with the quaternionic Schrodinger 
eqtiation 

al 
at= -Hf, H= H~ +JH~ ( 13.16c) 

The states 

w (!~) ~'~=c~n) (13.17a) t= ~~ ' f /* 
. C( 

which are orthogonal under the inner product of Eq. (13.14b), 

(13.17b) 

correspond to quaternionic wave functions that are different ray representatives 
of the same state, 

f=f~ + Jfri· j ·/ j'* '[* f. '=---: fi +.!. rt. = . ./ (13.17c) 

Hence the quaternionic embedding is accompanied by a twofold reduction in 
the dimensionality of a complete set of states. Referring back to Eq. (2.74c), we 
see that a complex dynamics permitting such a quaternionic embedding must 
have energy eigenstates occurring in pairs ±:.Et. Ep > 0, and in particular any 
zero-energy state must have an even number degeneracy. 

A particularly simple way to satisfy Eq. ( 13.14e) is to take H p = 0. Then Eqs. 
(13.15a) and (13.14e) become 

at~_ -H 1. 
at - x x, 

8.fri = -H* r at :y_,{Jl Hrx = -H~ (13.18a) 

which are consistent with simply takingh =/~C with (any C(l,i) constant 
and identifying Hx with iH, where H is the complex self-adjoint Hamiltonian 
governing the dynamics of a one-component complex wave functionfx· In this 
case, the twofold reduction in the dimensionality of a complete set has occurred 
at the C( I, i) level, in specializing from a two-component to a one-component 
wave function. The quaternionic embedding of Eqs. (13.16a-c) then gives an 
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embedding of a <C( I, i) dynamics with a one-component wave function, into a 
quaternionic dynamics with a one-component wave function and the same 
dimensionality for a complete set of states. In coordinate representation, the 
quaternionic Hamiltonian if is related to the complex one by 

H= iH, H E <C( I, i) (13.18b) 

which in a general representation becomes 

H= IH, [I,H] = 0 (13.!8c) 

with I an operator of the left-acting algebra defined in Eqs. (2.59a,b). 
In the remainder of this section. we give examples of quaternionic embed

dings of familiar complex quantum field theories, based on the Fock space 
generalization of the simplified recipe of Eg. ( 13.18c). We follow closely the 
notation and methods of Sec. 10.1. Since we shall require the quantum fields to 
be quaternion-linear operators, in quaternionic quantum mechanics they will 
never involve the scalars i,j, k of the right-acting algebra, but rather must be 
constructed from operators I. J, K of a suitable left-acting algebra. As we have 
seen in detail in Sec. 10.1, there is no unique definition for this left-acting 
algebra; rather, for each )"-representation E: C, we can define a left-acting algebra 
I;,, h· K;_ by Eq. (10.8a). Moreover, for any /.-representation E C and cr-repre
sentation E C, we have 

(13.19a) 

but in general 

(13.19b) 

with 1;_ = lu,K~c = Ku only when the transformation functions (.Aicr) are real. 
Hence in constructing field operators and analyzing their algebraic properties, 
we must always specify carefully which left-acting algebra we are talking about. 

The first quantum field theory we shall analyze is the Hermitian scalar 
field (Blaizot and Ripka, 1986, Sec. 3.5a; Cheng and Li, 1984, Sec. 1.1; and 
Itzykson and Zuber, 1980, Sec. 3-1-2). In the absence of interactions, the 
Hamiltonian is 

Ho = IHo, (I 3.20a) 

with the Schrodinger picture field operator (/.> and canonical momentum n given 
in terms of momentum eigenstate creation and annihilation operators a} and a1; 

by 

cp(x,t) = cp(~'t) = LN(p)(ai'e1ii'<' +a}e-1J'·'-') 
fJ 

( 13.20b) 

where, as we shall see, I is chosen to commute with ay and aJ .. Here the energy 
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eigenvalue wp and the normalization factor N( p) are given by 

(p2 2) I /2 
wl' = + m , ( 13.20c) 

as in Eq. (ll.llc). The notation./~ d 3x in Eq. (13.20a) indicates integration over 
a finite box V of volume (2n) 3 in arbitrary units, corresponding to the discrete 
sum oyer momenta 'L.r; in Eq: (13.20b). 5 T:~e creation and annihilation opera
tors aft and aj) obey the canomcal commutation relatiOns 

( 13.20d) 

from which follow the canonical commutation relations for the field operators 
(for x, 0~' E V), 

[¢("Y), ~6(x')] = [n(x), n(x')] = 0 (13.20e) 

Substituting the momentum expansions of Eq. (13.20b) into Eq. (13.20a), the 
Hamiltonian becomes 

Ho = L wp(ataj) + ~) (13.20f) 
p 

So far we have done nothing more than transcribe the familiar scalar field 
theory formulas with the substitution i--> I. Let us now introduce a 
quaternionic structure, in two different ways, by introducing two distinct left
acting algebras which we denote, respectively, I, JP, KP and I, lx, Kx. The first 
is defined qy the recipe of Eq. (10.8a), with the annihilation and creation 
operators a I, ai. identified with the momentum space creation and annihila
tion operators a~., aj), that is, 

(13.2la) 

By property (ii) of Eq. (10.9b), the creat.ion and annihilation operators aT., aj) are 
formally real with respect to the algebra I, lp, KP,6 P 

( 13.21 b) 

'To convert Eqs. (13.20a -f) to continuum normalizal.ion, one replaces Ojifl' by 6\ji- j]'). fvd 1x by 

J·] ~~ j'] d x, and ~p by d p. 
" We remind the reader that in Eq. ( 13.21 b), the label p on Jp. Kp denotes the momentum operator, and the 
label p on a~. aP- denotes a specific momentum eigenvalue. See footnote 3 of Sec. I 0.1. 

De Leo and Rotelli (1992) give a discussion of the quaternion scalar field in which they do not distin
guish between the left-acting and right-acting quaternion algebras. Since they assume that their momentum 
space creation and annihilation operators commute with i. j, k, they are implicitly assuming the relevant 
\eft-acting algebra to be l.Jp,Kp. 
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which in turn determines the action of I, lp, Kp on the field operators qJ (S') and 
n(.Y) to be 

Ic/J(x)It = ¢(x) 

lpc/J(x)l], = Kpcf;(x)Kt = LN(p)(ape-1l' +a
1
je1i7 ') = cp(~.Y) 

iY 

In(x)It = n(x) 

Jpn(x)l], = Kpn(x)K~ = ILN(p)wp(a1 e-Iji'< ~ a]>e1 P'~') = ~n(~~Y) (13.2lc) 
p 

The second left-acting algebra is constructed by rewriting cp(x) and n(.Y) in 
terms of a Fourier sine and cosine basis, as in Eq. ( 11.11 a), according to 

cf;(x) = LVlN(p)[(cj!-1-c;.)cosp·x+(sp-+s})sinp·x] 
ji.-t 

n(x) = ~In(.Y) 

n(x) = L VlN(p )wp [(cp ~ 4l cos p. X+ (s)i' ~ s}) sinp. "y] 
p.+ 

(13.22a) 

Here L_P + denotes <;t sum restricted to half of p-space (say, to p 1 2:: 0), and the 
creation operators c~, sj and annihilation operators Cjj, Sf! are defined by 

t I t t 
c~= r-:;(a~+a -), 
p v 2 p -p 

(13.22b) 

They obey 

SjJIO) = r 112I(ap ~ (Ljj)IO) = 0 (13.22c) 

and (with f),p' both lying in the+ half-space) 

[cjj,cp'] = [sj],sp] = [cp,sp'] = 0 

[cjj,s},J = [c},sjj'] = 0 

[c ~ ct J- [1·~ s1 ]- "~~ p, p' - . p, ji' - up p, ( 13.22d) 

Thus the operators of Eq. (13.22b) obey the algebraic properties necessary for 
validity of the construction of Eqs. (10.8a,b) and (10.9a-d), and so we can 
introduce the left-acting algebra I, lx, Kx defined by 

( 13.22e) 
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with respect to which c1~, .1} c1; . . 1)· are formally real, 

(13.23a) 

Solving Eqs. ( 13.22b) for a}, aj), ... in terms of c}, cj), ... , we get 

(13.23b) 

which by Eq. (13.23a), together with the quaternion algebra obeyed by I,J,, K,, 
implies 

I a- J t - K a~·K I - a , 
' X p X - X p X - --p (13.23c) 

Finally, from either Eq. (13.23a) and Eq. (13.22a), or from Eq. (13.23c) and Eq. 
( 13.20b ), we learn that I,J,, K, act on the field cp(x ), the canonical anti-self
adjoint momentum ir(x), and the canonical momentum n(x), as 

(I,J,, K, )( ¢(~?), ir(x)) = ( ¢ (x), ir(x)) (I,Jx. K,) 

In(x)It =, n(?) 

J,n(x)Jt =~ K,n(x)Kt = -n(x) (13.23d) 

That is, cp(x) and ir(x) arc formally real, and n(x) is formally <C( I, I) imaginary, 
with respect to the left-acting algebra I, J,, K,. Anticipation of this result is of 
course why we chose the subscript label x for this algebra. The appropriateness of 
this labeling is also evident when we use Eq. (13.23c), together with Eqs. (I 0.5a) 
and (I 0.9c), to compute the action of lx on a single-particle momentum eigenstate, 

( 13.23e) 

this evidently has the same form as Eq. (3.9b) for the action of the operator 1 of 
the first quantized formalism, which was introduced by the coordinate repre
sentation expansion of Eq. (2.59a). 

So far we have worked exclusively in the Schrodinger picture. Let us now 
transform to the Heisenberg picture corresponding to the Hamiltonian flo of 
Eq. (13.20a), which for an arbitrary Schrodinger picture operator a is given by 

( 13.24a) 

Taking a to be at. or aj], and using the expression for Ho in Eqs. (13.20f), we 
can explicitly eva1uate Eq. (13.24a) by the same method used to treat the 
harmonic oscillator in Eqs. (7.59b,c), giving 

(13.24b) 
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Since 

( 13.24c) 

applying Eq. (13.24a) with 0 taken as cp(x) or n(.X'), and using Eq. (13.24b), we 
get for the Heisenberg picture field operator and canonical momentum 

rPH(x, t) = L N(p) [ap/U·'<-wpt) + a~e-l(J3'i'-wpt)J 
p 

n (x t) = -lie (x t) = -!"'\"" N(p)w [a-e1(iJ-.'C-wrt)- at e-l(f·'C-wpt)J !1. f!, L PP p 
p 

Acting on these with J,, and using Eq. (13.23c), we find 

lx ( cp H(x, t), irH(X, t)) J~ = ( cp H(x, -t), irH(x, -t)) 
J,nH(x, t)J~ = -nH(x, -t) 

( 13.24d) 

(13.24e) 

indicating that lx acts as a quaternion unitary time reversal operator for the 
scalar field. We could equally well use Kx = Ux as a time reversal operator, or 
for that matter, lp or KP = IJP multiplied by a suitable <C( I, I) unitary operator 
U. This operator is readily identified: since J, J t commutes with I, it is <C( I ,I) 
unitary, and so we have 

u = J jt 
X p (13.24f) 

Continuing with our discussion of the Heisenberg picture operators, the 
transcription of Eq. (13.23d) to the Heisenberg picture reads 

( I,JxH( t), K,11( t)) ( ¢ 11 (x, t), irH(x, t)) = ( ¢ 11 (x, t), iru(x, t)) ( I,J,H( t), K,H( t)) 

lnH(x, t)lt = nH(x, t) 

J,H(t)nu(x, t)l~11 (t) = K,H(t)nH(x, t)K~11 (t) = -nH(x, t) 

(13.24g) 

In other words, ¢H(~X', t) and irH(x, t) are formally real, and nH(x, t) is formally 
<C( I, I) imaginary, with respect to the Heisenberg picture left-acting algebra 
I,J,H(t), KxH(t), where 

( J (t) K (t)) = efl0 t(J K )e-ii0 t = e2ii0 t(J K ) = (J K )e-2ii0 t xH l xJ-1 X' X Xl X .n X 

( 13.24h) 

We note, finally, that the entire analysis readily generalizes to interacting scalar 
field theories. For example, the quaternionic embedding of the cp 4 model is given by 

H = I(Ho + V), (13.25a) 
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with cp(S!) the Schrodinger picture field operator of Eq. (13.20b) and g a 
dimensionless coupling constant. The calculation of Eqs. (13.24a-g) now gives 
the interaction picture for this model. The Heisenberg picture is defined by 
Eq. (13.24a), with fl0 replaced by the full Hamiltonian fl. The explicit 
transformation from Schrodinger to Heisenberg picture is now complicated, 
just as it was for the forced harmonic oscillator model discussed in Sec. 7.4, 
but since 

- t - .. 
J, HJ,- -·H (13.25b) 

we still have 

J,cp H(.Y, t)J~ = J, /It cp(.x)e-iit Jt 

= 1 . e{lt 1 t 1 A..(5:) 1 t 1 e-iit 1 t 
.\ X Xlj.l X _\ X 

(13.25c) 

and similarly for nH(x, t), a~11 (t), etc. Hence .l, continues to act as a quaternion 
unitary time reversal operator for the self-interacting scalar field. 

The next model to be brief1y discussed is the charged scalar field (Itzykson 
and Zuber, 1980, Sec. 3-1-3). One now introduces two Hermitian scalar fields 
¢ 1, ¢ 2 with canonical momenta n1, n2 and momentum space creation operators 

aL,, aift. The charged scalar field cp and its canonical momentum n are 

defined by7 

and the Hamiltonian is 

Ho = IHo 

Ho = r d 3
x! [nf + n~ + (':f,¢!)

2 + (':fx¢2)
2 + m2(¢T + c/J~l] .!v 

r d3x[ntn + (':f,cp)t. ':fxc/J + m2¢t¢] 
.fv 

Equation (13.20b) is now replaced by 

cp(i) = L N(p)(afte1P' + h};e-lft?) 
l 

n(.X) = -IL N(p)(hjJelf/v- a~e-lftv) 
Ji 

(13.26a) 

(13.26b) 

(13.26c) 

7 The minu< sign in the definition of n has its origin in the Lagrangian formulation of the charged scalar 
fleld and serves to make c/> and n obe] canonical commutation relations; sec Itzykson and Zuber (l980). 
Sec. 3-1-3. Eqs. (3-73) and (3·75). 
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where we have defined the creation and annihilation operators 

which obey the commutator algebra8 

[aF, aF'] = [hp, h1,.,] = 0 

[aft,hr·'] = [ap-,h~-,] = 0 

1 I 
[ali,aF,] = [h1y,hrFl = bftf!' 

(13.26d) 

(13.26e) 

Since the transformation from the operators a1i" a2fi to the operators ar·, hp 
involves I. the number of possible definitions of distinct left-acting algebras is 
increased: 

(i) We can apply the recipe of Eq. ( 10.8a) to auji, a~ 27. getting a left algebra 
I, 1;;, K; (with n an abbreviation for "neutral") obeying 

[u,J;.K;,),(a,2Jf·ai2r)J = O (13.27a) 

(ii) We can apply the recipe of Eq. (10.8a) to a
1
,, hft. a~. br., getting a left algebra 

I, 1;, K;, (with c an abbreviation for "charged") 6'beying 

( 13.27b) 

(iii) We can apply the recipe of Eq. (10.8a) to 

(13.27c) 

and their adjoints, getting a left algebra I, 1'~, K~ obeying 

(13.27d) 

and their adjoints. 

(iv) We can apply the recipe of Eq. (10.8a) to 

I 
Saii = V2 (af!- a_ ji) 

I 
.I!Jp = V2 (bf!- b_j!') (13.27e) 

' We omit wnting down exp1·essions that are the acljoints of the ones explicitly given. 
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and their ad joints, getting a left algebra I, 1~, K~ obeying 

J" ~ ct _ c , J"ct _ ~ x ap J, - Kxap '"x - a_P 

J'h~fi = Kch·K~·t = h ~ 
X p X X f' X -p (13.27f) 

and their adjoints. 

The action of these four left algebras on cp(i) can be inferred from Eq. (13.26c) 
and Eqs. (13.27a,b,d,f), giving 

1;cp(i) 1;t = K;cp(i)K;t = cpt( -x) 

J~cfJCf) J~i = K~c/J(x) K;,t = ¢( -x) 

J'~qJ(x)J~t = K'~c/J(x)K'~r = c/Jt (x) 

J~cfJ(x) 1~t = K~c/J(x)K~t = c/J(x) (13.28) 

In particular, we see that cp(x) is formally real [and, similarly, n(x) is formally 
<C( 1 ,!) imaginary] with respect to the left- acting algebra I, J~, K~. 

As our final example we consider a Dirac free fermion field (B1aizot and 
Ripka, 1986, Sec. 3.5b; and Itzykson and Zuber, 1980, Sec. 3-3). The Hamilto
nian for this theory is 

Ho = IHo, (13.29a) 

with i. and H the standard <C(l ,I) Dirac matrices, and with the Schrodinger 
picture Dirac fermion field operator t/J(x') and its adjoint t/1 1 U() given in terms 
of momentum eigenstate creation and annihilation operators by 

t/J(x) = :~::)2m) 1 1 2 N(p) [bl,u(j),s)e1P'" + d}_,v(p,s)e-lftv] 
ft.s 

(13.29b) 

Here hfJ. s and dp., are, respectively, the annihilation operators for a particle and 
an antiparticle of momentum p and spin projection s, h~ and d~ are the 
corresponding creation operators, and u(p, s) and v(p, s) afe 'the stari'd~rd posi
tive-energy and negative-energy free Dirac solutions introduced in Eqs. 
(11.77a,b), with i replaced by I. The creation and annihilation operators obey 
the canonical anticommutation relations 7 

{hf/.s•hft'.s'} = {hp.s,djJ' ,,} = {dp, 1 ,dp_,,} = 0 

{hps,dk, ,,} = 0 

{hp~_,.h~, ,} = {dp~. 5 ,d!, ,} = bp~p-''bss' p ,\ p .,\ (13.29c) 

from which again follow the canonical anticommutation relations for the field 
operators (for x, x' E V), 

(13.29d) 
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Substituting the momentum expansion of Eq. (13.29b) into Eq. (13.29a), the 
Hamiltonian becomes 

(13.29c) 

Again, these so far arc nothing more than a transcription of the familiar 
Dirac field formulas with the substitution i ___.,I. To introduce a quaternionic 
structure, we must adjoin to I the other bases of a left-acting quaternion 
algebra. The simplest way to do this is to apply the recipe of Eq. (10.8a), with 

the operators a) and aA identified respectively with h~.,,d~.s and hft.ndft_,. 
Labeling the resulting left-acting algebra I, lp, K1, we have 

at ···at IO)(i J. k)(Oia· ···a· 
A] A,\' ' ' 1.,\ I"] 

(13.30a) 

and by property (ii) of Eq. (10.9b), the creation and annihilation operators 

h~ s' d~.s' hft.s• dft .. 1 are formally real with respect to the algebra I, lp, Kp, 

[(f,lp, Kp), (h},, 4s' hp.s• dp,s)] = 0 (13.30b) 

This implies that JP and Kp act on tj1(x) as 

lpt/J(x)J~ = Kpt/J(x)K~ = 2_)2m) 112N(p)[hp.su'(p,s)e-1ftx + 4/(fJ,s)e1
fi'C] 

ft. s 

(13.30c) 

A second left-acting algebra, which we label I, J,, K,, can be formed in analogy 
with Eqs. (13.22b~e) by applying the recipe of Eq. (10.8a) to the combinations 
r 112(hft s + h-ft.J, T 1f2 I(hfJ.s- h_p. ,.), T 112 (dp_,s + Lft.s),.... This algebra 
acts on the momentum space creation and anmhilation operators as 

l,(hfi,, dfl, h},, d]1J J~ = Kx(hiJn dp_,,h};,, d1~)K~ = (h-p ,, d-p ,, bT_jJy d~fJ') 
(13.3la) 

and hence acts on tj1( .X) as 

J '''(~) 11 - K '''(~)KT - ""'(2 )1
/ 2N( )[h "( ~ ·) Ip·x t1 '( ~ ) -Ifi'] x'l' x x- <'I' x , - L m p fJ'.su -p .. 1 e + c jl .. ,v -p,s e 

(13.3lb) 

Using Eqs. (13.30c) and (13.3lb), it is straightforward to show that a quatcrnion 
unitary time reversal operator for the Dirac equation is obtained by replacing 
the standard complex antiunitary recipe (cf. &ec. 12.2) by lx,K,,lp, or Kp 
multiplied by suitable <C( 1 ,/) unitary operators. 

9 Note that in our conventions sis the spin projection on iJ/Iili. so time reversal reverses jJ but leaves s 
unchanged. 
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In discussing the scalar field, we saw in Eq. (13.28) that even in the charged 
field case, we can construct a left algebra /, J~, K~ with respect to which the 
charged field c/JU!) is formally real. We shall now show that this is not possible 
in the case of the fermion field. Specifically, we shall show (i) for the Majorana 
representation Dirac fermion field, postulating the existence of a J~ obeying 

{.1~,1} == 0, P,IO) = IO) j (13.32a) 

leads to a contradiction: and (ii) transforming to another complex Dirac repre
sentation by writing t/JM = Uct/Jc, with Uc a constant 4 x 4 <C(l. I) unitary 
matrix acting on the spinor indices, docs not improve things. It is natural to 
look first at the Majorana represcn tation fermion field because, as we have seen 
in Sees. 11.4 and 11.5, the quaternionic Dirac equation takes its simplest form in 
the Majorana representation. From the assumption that J~ anticommutcs with 
I, we have 

J c,1, (~) 1ct _ ""'(2 )l/2"'( '[Jc h· Jet * ( ~ ')"--//)·.\' 
x'I'Mx .,-L m !vp! ·' "·' xuwp,.lf 

jf.s 

(13.32b) 

where we use the superscript ' to denote the left-acting algebra complex conju
gation operation I----> -I. Now in the Majorana representation, the standard 
Dirac solutions UM and vM obey 10 

v'fvt(ii,s) = ((ji,s)u,,1(fi.s) (13.32c) 

with ((ii.s) a <C(l,l) phase factor. Substituting Eq. (13.32c) into Eq. (13.32b), 
invoking the assumption that J~ commutes with tfiM(x), which requires Eq. 
(13.32b) to reduce to Eq. (13.29b), and equating coefficients of the complete 
basis of Dirac equation solutions UM and VM, we get for each ji, s the single 
operator relation 

Jc h Jd =' t''*(p~. •·)dt. 
' X p .. l .\ ·• • J p .. l (13.32d) 

or equivalently, 

(13.32e) 

But applying Eq. (13.32e) to the vacuum state IO), and using the final assump
tion of Eq. (13.32a) (i.e., .!~IO) = IO)j), we get 

0 = ((ji, s) 1'~ hp-,siO) = d~ .1.:10) = dt. IO)f f! .. \ ' J!, .\ (13.32f) 

This is evidently a contradiction, since d~ IO) is a single-particle state of norm 
. fJ,\ 

umty, 

-
10 In a general Dirac representation, one has (lt7ykson and Zuber, 1980, p. 86) (u(p.s) •= C/ 1 •·(p.sr. 
with C the charge conjugation matrix and ( a complex pha,e. In the Majorana representation. C/T 
reduces to a complex phase times the unit Dirac matrix. giving Eq. (13.32c) rand also Eq. (12.56b)] of the 
text. 
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II d~ IO) II= (Oidr~. s di. IO) = (Oil - dt . dp~. ,10) = 1 
fJ.,I fJ.,\ fJ . . I (13 .32g) 

So we conclude that there cannot be a J~ obeying the three properties given in 
Eq. (13.32a). Let us next investigate the effect of transforming to a general 
complex representation of the Dirac matrices by writing 

t/IM = Uct/Jc (13.33a) 

If we postulate 

(13.33b) 

then by Eq. (13.33a) we must have 

(13.33c) 

The only way ~o avoid the contradiction of Eqs. (13.32d-g) is to arrange things so 
that J~ hji.s J~T maps back into some annihilation operator hfi',s'; to do this we 
must look for a relation between u'tvr(fi, s) and uM(j', s'), for some ji', s'. There is 
one such relation (Itzykson and Zuber, 1980, Sec. 3-4-3), 

(13.33d) 

with(' a phase and AM the time reversal matrix defined in Eq. (12.59a). But 
Eqs. (13.29b), (13.32b), and (13.33c,d) are compatible only if the matrix AM is 
equal to a phase times the matrix ( U c U~)*; this, however, is impossible, since 

(13.33e) 

implies that ( U c U ~)* is symmetric, whereas AM is skew-symmetric. Hence we 
still cannot satisfy Eq. (13.32a), even when t/1 M is replaced by some other 
complex Dirac representation field operator t/J c. 

By very similar reasoning, we can also show that we cannot construct an 
operator J~ that acts on the Dirac fermion field in the same manner as the 
operator J~ of Eqs. (13.27d) and (13.28) acts on the charged scalar field cp(x). 
That is, if we postulate the existence of a J~ obeying 

{1;,1} = 0, 1;1o) = IO)J (13.34a) 

we get a contradiction, as follows. From Eq. (13.29b) and the assumption that 
J~ anticommutes with I, we get 

.!'~t/J(x)J;t = 2)2m) 1
/
2N(p)[J;hp·.s J~tu*(ji.s)e-lf? + J~dL J~tv*(ji,s)/P-1] 

ft.s 

1j; 1 (x) = 2::)2m) 1
/
2 N(p)[h1~_,u*(ji,s)e- 1 l:i·"i + dji,J(ji, s)e1P"J (13.34b) 

Jl.s 
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wh1ch when equated require the conditions 

r h ~ rt - h1 
X p. \" X - f}.S' J n dt jnT _ d~ 

v ,, . ... - I' ,. ., p.s ·' "' (13.34c) 

These, however, again contradict the final assumption of Eq. (13.34a), together 

wi1h the facts that h1;_,. dp~.s annihilate IO), whde h~ IO) and dt, IO) are single-
P··' P··' 

particle states of norm unity. The contradiction evidently arises from the 
presence of the spinor solutions u( ji, s) and v( ji, s) in the eigenmodc expansion of 
t/t(.'!). If these spinors were replaced by unity, we could evidently satisfy Eq. 
(13.34a) by requiring J~hfts J~t = d-ft.s• which would be consistent with the 
vacuum structure of the theory and would be analogous to the relation 
.l'~ap J'~r = h_ii, which holds in the charged scalar case [cf. Eqs. (13.26d) and 
(13.27d)]. 

It is sometimes convenient to rccxpress the Majorana representation Dirac 
ft:rmion field 1/JM(.x) in terms of self-adjoint and anti-self-adjoint parts, by writing 

1/1 M (X) = ~ [ 1/1 M I (X) + lij; M2 (X) l 

1/JMI (.X)=~ ll/IM(x) + 1/Jit(x)J = 1/1~1 (.X) 

1/1 M2(x) = ~I [1/!M(x) - V' it(x)J = 1/1 ~2 (.X). (13.34d) 

The self-adjoint components 1/J Ml.2 arc called Majorana fermion field operators; 
when the Dirac solutions UM, VM are defined so that the phase ( ( ji, s) appearing 
in Eq. (13.32c) is unity, the Majorana fields lj1MI.2 have particularly simple 
expansions in terms of creation and annihilation operators, 

,,, ( ~) "'(2 )I/2N( ) [ r~ ") ,ffi.'{ t ( ~ ) -/ft.>?] 
'I' MI,2 x = L m p aup.suMIY··' c + al.2fi.sVM p,s e 

P··' 
1 

al~ =-(h" +d~) p.s yl2 p.s p,s ' (13.34e) 

Expressed in terms of 1/J Ml.2• the statement that Eq. (13.34a) cannot be satisfied 
is equivalent to the statement that there is no J~ which simultaneously obeys the 
three conditions 

{1~, l} = 0, J~IO) = IO)j (13.34f) 

as can also be proved directly from Eq. (13.34c). In other words, the Majorana 
fields 1/J Ml.2• although self-adjoint, cannot be assumed to be formally real with 
respect to any left-acting algebra I, 1~, K~ for which the vacuum IO) is an 
eigensta tc. 

13.3 OUATERNIONIC FREE FIELDS FORMED AS 
SUPERPOSITIONS OF FORMALLY REAL OR COMPLEX 
CANONICAL FIELDS 

We now turn to the question that, in one form or another, will be the focus of 
1he remainder of this chapter: How does one set up nontrivially quaternionic 
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relativistic quantum field theories? The simplest approach, which we pursue in 
this section, is to emulate the approach used in Eqs. (13.26a-e), where we 
formed a <C( I,/) complex (or "charged") scalar field as a superposition, with 
left-algebra-valued coefficients, of <C(l, I) real (or "neutral") scalar fields. We 
apply this method first to scalar fields, and then to fermion fields, analyzing in 
each case the problems that arise. 

A direct q uaternionic extension of the charged scalar field construction is 
obtained by introducing four independent Hermitian scalar fields 
cpA, A = 0, I, 2, 3, together with the corresponding anti-self-adjoint and self
adjoint canonical momenta irA and nA, which for each A obey the formalism of 
Eqs. (13.20a)-(13.23e). Thus the fields and momenta are given in terms of 
momentum eigenstate creation and annihilation operators a~ji and aAji by 

¢A(.?)= L N(p) ( aAftelf5? + a~j5e--Ij5i') 
ji 

nA(.\') = -InA(x) = -/)_;N(p)wr(aAji/P.'~- a~f5e- 1ft'), 
p 

A= 0, 1, 2, 3 

(13.35a) 

The creation and annihilation operators obey the canonical commutators 

A,A'=0,1,2,3 

(13.35b) 

so that (for .X, x' E V) the field operators obey the canonical commutation rela
tions for dynamically independent fields, 

[cpA(x), nA'(x')] = J(5AA'(5 3(x- X1
) 

[cfJA(x),nA'(x')l = -t5AA't53(.Y'-x') 

[¢A(x).¢A'(x')] = [nA(x),nA'(x')] = [nA(x),nA'(x')] = o (!3.35c) 

The Hamiltonian for the model is the sum of the Hamiltonians for the four 
fields individually [ cf. Eq s. (13 .20a,f )], 

3 

Ho = !Ho, Ho = L HoA 
A=O 

HoA = r d 3x![n~ + (\]x¢A) 2 + m2 ¢~] = Lwp(a~-aAji+!) lv - P p 

(13.35d) 

To establish a quaternionic structure, we introduce a left-acting algebra 
EA,A = 0, 1.2,3, 

Eo= I, EI =1, ( !3.36a) 

with f;, K~ constructed by extending the recipe of Eq. (13.27c) to the case of 
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four independent scalar fields. This gives 

which via Eq. (13.35a) implies that 

l~cpA(.i)J~.t = K1~rPAU!)K~t = rPA(.i) 

l'~irA(x)J~.t = K~~.irA(x)K'~.t = irA(x) 

J'~nA(.i)l 1~t = K'~nA(x)K'~t = -nAU:); 

423 

(13.36b) 

(13.36c) 

in other words, cpA and irA are all formally real, whereas nA are all formally 
C( I, I) imaginary. 

Let us now introduce a quaternionic field cp and quaternionic momenta nand 
iT, with 

n =-In (13.37a) 

and with cpA and irA respectively the formally real components of cp and ir in the 
sense of Eqs. (2.llc,d), 

3 

c/J = c/Ja + L c/JAEA, 
A=l 

A, B = 0, I, 2, 3 

Since rPA = cp~, we have 

3 

ir =ira+ LTtAEA, 
A=l 

3 

cpt = c/Ja- L ¢AEA, 
Aoo I 

and since ir~ =-irA, we similarly have 

3 3 

irt =-ira+ L irAEA, 
A=l 

-t- "'-2 n n=- LnA 
A=a 

Finally, since nt = irt/, we have 

3 3 
t -t- ,, ·-2 2:::: 2 n n = n n =- J nA = nA 

'-" A=a A=O 

(13.37b) 

(13.37c) 

(13.37d) 

(13.37e) 

Hence the self-adjoint Hamiltonian Ha of Eq. (13.35d) can be rewritten entirdy 
in terms of quaternionic field quantities as 

(13.38) 

giving the simplest example of a bosonic model constructed from quaternionic 
superpositions of formally real field components. 
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We proceed now to make a number of remarks concerning this construction. 

(I) Although the anti--self-adjoint momenta nA are, by construction, the 
formally real components of n with respect to the left-acting algebra EA, the 
self-adjoint momenta nA. which are <C( I, I) imaginary. are not the formally 
real components of n. The formally real components of n can be computed 
from Eqs. (13.37a,b) as follows: 

(2) Although the formally real components cpA and nA satisfy the canonical 
commutation relations of Eq. (13.35c), the quaternionic fields cp and n 
behave like the quasiparticle operators studied in Sec. 10.2 and do not obey 
canonical commutators. Computing their commutators from Eqs. (13.35c) 
and (13.37b), we find 

3 

[ ¢(.?)' cp(x') l = 2 L rp A(.?) cp B(x')tABch'c 
A B.C·. I 

3 

[rr(x), rr(.?')] = 2 L nA(x)nn(.X')r:ABcEc 
A.B.Cc I 

3 

[(/J(x),n(~?')]=26\?-.?')+ L {cfJA(.i),irB(x')}i;ABcEc (13.39b) 
A.B.C·I 

(3) Although Ho in Eq. (13.38) is expressed in terms of quaternionic quantities, 
the fact that it can be rewritten, using Eqs. (13.35a,d), as 

( 13.39c) 

means that it is formally real. and so flo = IH0 is formally C( I, I) imagin
ary. Hence the model of Eq. (13.38) is just the quaternionic embedding of a 
complex quantum field theory, following the simplified recipe of Eqs. 
(13.18a-c) and does not constitute a nontrivially quatcrnionic quantum field 
theory. The complex quantum field theory leading to the Hamiltonian of 
Eq. (13.35d) can be derived from the Lorentz invariant classical Lagrangian, 

3 

Lo = L LoA 
A=O 

LoA= j~ d 3x(-~)(iJ11 cpA[JI'cpA +m2 cp~), (13.40a) 

with cpA (.X, t) a real classical field. Introducing a classical quaternionic field 
(i.e., a quaternion over the right-acting scalar algebra I, iJ k) 
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3 

cp(x,t) = ¢ 0(x,t) + 2:eA¢A(x,t) (13.40b) 
A""l 

the Lagrangian ~f Eq. ( 13.40a) can be rewritten in terms of cp and its quater
nion conjugate ¢, 

( 13.40c) 

Despite the appearance of the quaternion ¢, all quaternionic structure 
cancels out of Eq. (13.40c); the Lagrangian Lois a real-valued functional of 
the real functions ¢A, and its quantization by the standard canonical or path 
integral methods leads to a complex quantum field theory. This statement 
continues to be true when interaction terms are added to L 0 , as in the 
Lagrangians constructed above in Sec.l2.2. 

(4) So far we have worked in the Schrod.inger picture. To transform to the 
Heisenberg picture we use Eq. (13.24a), giving for the field operator cp 

- - 3 

¢H(.?, t) = en° 1cp(x)e-Hot = rPoH(x, t) + L rPAH(x, t)EAH(t) 
A=l 

with 
- -

EAu(t) = eHot EAe-Hot 

(13.4la) 

(13.4lb) 

Since Ho is <C( 1. I) imaginary, we find, as in Eqs. (13.24c) and (13.24h), that 

EIH(t) = £1 = l 

Eui(t) = e2iiot E2 = E2e-2Ii0 t 

E3H(t) = e2Hot £3 = E3e-2ifot; (13.4lc) 

that is, the Heisenberg picture left-acting algebra elements E2Ji, E3H are time 
dependent. The field components cp AH(x, t) remain dynamically independent, 

(13.4ld) 

and, of course, are formally real with respect to the algebra EAH(t), 

(13.4Xe) 

Suppose now that we expand cp H(x, t) on components that are formally real 
with respect to the t = 0 left-acting algebra E A, 

3 

cp H(.?, t) = L cp H(.?, t) AEA' (13.42a) 
A=O 

We shall now show that the components cp H(x, t) A are not dynamically 
independent, 
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(13.42b) 

The simplest way to see that some of the commutators of Eq. (13.42b) are 
nonzero is to rewrite Eq. (13.42a) in symplectic form, 

r/Ju(x. t) = (/Ju(.'Z, t)u. + E2cfJuUf!, t) 13 

(P uC'Z, tL_ = c/J JJ(.?, r)o + Icp uC'Z, r) 1 

c/Ju("?, t) 11 = ¢H(x, th ~ h/Ju(.'Z, t)o ( 13 .42c) 

and to note that if the commutators of Eq. (13.42b) were all zero, then the 
commutator 

(13.42d) 

would also vanish. However, since ii0 is <C( I. I), the symplectic components 
cfJH(x. tL..r1 are easily computed, using Eq. (13.4lc), to be 

¢HUZ. t)~ = cjJ 0u(x. t) + hp 111 (5!, r) 

cpH(_'(, t)(i = e- 211
0

1[cp2H(x, t) ~ /cp3H(_'(, t)] ( 13.42e) 

and these evidently do not commute because of the H0 appearing in 
c/Ju(x, t) 11 . The moral is that when the Heisenberg picture operator ¢H("?, t) 
is expanded on formally real components with respect to a given left algebra 
basis, we cannot assume hoth that the formally real components are dy
namically independent and that the left algebra basis elements are time 
independent, although (with different basis choices) we can achieve one or 
the other of these conditions. 11 

(5) Because the component ¢0 is self-adjoint, the field cp is neither self-adjoint 
nor anti-self-adjoint. However, we can readily construct an anti-self-adjoint 
field cp = ~ cp r in the form 

with 

3 

c/J = 4Jo + L cfJAEA 
A -I 

( 13.43a) 

A = 1, 2, 3 (13.43b) 

The field 7{! 0 and its anti-self-adjoint canonical momentum ir,~0 now have the 

11 Failure to pay atlenlion lo these subllelies readily leads to apparent paradoxes. For example. lel 
us sel </Jo = 0, so that <P ~-<Pi, which (wilh a clot clenoling time differentiation) implies rp = -<~ 1 . 
Assuming dynamically independent ¢A's obeying Heisenberg picl ure commulalion relations. and 
lime-independent E.; 's, v,e have 

3 3 ] 3 

rpc• L¢AFA -· LnAEA = 2:--lir;FA ~ LirA(--IF;) -=ir1 -ir2£1 +ir3E2 
A-1 ·1--1 A--1 A-1 

which is the sum of an anli-self-adjoinl term (ir,) and a self-adjoinllerm (-·ir2E1 , ir1E2), contradicting 
(p -~ -¢' 
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following expansion in terms of momentum eigenstate creation and annihi-
1 . 12 
atwn operators, 

¢o(.X) = LN(p)(aoftiP'·"'<- a6fte-Iji>C) 
p 

ic- (.X) =I" N(p)w (a0-e1fi-'< +at -e-Ifi'i') <Po L P P Op 
ji 

and still obey 

(13.43c) 

(13.43d) 

with the operators aAfi and EB for A, B = 0, 1, 2, 3 still obeying Eqs. (13.35b) 
and (13.36b). The Hamiltonian construction, of course, will be altered from 
that of Eq. (13.38). These comments will be relevant when, in subsequent 
sections, we consider the anti-self-adjoint quaternion connection B11 and 
imply that the formally real component of B11 (with respect to a chosen left 
algebra basis) need not vanish. 

We turn our attention next to fermion fields. If we were to follow the proce
dure used in the boson case, we would introduce four independent (i.e., 
mutually anticommuting) canonical self-adjoint Majorana fermion fields 
r/1 M A (.X), A = 0, ... , 3, defined as in Eq. (13 .34e ), construct a left -acting algebra 
£ 1 '= I, E2 , £ 3 with respect to which these are formally real, and then define a 
quaternionic Majorana representation fermion field 1/JM(x) as 

3 

1/1 MC'?) = 1/1 Mo(i) + L EA!/J.wA (.X) ( 13.44a) 
A=l 

However, the analysis leading to Eq. (13.34f) tells us that this is not possible: 
There is no definition of £2 that has the vacuum as an eigenstate, that anti
commutes with I, and that commutes with either a canonical Dirac fermion field 
or its self-adjoint Majorana field components. In other words, the canonical 
fermion field lj1MAUZ) defined by specializing Eq. (13.29b) to the Majorana 
representation behaves as an irreducibly formally <C( I ,I) object. Thinking back 
to the symplectic representation of Eqs. (1.23a,b), this suggests that we intro
duce two independent canonical Dirac fermion fields 1/J Mx (.X), 1/J Mfi (.X), 
construct a left-acting algebra £ 1 = I, E2, £ 3 with respect to which these are 
formally <C(l, I) (which we have seen we can do), and then define a quaternionic 
Majorana representation fermion field as 

The left-acting algebra can be conveniently constructed to act on hcx,fJfi,s and 
dx,{Jji.s either as 

12 Equation (13.43c) is obtained from Eq. (13.~5a) by defining <~ 0 (-'?) = I</>oJ<;;,
0
(x) =-!no, and by 

redefining Iaoji and - Iabji to be the new aoji and ab
1
,-, which are used to construct the left-acting algebra by 

the recipe of Eq. (10.8a). 
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( 13.44c) 

or as 

( 13.44d) 

[these two cases were denoted by the respective subscripts p, x in Eqs. (13.30a)
(13.31 b) of the preceding section], but we have seen that there is no definition 
that obeys 

( 13.44e) 

Let us now examine the structure of the energy and momentum operators, 
for the field given by Eq. (13.44b). For the first quantized Majorana repre
sentation Dirac equation studied in Sec. 11.4, the anti-self-adjoint energy and 
momentum operators are given by 

-r a 
p ="' f ux 

(13.45a) 

with the matrix ifJM real. Hence in the second quantized case it is natural to 
define the energy and momentum operators by 

p0 = r d3xt/fttCx) (ta~ !Claf + i#Mm)' t/IM(x) 
.!v l=l uX 

fJt = fv d3xt/Jtt(x) a~tt/IM(x) (13.45b) 

These are readily evaluated for the field t/J M defined in Eq. (13.44b ); because 
Eq. (13.44e) is not valid, the E2 terms do not cancel (as they do in the corre
sponding first quantized case, where j t/J~ .J = t/J fi does hold), and making use of 
Eq. (13.32c) and standard properties of the Dirac solutions uM and VM,

13 we 
get 

All= LPil(b~ji, ,hxji,s ~ dajJ, ,d~ji.s + h}fi.shfJjJ,s ~ dfijJ,sdt,) 
ji\ s 

Ell= LPil((ji, s)(h~jJ,sd1±jJ.s ~ dxji shfJ±jJ.s ~ h}p,sd!±ji,s + dfJp',sha±jJ,s) (13.45c) 
p. s 

In this equation, ((ji, s) is the phase defined m Eq. (13.32c), the ±ji in Ell 

"ln deriving Eqs. (13.45c) and (13.46d), we use the Dirac spinor orlbogonalily formulas (valid in a 
general complex Dirac represenlalion) 

ul(j],s)v(-p,s') = 0 
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corresponds to the ±p on the right-hand side of Eqs. (13.44c,d), and p0 = Wp· 

Because £ 1 (which equals I) and £3 anticommute, Eq. (13.45c) implies that 

[ -O -£] o,f Q p ,p . 

violating the Poincare algebra of Eq. (12.65b). 14 

(13.45d) 

An alternative approach to constructing a quaternionic fermion field is 
motivated by the observation of Eq. (11. 77c ), that the negative-energy solutions 
of the free Dirac equation can be reinterpreted as positive-energy solutions 
residing in the fi-symplectic component of the wave function. We shall discuss 
two different ways of implementing this observation, that agree on the zero- and 
one .. particle sectors, but differ on sectors with two or more particles. In the first 
of these, we assume that just as using the standard <C( I, i) set of positive- and 
negative-energy Dirac solutions given in Eq. ( 11. 77b) corresponds to defining 
the Majorana representation fermion field operator by 

t/JM(x) = L)2m) 112N(p)[hji.suM(P,s)e1fi.x + dJ,vM(p,s)e-Ifix] 
ji, s 

( 13.46a) 

so using the quaternionic set of positive-energy Dirac solutions given in Eq. 
(II. 77c) should correspond to defining the Majorana representation fermion 
field operator15 by 

t/J M(x) = ''f) 2m) I / 2N(p) [hji 1UM(i}, s) + d±ji 5 VM (j}, s)£2]/ jix 
ji. s 

(13.46b) 

Here the+ or- sign is to be chosen according to whether £ 2 acts as lp of Eq. 
(13. 30b) or lx of Eq. (13.31 a), that is, corresponding to the sign appearing in the 
relations 

(13.46c) 

What we have done in Eq. (13.46b) is to place the particle annihilation opera
tors in the a-symplectic component of~· M(x), and the antiparticle annihilation 
operators in the {3-symplectic component. Substituting Eq. (13.46b) into the 
expressions for the energy and momentum operators given in Eq. (13.45b), we 
find the formula 13 

p11 = Llp11 (h}.shfis + E~d~ji.sd±fi.sE2) (13.46d) 
p-, s 

14 There is a way to avoid this difficulty. but it is not an appealing one. This is to construct the lields ljl M> fi 
using a left algebra element I' instead of I. with I' commuting with the algebra EA. This requires eith~r 
introducing complexifted quaternions, as in Govorkov (1987). or doubling the dimensionality of Hilbert 
space by introducing a doublet vacuum. on which / 1 acts as the real matrix i2 of Eq. (2.88c). giving a field 
theory structure analogous to the semirelativistic wave equation discussed in Sec. 11.7. 
15 Because £ 2 appears in Eq. (13.46b) ordered to the right, Eqs. (13.46b-d) and (13.47a--d) generalize 
immediately to a general complex C \I, I) Dirac n:presentation obtained by left multiplication [d. Eq. 
(11.70a)] by a C(I.l) 4 x 4 matrix U c acting on the spinor indices. 
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which by Eq. (13.46c) reduces to 

jY' = "'""""' I pi' ( bt. .hp·. ,\ + d t. .djl. I) L P-·' P·-' . 
( 13 .46e) 

j). s 

We now find that 

(13.46f) 

so there is no problem with Poincare invariance. Moreover, comparing with Eq. 
(13.29e ), we see that the infinite vacu urn energy term 'L-F. s ( -wp), which arises 
when the field operator has the standard <C( I ,I) form of Eq. (13.46a), is absent 
when we instead use the quaternionic field operator of Eq. (13.46b ). 

Again using the superscript * to denote the left-acting algebra complex 
conjugation operation I---> -I induced by E2, that is [cf. Eq. (13.46c)], 

I* E~IE2 =-I 

hj,,, E~hjJ,E2 = h±jJ.s 

dft,s- Eidji,sE2 = d±J),s, (13.47a) 

we write the symplectic decomposition of the field t/JM of Eq. (13.46b) in the 
form 

with 

t/!Mrx(x) = L(2m) 112N(p)hJ).,uM(fJ,s)iF·i 
Jl. s 

t/l*wtfi(x) = L(2m) 1 1 2 N(p)d±J).sVM(fJ,s)e~!JL< 
ji,s 

(13.47b) 

(13.47c) 

By a simple calculation, 16 we find that the anticommutator algebra obeyed by 
the symplectic components t/J Mrx,fi (x) of Eq. (13.47c) includes the relations 

(13.47d) 

16 In deriving Eq. (13.47d), we use the Dirac spinor spin sum formulas (valid in a general eomplex Dirac 
representation) 

'\" .• t .• _ _ Wp + i- jJ + fim 
L,u(p,s)u (Ju) --~~-. 

' 



QUATERNIONIC QUANTUM FIELD THEORY 431 

Here P +and P_ are the projectors (corresponding, respectively, 16 to the positive
energy and negative-energy sectors of the complex Dirac equation) defined by 

P ( ~- ~r) _ "'-1- Wp± (YM·fJ+f3"Am) ,li>(¥-.Y.') 
±X X -L 1 E 

fi (2n) 2wp 
(13.48a) 

which obey 

ld 3 'P(~ ~')P(~' ~11 ) P(~ ~") X ~ X - X ± X - X = ± X -- X 
.v 

Pt-(Y- .?') + p- (.'!-.X') = L _1_3 /P (''-'!') = 63(.?- ~?'), 
jJ ( 2n) 

.x . .x' E v 

(13.48b) 

The anticommutator algebra obeyed by the quaternionic field t/J M of Eq. 
{13.4 7b) is noncanonical in structure and cannot be simplified beyond the 
following form: 

{t/J.w(-Y). t/IM(x')} = {t/IM~(.?). t/!Mfi(-y')£2} + {t/!Mfi(.Y)£2, t/JM,(~Y')} 

+ {tf;'Mfi(.?)£2. t/I'MfiCi')E2} 

{ t/l.w (.\'), t/1 :wC"'l} = P + (-"- -"') + { t/1Mfi(5!.) £2. t/1~" (."')} 

+ {tf; M"(-?), -E2t/J~r/-Y 1 )} 
,1,x (~),,,*r (~') E ,1,*t (~')'''' (~)£ +'1-'MfiX '1-'Mf!X - •2'1-'MfJX '1-'MfiX 2 ( 13 .4~c) 

However, if we define a trace over the left algebra 1, £1, £ 2 , £ 3 as in Eq. ( 1 0.19d), 

tr EO= !(O- £10£1- E20E2- E30E3) 

then we find from Eqs. (13.47d) and (13.48b,c) that 

- {·'·· (-~) ,,,t (~')} .d(~ ~') tiE 'I'M' X , 'I'M X = o X - X , 

where we have used the facts that 

tr£(£20) = trL(0£2), any 0 

trt:(E20c) = 0, Oc E <C(l, EI) 

(13.48d) 

( 13.48e) 

(13.48f) 

Similarly, when acted on by tr 1,, the boson field commutators of Eq. (13.39b) 
also assume a canonical form. 

Since the Hamiltonian or energy operator p0 of Eq. (13.46c) that we 
obtained by taking t/J M as a quaternionic superposition of "half-fields" docs 
not have the same spectrum as the canonical fermion Hamiltonian of Eqs. 
(13.29a,e), it is clear that the operator t/lsuperposition defined by Eq. (13.46b) 
is not simply a unitary transformation Ut/Jcanonical ut of the canonical 
fermion operator t/Jcanonical defined by Eq. (13.46a). We have not been able 
to determine whether the operator of Eq. (13.46b) can be obtained as a 
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bi unitary operator gauge ,transformation of the canonical fermion operator 
of the form Ut/JcanonicaiU

11
, with independent unitary U and U'; if not, the 

half-field superposition construction is essentially ad hoc and unlikely to be 
relevant. We now return to the starting point for this discussion, which was 
the observation that the negative-energy solutions of the free Dirac equa
tion can be reinterpreted as positive-energy solutions residing in the P
symplectic component of the wave function, and give a second Fock space 
implementation of this observation based on a unitary operator transfor
mation of the canonical fermion field. To keep the formulas concise, let us 
define number operators Nhji ,, Ndji.s, Nh, Nd, and Np by 

ji, s ji. s 

NF = Nb + Nd (13.48g) 

In terms of these, let us define a quaternion unitary operator U by 

U =IT [(d}JE2 + dji.J)( -l)Nr~N"'' '] (13.48h) 
ft. s 

which acts on I as 

UIU 1 = I(-i)N" J ( 13.48i) 

and which acts on t/t canonical as 

Ut/JcanonicaiUt = t/Jcanonicadi--> J, bii.s--> hp.s, d}J.s--> dji,5 £2]. (13.48j) 

Corresponding to these formulas, the canonical Hamiltonian of Eqs. (13.29a,e) 
transforms into 

ul)__:J wp[hLhj/.s- dji,sd~. ,] ui = IL Wp( -I )N"[NbjJ,s- Ndp',sl· (13.48k) 
P.s jis 

which on the vacuum (NF = 0) and one-particle (NF =I) sectors is the same as 
the p 0 given by Eq. (13.46e ), that is 

ILwr[Nhjis + Ndf/,] 
ji, s 

(13.481) 

However, on sectors with NF >I, the Hamiltonian of Eq. (13.48k) and the 
Hamiltonian of Eqs. (13.46e) and (13.481) are no longer the same. 

To summarize, we can form quaternionic free fields that arc consistent with 
relativistic invariance by taking quaternionic superpositions of canonical fields 
in the boson case, and of canonical "half-fields" [the positive- and negative
energy parts of standard C( I, I) canonical fields] in the fermion case, or by 
making a qua ternion unitary opera tor transformation on the standard C( I , I) 
canonical fermion field. Except in the latter case, the quaternionic fields do not 
obey canonical commutation or anticommutation relations, so a generalization 
of these will be needed for a full-fledged quaternionic dynamics. Also, the free 
field constructions of this section give Hamiltonians p 0 that are still C( I, I) in 
form, and so we expect the inclusion of interactions to play a crucial role in 
achieving a quantum field theory with a nontrivial quatcrnionic dynamics. 
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13.4 OUATERNIONIC IRREDUCIBLE REPRESENTATIONS OF 
COMPACT GROUPS 

433 

As a preliminary to the introduction of quaternionic field interactions, we 
examine in this section the symmetry transformations that can act on spin-0 
boson and spin-1 /2 fermion q uaternionic fields (higher spin cases are direct 
extensions of these two). In complex q uan1 urn field theory, two types of 
continuous symmetry groups play a role as in variances of the dynamics: the 
noncompact Poincare group of space--time symmetries, and various compact 
"internal" symmetry groups, the generators of which commute with the Poin
care generators. Our first observation is that if we restrict ourselves to an 
analysis of continuous symmetries acting on the local quantum fields, this clas
sification carries over directly to the quaternionic case. To see this, we refer to 
the Poincare generators for spin-0 and Dirac spin-1 /2 fields, which were ex
plicitly constructed in Sec. 12.3. The spin-0 generators, considered as differential 
operators acting on the fields, are [cf. Eqs. (12 .. 64a,b)] 

- a a 
M 11v = x11 -~- xv -a 

ox" xf1 
(13.49a) 

These are all real and are all proportional to the unit operator I in Fock space; 
hence they commute with any set of generators G0 of a compact internal 
symmetry group, which are coordinate independent but can otherwise have 
arbitrary quaternionic and Fock space operator structure. Similarly, the Dirac 
spin-! /2 generators, when specialized to the Majorana representation, are [cf. 
Eq. (12.65c)] 

- [) 
p/1 = '~ f1 ' uX 

Now from Eqs. (11.78b) and (11.65c), we have 

(13.49b) 

Ylt = f3 M = C( 1, i) imaginary, Yit = /1 Ma;l1 = C( 1, i) imaginary, f! = I, 2, 3 
( 13.49c) 

and so [y Mf1, y Mvl is real. Hence the spin-! /2 generators of Eq. (13.49b) are also 
real and proportional to the unit operator in Fock space and commute with any 
set of coordinate-independent generators G.7 , irrespective of their quaternionic 
or Fock space operator structure. 17 Thus in both the spin-0 and spin-1 /2 cases, 
and for higher spin as well, we can introduce internal symmetry transforma-

17 In the general representation G of the Dirac matrices defined by Eq. (11.70a), we have 

[ " ., J -- n- I ['" .. ] [I 
i(/tl' IG\' - Vc; I Mp• ''\1\' 1 G 

and so commuting with 

. -1 
fAG.=UceAUc 

we get 

[b·c1,. )'c,.], e AG l = U(,
1 [iYM1,. )'M,.j, eA l Uc = 0 

Hence the G-representation spin-1/2 Poincare generators of Eq. (12.65c) commute with generators G,c;, 
constructed from G, by replacing the quaternion units e A by their Dirac matrix generalizations e AG· 
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tions, potentially with quaternionic structure, that arc completely independent 
of the Poincare transformations. This should not really be a surprise, since we 
have already seen in Chapters II and 12 that we can construct nontrivial clas
sical wave equations for spins 0, I /2, and 1 that have nontrivial quaternionic 
gauge symmetries that respect the Poincare group transformation properties of 
the fields. 

Let us next consider the group representation content of the quantum fields. 
In Sec. 12.3 we analyzed the quaternionic representations of the Poincare group 
and concluded that, at least outside the zero-energy sector, all quaternionic 
Poincare group representations are transformable to complex representations. 
Hence nontrivial quaternionic physics cannot arise solely from the implementa
tion of Poincare invariance in a quaternionic Fock space. When we turn to 
possible compact internal symmetry groups, the situation is quite different. As 
we have seen in Sees. 1.4, 12.1, and 12.2 (and as discussed in detail in Sec. 1 f.3 of 
Horwitz and Biedenharn, 1984), a local implementation of the quaternion 
automorphism transformation qJ --> wqJ w, jwj = I is equivalent, at the classical 
field level, to a local gauging of the rotation group S0(3) :::-: SU(2), and simi
larly, a local implementation of the two-sided transformation 
cp --> wcp w', jwj = jw'j = 1 is equivalent, at the classical field level, to a local 
gauging of the group S0(4) ~ SU(2) x SU(2). The complex irreducible repre
sentations of the rotation group are well known; the smallest nontrivial complex 
irreducible representation is the two-dimensional spin-1 /2 or doublet repre
sentation. When we allow quaternionic generators, however, there is a smaller 
nontrivial spin-! /2 representation, the one-dimensional irreducible representa
tion with the generators given in Eq. (12.78b). Since we have just seen that 
quaternionic internal generators Ga commute with the Poincare generators for 
spin-0 or spin-! /2 Dirac fields, we conclude that gauging the one-dimensional 
quaternionic irreducible representation of SU(2) is compatible 11'ith Poincare 
invariance and offers the possibility o{ new, intrinsically quaternionic quantum 
field theories that cannot he equivalent to existing complex quantum field theories. 

The simplest example of an operator transforming according to the one
dimensional quaternionic irreducible representation of SU(2) is the annihilation 
operator b for a single fermion degree of freedom. The Hilbert space acted on by 
this operator (i.e., Fock space) contains two orthonormal states, jO) and jl), with 

bjl)=IO), bljo)=ll) ( 13.50a) 

that is, h and bt have the explicit representation in terms of bra and ket states 

h = IO)(ll, bt=ll)(O/ (13.50b) 

From Eq. (13.50b), we can verify the standard anticommutation relations, 

b2 = jO)(ljO)(lj = 0, 

b1b + bbt = jl)(OIO)(lj + IO)(ljl)(OI = ll)(lj + IO)(Oj = 1 (13.50c) 

with I the unit operator in the two-state Fock space. Let us now introduce the 
right-acting algebra of quaternion scalars l,eA obeying Eq. (1.8b), and the 
corresponding left-acting operator algebra 1, EA constructed by the recipe or 
Eq. (10.8a), 
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(13.5la) 

with respect to which h and ht are formally real, 

A= 1,2,3 (13.5lb) 

The generators -! EA are the left algebra counterpart of the generators -! e A, 

which we have seen in Eqs. (12.78a,b) form a one-dimensional quaternionic 
representation of the rotation group. Consider now the "charge" operators 

(13.5lc) 

which under commutation obey the SU(2) Lie algebra 

Under commutation with the annihilation operator h, the charge operators act 
as 

(13.52b) 

showing that the annihilation operator h transforms as a basis for the one
dimensional quaternionic representation of SU(2). Correspondingly, under 
commutation with the creation operator h'~, the charge operators act as 

( 13.52c) 

Before leaving this example, we emphasize that Eqs. (13.52a-c) arc precise 
quaternionic analogs of the standard group generator commutation relations in 
complex quantum field theory. In the complex case, let ! r a, a= I, ... , N, be a 
set of n x n complex self-adjoint generator matrices that obey a Lie algebra 

.v 
[

I I ] .\.-' · I 
2 r a' 2 r" = l 2__, f abc 2 r c (13.53a) 

c=I 

withfabc the Lie algebra structure constants. Similarly, let he,h~, € = l, .... n, be 
the annihilation and creation operators for n independent fermion degrees of 
freedom, which obey 

(13.53b) 

Then using the fact that the matrix elements (!fa)£
111 

are commuting complex 
numbers, one finds from Eq. (13.53b) that the anti-self-adjoint charge operators 

( 13.54a) 



436 RELATIVISTIC QUA TERNIONIC QUANTUM MECHANICS 

obey the Lie algebra 

( 13.54b) 

which is analogous to Eq. (13.52a). Similarly, commuting Qa with he and h~, we 
get 

( 13.54c) 

which are analogous to Eqs. (13.52b,c), and show that hp (and correspondingly 
h;) is a member of ann-dimensional basis transforming under the group repre
sentation with n x n matrix generators ~ r a. Since in the complex case the 
commutator of any two I x I matrices vanishes, Eq. (13.54b) holds with 
nonzero structure constantsf~hc only for n :2: 2; the appearance of a nontrivial 
one-dimensional irreducible Lie algebra representation, as in Eq. (12.78b), is 
peculiar to the quaternionic case. We note, finally, that the complex example 
just given has the same Lie algebra commutator structure, irrespective of 
whether there is one or there are many degrees of freedom. On the other hand, 
the quaternionic example of Eqs. (13.50a)-(13.52c) is special to one degree of 
freedom. To see this, let us attempt to generalize Eqs. (13.51 b)-(13.52c) to n 
independent fermion degrees of freedom, by writing 

( 13 .54d) 

As before, the left-acting operator algebra I, EA is constructed by the recipe of 
Eq. (10.8a), so that ht and hl are formally real with respect to this algebra, 

(13.54e) 

From Eqs. (13.54d,e), we find by some simple algebra, 

(13.54f) 

which are analogs of Eqs. (13.52b,c) and (13.54c). However, for the commutator 
[QA, Q B] we find 

(13.54g) 

which docs not have the Lie algebra structure of Eqs. (13.52a) and (13.54b), 
because of the presence of the final term on the right, which is quartic in the 
fermion operators. Only when n = 1 does the quartic term vanish, in which case 
Eq. (13.54g) reduces back to Eq. (13.52a). We shall see in Sec. 13.5 that the 
generalization of Eq. (13.52a) to many degrees of freedom becomes possible 
when we replace the commutator algebra of charges by a Lie algebra of total 
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trace: generators under a generalized Poisson bracket operation [cf. in particular, 
Eq. (13.74e)]. 

As we have already noted in footnote I 0 of Sec. 3. 5, a systematic analysis of 
the occurrence and structure of quaternionic irreducible representations of 
compact Lie groups exists in the literature We give now some of the details, 
following the treatment of Finkelstein, Jauch, and Speiser (1963). Let D = { U} 
be any <C( 1, i) irreducible representation by unitary matrices of a compact Lie 
group; since I, i are clements of the quaternion algebra, D is evidently a 
quaternionic representation as well. One can now pose the question of whether 
D is also an irreducible quaternionic representation, and if not, how it decom
poses into quaternionic irreducible representations. The answer to this question 
involves the Fro bcni us-Schur (1906) classification of complex irreducible 
representations, according to which D must lie in one of three classes: 

(i) D is said to be in class +I if there exists a symmetric matrix C, C = C r, 
such that 

(ii) 

(13.55a) 

for every matrix U ED. 

D is said to be in class -I if there exists a skew-symmetric matrix C, 
C = -Cr, such that Eq. (13.55a) holds for every U c D. 

(iii) Dis said to be in class 0 if there exists no matrix C for which Eq. (13.55a) 
holds. 

[A fourth possibility, that Eq. (13.55a) holds for a matrix C of mixed symmetry, 
can be shown not to occur; that is, Eq. (13.55a) implies that Cis symmetric, skew
symmetric, or zero.] The Frobenius-Schur classification determines the relation
ship between the representation D and the complex conjugate representation 
D* = { U*}: If Dis in class 9, D and D* are not equivalent, that is, there is no 
unitary Vsuch that D' = VTDV; if Dis in class +1, D and D* are equivalent to 
each other and to a real representation; and if D is in class -I, D and D* are 
equivalent to each other but are not equivalent to a real representation. 

The answer to the irreducibility question can now be stated as follows: If Dis 
an irreducible complex representation in class +I or class 0, it is automatically 
an irreducible quaternionic representation as well. However, if D is an irre
ducible complex representation in class ·-1, it is reducible to two equivalent 
irreducible quaternionic representations D1 and D2 , 

(13.55b) 

We omit the proof in the class + 1 and 0 cases but give now the explicit 
construction (from Finkelstein, Jauch, and Speiser, 1963) that establishes red u .. 
cibility for the case of Din class -1. According to Frobenius and Schur (1906), 
a representation D in class -1 consists of 2m x 2m matrices for some intr-ger 
m :2: 1 and can be transformed so that C assumes the canonical form 

C = ( 
0 - I ) = i, 1ZJ I 1 0 ~ 

(13.56a) 

with i2 the 2 x 2 matrix of Eq. (2.88c) and 1 them x m unit matrix. Let R now 
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be the unitary 2m x 2m matrix 

1 ( I 
R = J2 -j (13.56b) 

which diagonalizes jC, 

(13.56c) 

and let U E D be the 2m x 2m C( I, i) matrix 

(
a y) u = f3 b (13.56d) 

with a, fJ, ;'. (5 four m x m C( I, i) matrices. From these expressions we can eval
uate the matrix Rt U R, 

Rt U R = ~ ( 1 j) (ex I') ( 1 -j) 
2.Ji f3b -.J 1 

I ( ex+j/3-(}-jbj -aj-jf3J+r+Jb) 
= 2 ja - jyj + f3 - bj -jexj + jy - fJj + b 

1 (ex + b* + j(/3 - y*) y + {3* + j( (5 - a') ) 
=2. /3+/+J(a-b*) b+a*+j(y-{3*) 

( 13. 56e) 

Further simplification of Eq. (13. 56e) is possible, because U, by hypothesis, 
obeys Eq. (13.55a), 

urcu = u*- 1 cu = c 

That is, 

which implies the two conditions 

a- ~* 
- () ' f3 = -y* 

by virtue of which Eq. (13.56e) simplifies to 

RtuR = (a +o.i/3 o ) 
a* - j{J* 

= ( C( :j/5 ( -k)(a
0 
+jf3)k) 

( 
1 o ) ( C( +i/3 o ) ( 1 _ok )t 

- 0 -k 0 a+ jfJ 0 

(13.57a) 

(13.57b) 

(13.57c) 

(13.57d) 
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This shows that the matrix R reduces the complex representation D to two 
equivalent quaternionic representations Dt and D2 = ( -k)D1 k. Moreover, D 1 
must be irreducible over the quaternions, because if the set of quaternionic 
matrices rx +.i/3 were further reducible to 

(13.57e) 

then reversing the argument would show that the original set of complex 
matrices U could be further reduced over C( I. i), contradicting the hypothesis of 
complex irreducibility of D. 

The twofold reduction that we have just found in the dimensionality of the 
representation Dis reminiscent of the twofold reduction in the dimensionality of 
a complete set of states, associated with the quaternionic embedding of a 
complex quantum mechanical system by the recipe of Eqs. (13.14a)-(13.17c). 
This connection can in fact be made precise., by writing the C( 1, i) matrix U in 
generator form, 

(13.58a) 

with r{ =-iii complex anti-self-adjoint. Rewriting Eq. (13.57b) as 

(13.58b) 

we get the e~uivalent condition on ii (in the sector continuously connected to 
the identity 1 

) 

So writing the 2m x 2m generator ii in terms of m x m blocks H~.(J.;·.J, 

we get [as in Eqs. (13.57b,c)] the conditions 

In other words, an ii obeying Eq. (13.58c) has the special form 

·-H~) 
H* 

" 

(13.58c) 

(13.59a) 

(13.59b) 

(13.59c) 

1
" As in footnote 10 of Chapter 11, this proviso is necessary because Eq. ( 13. 58b) is equivalent to 

with N any complex self-adjoint matrix with integer eigenvalues. 
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corresponding precisely to Eq. (13.14d), and thus guaranteeing that a dynamics 
of the form 

~1w(t) = -iiw(t) 
at ( 13. 59d) 

has a quaternionic embedding. We conclude that nontrivial implementations 
of the embedding of Eqs. (13.14a)-(13.17c) correspond precisely to the case 

in which the C.::( I, i) evolution matrix U( t) = e- rir is of Frobenius-Sehur class 
-I. 19 This permits the reduction of U( t) and ii over the quaternions according to 

Rt U(t)R = e-RiriRr = ( U~(t) 

( 
- ' 

r- _ H o 
R HR- _ )· 

0 -klfk . 
Ul(t)=e fir (13.60) 

with if the generator of the quaternionic dynamics arising from the embedding. 
These remarks reinforce the conclusion reached earlier, that the most plausible 
strategy for constructing nontrivial quatcrnionic quantum field theories lies in 
gauging a group with quatcrnionic irreducible representation D 1, obtained by 
the quaternionic reduction of a complex irreducible representation D, with the 
simplest case that in which D 1 is the one-dimensional quaternionic representa
tion of the group SU(2). 

The application of the general results of Eqs. (13.55a)-(13.57e) to the rota
tion group SU(2) has been discussed in detail in Finkelstein, Jauch, and Speiser 
(1959). For this group, the integer angular momentum irreducible representa
tions, described by (2m + I) x (2m + I) <C( I, i) matrices (with m an integer), are 
in Frobenius-Schur class +1, and so remain irreducible over the quaternions. 
The half-integer angular momentum irreducible representations, described by 
2m x 2m <C( I. i) matrices (with m again an integer), are in Frobenius-Schur class 
-1, and so arc reducible over the quaternions by the construction of Eqs. 
( 13. 56a-e). The simplest case is the spin-!/~ or doublet representation, 
with independent anti-self-adjoint generators Hu,3 = i<TJ, icr2, i<T3, with O"J,2. 3 
the <C(l. i) Pauli spin matrices. These obey 

a= 1.2,3 (13.6la) 

with C = i2 = -icr2 already in the canonical form of Eq. (13.56a). The reducing 
matrix R is therefore given by Eq. (13.56b), and we readily find 

( 
-k 0 ) 

() -k 

( ~j ~) 

( 
i 0 ) 
0 -i 

(13.6lb) 

19 Since 0(1) represents the noncompact time tramlation group. we are now generalizing beyond the 
frame"ork of our earlier discussion. 
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that is, 

0 )t 
-k 

(13.61c) 

which has the structure of Eq. (l3.57d). To put this into the form used in Sees. 
11 7 and 12.3, we observe that the quaternion algebra -i, --j, -k is automorphic 
to the algebra -k, -j, i, 

(-i,-j,-k) = w(-k,--j,i)w, 
1 

w=--(j-1), 
,(2 

(lJ(J) = ww = 1 

Hence 

0 )t 
-k 

which can be rearranged in the form 

where 

-j) ( I 0 ) (j - I 0 ) 
I 0 -k 0 j- 1 

in which ( is an arbitrary <C( I, i) phase. Choosing ( = - i then gives 

I ( i- k 
u2 = 2 -i- k 

-1 +i) 
I +j 

which is the transformation matrix used in Eqs. (I 1.134a-d). 

13.5 OPERATOR GAUGE INVARIANT TOTAL TRACE 
LAGRANGIAN FORMULATION OF QUANTUM 
DYNAMICS 

(13.61d) 

(13.61e) 

( 13.62a) 

( 13.62b) 

(13.62c) 

We turn now to the issue of how to construct gauge theories containing fields 
that transform according to the one-dimensional quaternionic representation of 
the group S U(2). Since the generators for this representation are just - ~ EA, 
with {EA} any given left-acting algebra, a natural strategy for introducing such 
gauge interactions is to use the decomposition, given in Eq. (2.11d), of an 
operator 0 over a left-acting algebra. Thus let B11 = -Bt be an anti-self-adjoint 
quaternionic gauge potential, which is the natural operator generalization of the 
quaternion-imaginary gauge potential introduced in Chapters 11 and 12. Then 
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applying Eq. (2.lld) to Bp, we have the decomposition (with Eo= 1) 

3 

Bl' = L BpAEA, 
A=O 

A, B = 0, 1, 2, 3 (13.63a) 

which expresses B11 in terms of the generators {EA} and coefficients B11A that 
commute with these generators. Equation (13.63a) has the same structure as the 
decomposition of a Yang- Mills matrix-valued potential over its gauge group 
generator matrices, but there is one crucial difference: in the conventional 
Yang- Mills gauge theory case, the coefficients B11A are e-n umbers, whereas in 
the decomposition of Eq. (13.63a). the coefficients B11 A are operators. Although 
the B11 A are formally real with respect to {EA}, we have seen in the example of 
Eqs. (13.42a-e) that in general they do not commute with one another, 

(13.63b) 

Thus the BpA are a new type of entity, an operator-valued gauge potential, and 
gauge transformations acting on B11 will similarly be operator-valued gauge 
transformations. To generalize Yang- Mills theory to such gauge potentials, we 
will have to generalize the Yang- Mills concept of non-Abelian gauge in variance 
to a general operator-valued gauge invariance. 20

·
21 

The primary tool for achieving this generalization is the concept of a total 
trace LaJ;rangian, 20 which will be developed in general form in the remainder of 
this section and will be applied to the cases of complex quantum mechanics and 
field theory, and of quaternionic quantum field theory, in subsequent sections. 
[A condensed account of the material in Sees. 13.5-7 has appeared in Adler 
(1994a).] We begin by introducing a quaternionic Hilbert space Vn-r, which we 
assume to be the direct sum 

( 13.64a) 

of a Hilbert space V~ of bosonic states and a Hilbert space V ni of fermionic 
states. Fallowing Witten (1982 ), we define an opera tor ( -1) F that corresponds 

20 The concepts of operator-valued gauge transformations and a total trace action were introduced, 
without the (-I( factor of Eq. (I:l.64b). and without the real part implicit in Tr as defined in Eq. (1.30a), 
by Adler (1979, 1980a) in the context of a theory termed a!t;chraic chromodynamics. In a subsequent paper 
(Adler. 1980b). the U(2) version of this theory was renained quaternionic chromodynamics. The relationship 
between these early models and the present approach will be discu"ed briefly in Sees. 13.6 and 13.7. Since 
what we do later is to set up a dynamics on a mamfold with noncommuting coordinates {q, }. the discus
""" of this and the subsequent two sections appears to be related to the noncommutative geometry 
program of A. Cannes (1983, 1990). The suggestion that it should be possible to formulate directly a 
quantum operator dynamics without first '·quantiling·· a classical theory has been independently made. 
within a different context, by Arodi ( 1993). 
21 A general suggestion of operator-valued gauge transformations is also contained in Mackey (1987), with 
an Implementation in Mackey ( 1993). which formulates the equivalence class, under unitary operator 
transformations. of complex Galilean invariant Hamiltonians. 

A reformul,ttion of the complex Schrodinger equation as a classical dynamical system, in which the q's 
and p's are, respectively, the real and imaginary parts of the wave function on a chosen basis and in which 
umtary operator transformations appear as classical canonical transformations, has been given by Heslot 
(19H5). See also Bohm (1952). A similar formalism was used by Weinberg (1989c) to introduce nonlinear 
correction terms into ordinary quantum mechanics. A discussion of the complex quantum mechanics of 
one degree of freedom, using ideas related to those developed here, has been given by Tabensky ( 1977). See 
also Klein, LI, and Vassanji ( 1980). 
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to the fermion number modulo 2, that is, ( -l)F has eigenvalue +I on all states 
in ~ and has eigenvalue -I on all states in V]H. A general operator a will be 
termed bosonic if it commutes with (-I ( and fennionic if it anticommutes with 
(-I(. Using this operator, we then define a trace operation Tr a for a general 
operator a as follows: 

F ,-, F 
Tra = Tr[(-1) a]= tr > (n[(-1) a[n) 

""-' n 

(13.64b) 

with tr the quaternion trace (or real part) defined in Eq. (1.22b), {[n)} any 
complete set of states, and Tr the operator trace introduced in Eq. (1.30a), 
which obeys the cyclic invariance property of Eq. (1.30b). 22 The operation Tr 
has the following useful properties: 

(i) If a = a- is fermionic, then Tr a- = 0, since 

Tra- = Tr[(-J)"a-j = Tr[a-(--1(] = -Tr[(-l(a-] = -Tra-

( 13 .64c) 

(ii) If a= a' is bosonic, and a+= a( 1Ja(2), then a(l) and a(2) are either 
both bosonic or both fermionic, and we have 

F F 
Tra(l)a(2) =Tr[(-1) a(l)a(2)] =Tr[a(2)(-1) a(l)] 

( 13.64d) 
= ±Tr[( -l(a(2)0(l)] = ±Tr a(2)a(l)• 

with the + sign holding when a(l) and a(2) are both bosonic, and the -
sign holding when a(l) and a(2) are both fermionic. 

(iii) If a= -01 is anti-self-adjoint, then 

Tra = Tr[(-l(a] == Tr[(-l)Fa]l = Tr[(-l(Ot] = -Tra ( 13.64e) 

and Tr a vanishes. Correspondingly, if a is bosonic and self-adjoint, then 
Tra agrees with L

17
(n[(-1) 1 a[n), which is already real. 

(iv) If Tr 2::,. a,.bq,. = 0 for arbitrary independent operator variations bq,., then 
each a,. must vanish, whereas if Tr :Sr a,.bqr = 0 for operator variations 

22 According to this definition, Trl is just the Witten ( l982a) index Tr ( -l)l-. The reason for including the 
(-- l )1 factor in constructing a total trace Lagrangian is that we want to be able to include off-diagonal 
mass terms of the general form </1) 11 vJ 12., with rfJ( 11 .r{l 121 independent fermion operators. Since </1~ 1 , and <j; 121 
anticommutc in the standard canonical quantization, one has 1 

' 

I , 
Trr/J111 rfJ( 21 = Trr~ 121 r/1( 11 = -Tr</1/1)</112: = 0 

but Tr(--!)'<j;;l)</1 121 is nonzero. 
Since ( -ll is noncom pact and other operators that appear inside the trace may be noncompact as well, 

care must be exercised in the use of cyclic permutation of operator variables under the trace. We ignore 
possible subtleties and assume sufficient convergence to justify cyclic permutation under Tr. As discussed 
in Sec. 13.6, this is consistent with the canonical quanti>·ation of standard complex quantum mechanics. 
However, clarification of the precise conditions for validity of cyclic permutation under Tr is clearly 
needed. 
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bq,. restricted to be of either bosonic or fermionic type, then the part of 0,. 
of the same type must vanish. The first statement follows from 

( 13.64f) 

choosing (mlbq,.ln) = (nl(-l(O,.Im) gives 

""' ~ ""' F 2 Tr L O,.bq,. = L l(nl( -1) O,.lm)l ( 13.64g) 
I' n.m.r 

which can vanish only if ( -1 (a, = 0, which implies 0,. = 0. The second 
statement follows by noting that when bq,. is of bosonic or fermionic type, 
then property (i) implies that 

(13.64h) 
I' I' 

with a~s) the part of 0,. of the same type as bq,. and bq~o) an arbitrary 
variation of the opposite type as bq,.. But bq, + bq~o) is an unrestricted 
variation, so the first statement of property (iv) then implies a;s) = 0. 

Let now { q,.(t)} be a set of time-dependent operator quantum variables, with 
each individual q,. of either bosonic or fermionic type, and let { q,( t)} be their 
time derivatives. We do not make any a priori assumptions about mutual 
commutativity; for example, the {q,.(t)} are not assumed to commute with one 
another. We introduce an operator Lagrangian L that is a polynomial function 
(or more generally, a Laurent series expandable function, or a suitable limit of 
such functions) of the variables { q,.} and { tir }, 

L = L[{q,.}, {q,.}] (13.65a) 

and we define the total trace Lagrangian L by 

L[{q,.}, {q,-}] = Tr L[{q,.}, {tir}] (13.65b) 

and the total trace action S by 

(13.65c) 

Because of property (i) of Tr, any fermionic part of Lis automatically projected 
to zero, so there is no loss in generality in assuming that Lis bosonic. Similarly, 
by property (iii) of Tr, any anti-self-adjoint part of Lis automatically projected 
to zero, so we lose no generality by further specifying that L is self-adjoint. 

Let us now examine the consequences of requiring the total trace action to be 
stationary under arbitrary operator variations of the {qr}, subject to the restric
tion that bq,. and bq,. be of the same bosonic or fermionic type as q,. and q,.. 
When we vary a given variable q,., the variation of L consists of a sum of terms 
of the form 
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( 13.66a) 

with th.R operators appearing respectively on the left (L) and right (R) of bq,., 
which in general do not commute with bq,.. Inside the operation Tr, we can 
cyclically permute the factors in Eq. (13.66a) to get 

(13.66b) 

with the +(-) sign corresponding, as in property (ii), to whether Q R is of 
bosonic (fermionic) type. Reordering all terms with the general form of Eq. 
(13.66a) this way, we are able to identify a well-defined operator ()L/ i5q,., of the 
same bosonic or fermionic type as q,., which obeys 

bL 
bL = Tr -- bq,. 

bq, 
( 13.66c) 

Similarly, varying one of the q,., we identify a well-defined operator bL/bq,., 
again of the same type as q,., which obeys 

bL . 
bL = Tr -.- bqr 

bq,. 
(13.66d) 

When qr is of bosonic type, the order of the factors within Tr in Eqs. 
(13.66c,d) is irrelevant, but when q,. is of fermionic type the factor ordering is 
significant, since by property (ii) of Eq. ( l3.64d), a minus sign appears when 
the order of two factors of fermionic type is reversed. In many applications, 
some of the q,. are either self-adjoint or anti-self-adjoint in character. If bq,. is 
further restricted to have the same adjointness character as q,., then only the 
parts of bL/bq,. and i5L/biJr which have the same (opposite) adjointness char
acter as a bosonic (fcrmionic) q,. arc well defined. It will be assumed henceforth 
that for those q,. with definite adjointness character, the variational derivatives 
bL/ bq,. and bL/ bq,. denote the operators of the same (opposite) adjointncss 
character as a bosonic (fermionic) q,. which obey Eqs. (13.66c,d). We note, 
finally, that the procedure just described cannot be extended to higher-order 
variational derivatives. Since bL/ bq,. is already an operator, a further variation 
will involve a sum of terms of the form of Eq. (13.66a), in which the bq,. (or 
bq,.) factors are sandwiched between operators on left and right with which 
they do not commute. Without the trace there is now no way to combine the 
terms in the sum into a single expression with infinitesimals on the right, and 
hence there is no definition of second variational derivatives analogous to Eqs, 
(13.66c,d). 

Let us now impose an action principle, by requiring 

(13.67a) 

under arbitrary same-type operator variations. Varying all the arguments q,. and 
iJr of L, we get 

l ac joc ((jL bL ) bS = dt bL = dt Tr 2: b bq,. + F bqr 
. -oc -x r q,. qr 

(13.67b) 
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which by an integration by parts becomes 

bL x jx [<:SL d (bL)] 
bS = Tr L ~ bq,. + dt Tr L ;5--: - dt ~ bq,. 

r q, -x r q, q, 
-x 

( 13.67c) 

So if we take the variations bq,. to vanish rapidly enough at ±oc for the surface 
terms in Eq. (13.67c) to vanish, or if a boundary condition of periodicity from 
-oc to oc is applicable, then requiring bS = 0 gives, by property (iv), the 
operator equations of motion (the generalized Euler-Lagrange equations) 

(13.67d) 

Corresponding to the Lagrangian form of the equations in Eq. (13.67d), we can 
set up a Hamiltonian form by the usual method of making a Legendre trans
formation. Defining the momentum operator p,. conjugate to q,., and of the 
same type as q,., by 

bL 
Pr = bq,. 

we define the total trace Hamiltonian H by 

We then have, under general same-type operator variations, 

bH = Tr L(bp,.cj,. + p,.bcj,.)- Tr L (;~ bq,. + ;L bq,.) 
r r q,. q,. 

( 13.68a) 

(13.68b) 

(13.68c) 

which substituting Eqs. (13.68a) and (13.67d), and using property (ii), becomes 

bH = Tr L(±q,.bp,.- p,.bq,.) ( 13.68d) 
r 

with the +(-) sign chosen according to whether q,. is of bosonic (fermionic) 
type. Equation (13.68d) shows that His a total trace functional of the operators 
{q,.} and {p,.}, 

H = H[{q,.}, {p,.}] 

with the operator variational derivatives 

bH . 
bq,. = -p,., 

bH . 
-=±q,. 
bp,. 

( 13.68e) 

(13.68f) 

As in the case of the Lagrangian variations, when qr has a definite adjointness 
character, the variations bH/bq,. and bH/bp,. denote the operators obeying Eq. 
(13.68d) that have the same (opposite) adjointness character as a bosonic 
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(fermionic) q,.. We note, finally, that with p,. defined as in Eq. (13.68a), if the 
Euler-Lagrange equations are satisfied but arbitrary variations bq,. are permit
ted at t = ±x, then Eq. (13.67c) implies that 

(13.68g) 

This formula and the others involving Shave obvious generalizations when the 
time interval (-x.x) is replaced by (T1• T2). for arbitrary finite Tu. 

Continuing in analogy with the standard Hamiltonian formalism, let 
A[{q,.}. {p,.}] and B[{q,}, {p,.}] be any two total trace functionals of the operator 
arguments {q,.} and {p,.}, and let us define: their generalized Poisson bracket 

{A.B} Trl)±) ---. ---(
bA r5B bB bA) 

r bq,. i'!p, bq,. bp,. 
( 13.69a) 

with the +(-) sign again corresponding to q,. bosonic (fermionic). Then for a 
general total trace functional A[{q,.}, {p,.}] we have 

"' (bA bH bH bA) "'(bA . bA . ) d {A,H}=Tr L.)±) ------ =Tr L -q,.+-p,. =-A 
,. bq,. i'!p,. bq, bp,. I' bq,. bp, dt 

(13.69b) 

and since by construction the generalized Poisson bracket is antisymmetric in its 
arguments, 

{A. B} =-{B. A} (13.69c) 

it follows that the time derivative of H vanishes, 

d 
dtH = {R H} = 0 ( 13 .69d) 

Note that unlike the case of classical mechanics, the equations of motion for p,. 
and q,. [i.e., Eq. (13.68f)] are not generated as generalized Poisson brackets of p,. 
and q,. with H; such a bracket is not defined within our formalism, since p,. and 
q,. are operators, not total trace functionals. 

An important question concerning the generalized Poisson bracket of Eq. 
(13.69a) is whether it satisfies a Jacobi identity. That is, let A[{q,.}. {p,.}], 
B[{q,.}. {p,.}], and C[{q,.}, {Pr}] be any three total trace functionals of the 
operator arguments {q,.}, {p,.}, and let us define the bracket 

[A. B. C] {A. {B, C}} + {C, {A. B}} + {R {C. A}} (13.69e) 

which is totally antisymmetric in A. B, and C. On the basis of a number of 
monomial examples calculated by hand, we conjectured (Adler, 1994a) that 

[A. R C] = 0 ( 13.69f) 

Following a computer study of a large sample of examples. a proof of the Jacobi 
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identity for the generalized Poisson bracket was found by Adler, Bhanot, and 
Weckel ( 1994) and is given in Appendix A. The validity of the Jacobi identity is 
important for the correct incorporation of symmetries: If A and B are any two 
constants of the motion or conserved symmetry generators, then the Jacobi iden
tity implies, using Eq. (13.69b), that their generalized Poisson bracket is also a 
constant of the motion or conserved symmetry generator. We also note that if the 
algebra of total trace functionals is extended so as to be closed under multi
plication as well as addition of total trace functionals, then the operator varia
tional derivatives and the generalized bracket both obey the Leibnitz product rule, 

b(AB) =<:SA B +A bB. b(AB) = C5A B +A bB {AB, C} ={A, C}B + A{B. C} 
bq,. bq,. bq,. . bp,. bp, bp,. ' 

( 13.69g) 

We now have all the ingredients needed to give a generalized version of 
Heisenberg picture quantum mechanics. States arc described by fixed vectors 
[h) E V D-r and I f) E V If.J, and so the inner product geometry specified by the set 
of all inner products { (h[h')} and { (Jl/')} is automatically time independent. 
The time dependence of the operators { q,} and { p,.} is completely specified by 
Eq. (13 .68f). giving these operators at all times once their form is specified at 
some initial time (say, t = 0). The most general observable 0 will be a self
adjoint polynomial (or Laurent expandable) function of {q,.}. { p,.} and the time 
t, or a suitable limit of such functions, 

a= O[{q,.}. {p,.}. r] ( 13. 70a) 

and its time dependence is determined by using the Leibnitz product rule and 
Eq. (13.68f). The exp

2
c;ctation of 0 in any state [b) or ! /) can be rewritten as a 

total trace functional -' according to 

) 
_ { (h[O[h) = Tr PhQ 

(0 - ( '///)1 ') //) J 1v J =-Tr Pr v 

P~; = [b)(h[, Pt = [f)(f[ ( 13.70b) 

This permits us to apply Eq. (13.69b), as generalized to the case in which A has 
an explicit time dependence, giving 

:, (0) = (DO/ot) + { (0). H} (13.70c) 

Transition probabilities can also be reexpressed as total trace functionals, 23 

[(f[/')1 2 = -TrP1P1, = -TrP!'Pt 

( 13. 70d) 

21 Equations (13.70b) and (13.70d) re,cmblc the corresponding formula> In the Jordan (1932. 1933a.b) 
formulation of quantum mechanic>. We do not. however. introduce the symmctnzcd Jordan product that 
acts within the subspace of self-adjoint operators. It is not sufficient to employ only the Jordan product in 
quaternionic Hilbert space because, as we have >een. anti-self-adjoint operators (symmetry generators) 
appear on an equal footing with self-adjoint operators (observahles). and the anu-self-adJoint operators are 
not trivially convertible to self-adjoint form. 
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and are time independent by virtue of the time independence of the projectors 
Ph. Pt ..... 

After this rather lengthy excursion into total trace Lagrangians and Hamil
tonians, we are ready to introduce the concept of operator gauge invariance. In 
its simplest form. an operator gauge transformation consists of a transforma
tion on the operators q,. of the form 

q,. -+ U,.q,. u: + l:.q,. [ U,.] ( 13.7la) 

with each U,. a unitary operator of bosonic type, 

rl· _ t _ U,. G ,. - U ,. U,. - I . F 1 [(-l).U,.J=O (13.7lb) 

and with l:.qr[U,.] an inhomogeneous term calculable in terms of the operator 
U,.. The Lagrangian L of Eq. (13.65a) cannot in general be constructed to be 
invariant under the transformation of Eq. (13.7la), but we will find that we can 
readily construct Lagrangians L in the form 

(13.7lc) 

which transform under Eq. (13.7la) as 

(13.7ld) 

As a consequence, although the operator Lagrangian L is not invariant. the 
total trace Lagrangian 

L =Tr L (13.7lc) 

is invariant under Eq. (13.7la). 

(13.7lf) 

by virtue of tile properties of U,. in Eq. (il3.71 b) together with the cyclic invar
iance of the trace. [The total trace action is also invariant under the more 
general similarity transformation. in which U~ in Eqs. (13. 71 a-f) is replaced by 
u,-.- 1

: however, this transformation is of less interest because it does not preserve 
the adjointness properties of the coordinates q,..] We will also employ a second 
form of operator gauge transformation. in which the variables q,. divide into 
three groups. the operators q,. in the first group transforming as in Eq. (13.7la). 
those in the second group transforming as 

rrl [Jil _J A ["'] q,. -> u ,.q,. r ...,- u.q,. u r ( 13.72a) 

and those in the third group transforming as 

q,. _. u,.q,. u;.t ( 13.72b) 

with U,., u;. two independent unitary operators of bosonic type. We will now 
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find Lagrangians Lin the form 

which transform under Eqs. (13.7la) and (13.72a,b) as 

L "'("I'd "'l'r"t) ------*L......t u,. .. ,.u,.+u,._..,.u,. 

( 13. 72c) 

( 13. 72d) 

Again. whereas the operator Lagrangian L of Eq. (13.72c) is not operator gauge 
invariant, the corresponding total trace Lagrangian l, is operator gauge invar
iant. 

We now make a number of remarks concerning the structure and properties 
of operator gauge invariant total trace Lagrangians. 

(1) We have written the equations of this section with r a discrete index. but in 
many of the applications described in the next two sections. r will be 
replaced by a continuum coordinate .?. 

(2) Varying Eqs. (13.7la), (13.72a), and (13.72b) with respect to q,. the inho
mogeneous term drops out, and we get, respectively, 

bq, ------" U,(5q, U ;. 

-' r")' r•'i uq, ~ ._,· 
1

! q,- ._,· r 

,; T' ' (_;'rf uq,- ------" u 1-oq,- 1 

(first group) 

(second group) 

(third group) ( 13.72c) 

Hence when Lis operator gauge invariant. the Eulerian derivative appearing 
in Eq. (13.67c) transforms as 

E, ~ U,.E,u;_ (first group) 

E -+ U' E U'T 
' r ' r 

l . r •1 E n1 
.:, ------* L./ r r u r 

(second group) 

(third group) 

r5L d !JL 
£,_--~-

bq,- dt bcj, 
( 13.72f) 

and the Euler--Lagrange equations E, = 0 are operator gauge covariant. 

(3) A total trace version of the familiar Noether ( 1918) theorem of classical 
mechanics can be derived as follows. Let iiA(t) be an infinitesimal operator 
parameterizing a set of operator variations_ i5q,. of the vari_? bles q,., and let us 
assume that !JL only involves r5A(t) and 6A(t), but not 6A(t) or higher time 
derivatives (the Lagrangians studied in the next two sections all have this 
feature). Then we have 

_ (i5L '\ r5L ·•) oL = Tr ~ o1 + -.-- bn on r)A 

_
8 

" r5L . \ o =lr-.r>, 
()i\ 

X. 

-:X: 

+ dtTr ---- ~ -_-. M 1-x ([i5L d(()L)j·) 
• ~ex: r>A dt oA 

(13.73a) 
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Assuming now that hA vanishes rapidly enough at t = ±oc, so that all the 
6q, and the corresponding surface terms in Eqs. (13.67c) and (13.73a) vanish 
there. and that the generalized Euler-Lagrange equations are satisfied for all 
times so that r5S also vanishes by Eq. (13.67c), then independence of c5A(t) at 
different times implies 

( lr)L d (r)L) l ) 0 = Tr 6A - dt r>A oA (13.73b) 

Suppose now that L is left invariant under the variations i3q,. parameterized 
by M. Then 6L/bA = 0. and Eq. (13.73b) simplifies to 

Tr C'~·\ bA) = 0 
with Q.\ the ·'charge" defined by 

,)L 
Q.\ == .5A 

( 13.73c) 

( 13. 73d) 

If L is invariant for arbitrary time-independent anti-self-adjoint operators 
r)A, then Eq. (13.73c) implies the operator statement 

dQ \ = () 
dt 

(13.73e) 

with Q.\ anti-self-adjoint (Operator gauge transformations obey this condi
tion trivially, with QA 0, since L is invariant for arbitrary time-dependent 
anti-self-adjoint operator gauge parameters c5A.) On the other hand, in the 
case of Poincare transformations, 6A is a c-number describing an infinitesi
mal translation or proper Lorentz transformation of the coordinates [cf. 
Eqs. ( 11.85a-c)], and so for a Poincare invariant theory, Eq. (13. 73c) only 
implies the total trace relation 

d 
~Q =0 dt .\ ' (13.73f) 

which states that the total trace functionals defining the Poincare generators 
are time independent [and of which Eq. (13.69d) is a particular example]. 
Intermediates between the two extremes represented by Eqs. ( 13. 73e) and 
( 13. 73f) are possible. all depending on the structure of the operator varia
tions r)A that leave L invariant. 

An important speci<d case is that in which bA( t) parameterizes a linear 
transformation of the coordinates of the form 

bq,. = bA(t) L G,.,q, ( 13.7 4a) 
s 

with G,., independent of time and of the q's and q's. Then we have 

6ql" = bA(t) L G,,q, + M(t) L G,.,ij, (13.74b) 
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which together with Eq. ( 13.66d) implies that 

bL C5L 
Qc = -. = ± L G,,q, 6' 

bA r.l q, 
( 13.74c) 

again with the +(-) sign chosen according as whether q, is of bosonic 
(fermionic) type. Substituting Eq. (13.68a) into Eq. (13.74c) and taking the 
trace, we thus get 

Tr Qc; = Tr ( ~p,Gr,q,) ( 13.74d) 

Let now QH be the charge associated with a second linear transformation in 
which Gn is replaced by H,,; then for the generalized Poisson bracket of 
Tr Qc with Tr QH. we find 

{Tr Qc, Tr Q/1} = Tr ( ~(±)(prG,,(±)H, 1 q1 - p,H,,(±)G,1q1)) 

= Tr (LPr L(G,.,H,1 - H,.,G,1 )q1)' = Tr Q[GJI] (13.74e) 
/'{ !•J 

Hence if a set of matrices G, H, ... used to generate linear transformations of 
the q's obeys a Lie algebra, then the corresponding functionals 
Tr Qc, Tr QH, ... obey the same Lie algebra under the generalized Poisson 
bracket. This discussion remains valid even when the matrix elements 
G,.,, H,1 are themselves operators in some left-acting algebra, as is the case 
when we gauge an intrinsically quaternionic representation of a compact 
group. 

The result of Eq. (13.74e) can be extended to coordinate variations that 
do not necessarily have the special form of Eq. (13. 74a), as follows. Let 
{Qt} be the maximal set of conserved total trace functionals, some of which 
correspond, by the construction of Eqs. ( 13. 73a-f), to invariance transfor
mations of the total trace Lagrangian L. As noted earlier, the Jacobi identity 
for the generalized Poisson bracket implies that the bracket {Qp, Q117 } is also 
a conserved total trace functional, which by the maximality assumption 
must be a linear combination of members of the original set, 

{Qp. Qm} = L CfmnQn, Cfmn = -Cmtn ( 13.74f) 
n 

Hence the maximal set of conserved total tracefunctionalsforms a Lie algehra 
under the generalized Poisson hracket. In general, we expect a subalgebra of 
this Lie algebra to be isomorphic to the Lie algebra of abstract generators of 
the corresponding Lagrangian symmetries, but this must be verified by 
explicit computation for any given total trace Lagrangian. 

(4) When an operator gauge invariance is present, the problem of identifying 
physical observables becomes more subtle. Since observable quantities 
should correspond to invariant geometric features of the quantum dynam-
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ics. only operator gauge invariant quantities can be physical observables. 
Thus the expectation values of Eq. ( 13.70b), which are not operator gauge 
invariant for general states I h) .1 f), arc in general not observable quantities. 
One way to form observable quantities is to construct total trace func
tionals, similar to L but involving higher-degree polynomials in the opera
tors q, and q,., which are operator gauge invariant. Clearly, an infinite 
number of such observable quantities can be constructed. A second way to 
form observable quantities is to focus on particular operators 0,., trans
forming under operator gauge transformations as 

(13.75a) 

and on the cotransforming bases of states lh;-"l).lb~"l), 1/;."l). 
I /~")). n = I. 2 .... , which transform as 

lh;-"l) --+ U, jhj-"l). 

I jf-"l)--+ U,lf,l11 l), 

ih~"l) --+ U,jb("l) 

lf\"l) _.. U,l/~"l) 

Then the special class of matrix elements 

(/·(Ill IOI /·(ml) 
. I 1,, . ,, 

is operator gauge invariant: hence these are observable quantities. 24 

(13.75b) 

(13.75c) 

(5) As we have seen, in theories constructed from a total trace Lagrangian, the 
Hamiltonian dynamics is governed by the operator variational equations of 
Eq. ( 13.68f), which are generated by the total trace Hamiltonian H. There 
appears to be no special reason for this dynamics to be unitary; that is, in 
general there is no reason to expect that there should be a unitary time 
evolution operator U(t.O). such that for all q,.,p,. and all times t, the 
dynamics of Eq. (13.68f) is equivalent to 

q,.(t) = ut(t, O)q,.(O)U(t. 0), p,.(t) = ut (t, O)p,.(O) U(t, 0) ( 13. 76a) 

An equivalent statement in infinitesimal form [cf. Sees. 2.4 and 3.3] is that in 
general there is no reason to expect that there should be an anti-self-adjoint 
operator Hamiltonian H(t), such that for all q,.,p,. and all times t, the 
dynamics of Eq. (13.68f) is equivalent to 

q,. = [H(t),q,.]. Pr = [ff(t),p,.] (13.76b) 

It follows from these statements that total trace Lagrangian dynamics is, 
potentially, an even more general form of quantum mechanics than the 

24 There are dose analogies between the identification of observable quantities in operator gauge invariant 
theories, and the identification of observable quantities in general relativity and in conventional Yang 
Mills gauge theories. Operators transforming as in Eq. (13.75a) are analogs of bitensor quantities in clas
sical general relativity (Synge. 1950). and of path ordered integrals in gauge theories. The suggestion that 
the generalization from special to general relativity should have an operator analog in the generalization 
from complex to quatei·nionic quantum mechanics was first made in Finkelstein. Jauch. Schiminovich, and 
Speiser (1963). 
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operator Hamiltonian-based quaternionic quantum dynamics developed in 
Chapters 1-12 of this book. 

Suppose, however, that the dynamics is such that a U(t, 0) and an H(t) 
obeying Eqs. (13.76a,b) do exist, for a theory with operator gauge invar
iance. Then we can make an operator gauge transformation 

p,(t) --+ U(t, O)p,(t) ut (t, 0) = Prs 

( 13. 76c) 

with a corresponding transformation for cotransforming states I h). I .f), 

lh) --+ U(t. O)lh) lhs(t)). I f) --+ U(t, O)l /) I f.,(t)) (13.76d) 

thus defining "Schrodinger picture" operators q,.5 , Prs and states lhs(t)) and 
I /s( t)). By construction, the operators qrs and p,5 are time independent, 
while the states lhs( t)) and I fs( t)) obey the Schrodinger time-development 
equation 

d -
dt lhs(t)) = ~H(t)lhs(t)), 

d -
dtlfs(t)) = ~H(t)lfs(t)) (13.76e) 

From this perspective, Schrodinger picture quantum mechanics appears as a 
rather special case of the more general quantum dynamics described by 
operator gauge invariant total trace Lagrangians. When the dynamics is 
unitary, all total trace functionals A[{q,},{p,.}] that do not contain fixed 
(nondynamical) operators are time independent, since they can be trans
formed to the equivalent, and manifestly time-independent, form 
A[ { qrs }, {p,5 } ]. If there are indeed cases in which total trace dynamics is not 
equivalent to a unitary dynamics, it still may be possible to define a natural 
splitting of the total trace Hamiltonian H into two terms according to 

H = Ho +H' (13.76f) 

where H 0 has a unitary dynamics. In this case, an operator gauge transfor
mation to the Schrodinger picture for Ho would define an analog of the 
interaction picture for H and could provide the basis for a perturbation 

. f h d . . f HI 25 expanswn o t e operator ynam1cs m powers o . 
It clearly is of great importance to determine under what circumstances 

the operator time development equations of Eq. ( 13.68f) are equivalent to a 
unitary evolution as in Eqs. (13.76a,b). It seems likely that this equivalence 
always holds in complex quantum mechanics, since there the standard 
canonical quantization rules give a constructive procedure for going from 
the Lagrangian L, interpreted now as a classical Lagrangian, to an operator 
Hamiltonian obeying Eq. (13.76b). In the case of quaternionic quantum 
mechanics the situation is far from clear, and we leave the problem of 
determining whether and when Eq. (13.68f) is equivalent to Eqs. (13.76a,b) 
as an important open question. 

(6) As formulated up to this point, total trace quantum dynamics applies for 

25 I am indebted to J. R. Klauder for this remark. 
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arbitrary operator properties of the dynamical variables { qr}, {p,.} at some 
initial time (say t = 0), from which the Hamiltonian equations of motion 
can be integrated forward to t > 0 (and backward to t < 0 as well). Suppose 
now that for some subset of the variables {qR}, the Lagrangian Lis inde
pendent of the time derivatives { q R}- Then the corresponding canonical 
momenta {PR} vanish identically, 

(13.77a) 

and the Euler-Lagrange equations for these variables degenerate to the 
constraints 

bL 
---0 
bqR -- (13.77b) 

We are now dealing with a constrained Hamiltonian system, for which an 
operator generalization of the standard Dirac (1950) treatment of 
constrained systems will be needed. 26 The situation in which some of the 
canonical momenta vanish identically is of course not the most general form 
of a constrained system, but it is predsely what occurs when a gauge in var
iance is present. We assume, in analogy with the standard Yang--Mills case, 
that the correct procedure for operator gauge invariant systems will be to 
adjoin to the operator constraints of Eqs. (13.77a,b) an equal number of 
operator gauge-fixing conditions, which break the operator gauge invar
iance. We conjecture that the constraints of Eqs. ( 13.77 a,h), together with the 
appropriate operator gauge-fixing conditions, provide the minimum specifica
tion of operator properties of the { qr} and {p,.} which are needed for a 
consistent theory. We will see, however, that there are examples in which it is 
possible to add further constraints beyond this minimum and still preserve 
consistency with the operator equations of motion. Finding a suitable 
operator generalization of the Dirac procedure, at least in the case of 
operator gauge invariant systems, and determining the precise conditions 
needed for operator specification are again important open problems. 

Because the analysis of this section has dealt with the general case, it has of 
necessity been rather abstract. Concrete illiustrations of operator gauge invariant 
systems, in complex and quaternionic quantum mechanics and quantum field 
theory, are given in the next two sections. 

13.6 OPERATOR GAUGE INVARIANT TOTAL TRACE 
LAGRANGIAN FORMULATION OF COMPLEX 
QUANTUM MECHANICS 

We proceed in this section to illustrate the general formalism that we have just 
set up, in the familiar context of complex quantum mechanics and quantum 

2
" For a recent exposition of the theory of constrained Hamiltonian systems. and references. see Henneaux 

and Teitelboim (1992). A good older survey, which includes a large number of concrete applications. is 
given in Hanson. Regge. and Teitelboim ( 1976). The operator generalization of the Dirac theory may 
involve some subtleties, since the general Dirac prescription employs second variational derivatives of the 
Lagrangian. which. as discussed earlier. are not well defined in the operator case. 



456 RELATIVISTIC QUATERNIONIC QlJAYfUM MECHANICS 

field theory. In complex quantum mechanics, we recall, the left-acting operator I 
defined by 

I= LIn) i (nl (13.78) 
11 

commutes with all operators. 27 Hence the complex specialization of operator 
gauge in variance consists in assuming that the operators U,, u;. of Eqs. (13. 71 a) 
and (13.72a,b) commute with I, which permits the inclusion of explicit factors of 
I in the construction of operator gauge invariant total trace Lagrangians. 

As our first example, we consider a single self-adjoint bosonic coordinate q(t) 
obeying Galilean dynamics. The conventional operator Lagrangian for this 
model (with the mass taken as unity for convenience, and with { } of non bold
face arguments the anticommutator) is 

L~ = ~q2 +~{q,A(q)} ~ V(q) (13.79a) 

with A(q) and V(q) self-adjoint functions of q. [In the usual canonical quanti
zation treatment, in which L~ is initially a classical Lagrangian, the potential 
A (q) contributes only a total time derivative in one dimension; hence it has no 
physical effect and is customarily dropped. We keep it in the calculation, 
however, to facilitate generalization, since in two or more dimensions the 
analogous interaction term Lr H q,, A,( { q,})} is physically relevant.] The 
Lagrangian of Eq. ( 13. 79a) clearly does not have any simple transforma
tion properties under the operator transformation 

UUl = U 1U= I ( 13. 79b) 

To achieve covariance. we follow the standard procedure of replacing the 
ordinary time derivative 80 = 8/Dt by a covariant derivative Do, defined as 

, Dq 
Doq - Dt +[Eo, q] (13.79c) 

with Eo an anti-self-adjoint operator gauge potential. Under the transformation 
of Eq. (13. 79b ), Eo is taken to transform as 

t au t • a r 
Eo--+ UEoU ~ at U = UEoU 1 + U ot U (l3.79d) 

as a consequence of which D0q transforms as 

D0q __. !!_ (Uqut) + (uE0 ur ~ i~u ut) Uqut -· Uqut (uE0 ut + u au') 
Dt iJt /Jt 

= u(~~ + [E0 , q]) ut =--c U(D0 q) ut (13. 79e) 

27 As noted following Eq. (2.43b). this permits the rdcntification of the left-acting I with il. with I the unit 
operator and i the right-acting imaginary unit, a notation which is standard in the complex quantum 
mechanics literature but which we shall not follow. 
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Hence if we redefine the Lagrangian of Eq. (13.79a) as 

1 ' 2 1 ' 
Lq = l (Doq) + l{D0 q, A(q)}- V(q) (13.80a) 

then under operator gauge transformations Lq transforms covariantly,28 

(13.80b) 

and the corresponding total trace Lagrangian Lq and action Sq defined by 

S1 = foo dt Lq 
-oo 

(13.80c) 

are invariant. 
We have now achieved operator gauge invariance at the price of introducing 

an extra dynamical variable B0 . We must next investigate the structure of 
possible Lagrangians LB

0 
to govern the dynamics of B0 . The field strength F00 

formed in analogy with Eq. (12.2) vanishes identically, 

Foo = DoBo- DoBa +[Eo, Bo] = 0 (13.8la) 

so the analog of the Lagrangian LB of Eq. (12.33b) is zero. However, there is 
one additional Lagrangian that can be formed from Bo, 

LB0 = Tr (!B0 ) (13.8lb) 

with the inclusion of a factor of I necessitated by the fact that Bo is anti-self
adjoint. To see that Eq. (13.8lb) defines a satisfactory Lagrangian, we note that 
it suffices to check its behavior under infinitesimal operator gauge transforma
tions of the form 

U = 1 + bA, 

under which the first-order variation of 80 is 

86A , 
bBo = [M, B0]-- = -D 0 M 

at 

From Eqs. (13.81 b,d) we find 

a a 
bLBo = Tr (IbB0 ) = Tr ([B0 ,I]M)- -- Tr (!bA) = --a Tr (IM) 

. at t 

2
H We assume here that A(q) and V(<J) have regularity sufficient to guarantee that 

uA(q)Ui = A(UqUi). 

as is the case when A and V are Laurent expandable functions of q. 

(13.8lc) 

(13.8ld) 

(13.8le) 
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which is a time derivative. As a consequence the total trace action S 80 defined 
by 

Sso (13.82a) 

is invariant29 under Eq. ( 13.81 c) when i5A vanishes at t = ±::xJ, or more gener
ally, when i5A(oc) = 6A(-oc) (which are the same boundary conditions 
imposed in deriving the Euler--Lagrange equations), that is, 

6Ss0 = 0 ( 13.82b) 

Let us now examine the dynamics following from a general linear combina
tion of the actions Sq and Ss

0
• forming the total Lagrangian L and action S. 

(13.83a) 

with i.0 a constant, and taking general operator variations, we get (with repeated 
use of the cyclic property of the trace) 

i5L = Tr {[D0 q + A(q)]6(D0q) + (D0 q)i5A(q)- i5V(q)- ic0 Ii5Bo} 

= Tr { [Doq +A (q)] (6q + [i5B0 , q] + [Eo, r5q]) + F(q, Doq)6q- l.oli5Bo} 

= Tr {[Doq + A(q)]i5q + ([Doq + A(q), Bo] + F(q, Doq))6q 

+([q,D0q+A(q)]-i,0!)6B0 } (13.83b) 

29 This argument of' course does not imply that Sll 11 is invanant under the most general glob,Ji transfor
mation of the form ofEq. (13.79d). which. even with c· restricted to be continuous at infinity, can produce 
changes in topological sector. Rather, what we have shown is that Silo defines a Conn of topological action. 
\vhich ~~constant \Vi thin each distinct topological .-,ector defined under continuou-s operator-valued gauge 
transformations. Fo!" di~cussions of 1nore conventional topologicalll1Vaciants and topological actions, see 
pp. 288-289 of Coleman ( 1985) and Witten ( 1983. 1989). 

An alternative argument for the in variance of Sn
1
, (also confined to the topological sector connected to 

the identity) proceeds directly from Eq. (13.79d). which implies that 

Writing L' = e.\(r). with .\ ·~ - :\ ·. and using the operator identity (which can be verified by power series 
expansion and term-by-term integration) 

D \ ;· I iJ :\ ' I I ---e· ..., else;,\ -;--e -\~,\ 
iii . J r)r 

we have 

Hence S 80 i; invariant whenever Trlr\(cx:)j = Tr j/,\(~'XJ)j. Thi; argument. a; well as that given in the 
text. extend' immediately to the case m which 8 0 is replaced by a space ~time component of a four-vector 
gauge potential and i!ji!r is replaced by a space time derivative. 
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where we have defined a generalized force term F(q. Doq) by 

Hence 

Tr [(Doq)bA(q)-: b V(q)] cc= Tr [F(q, Doq)bq] 

bL , 
~,. = Doq + A(q). 
oq 

bL 
-. =0. 
bBo · 

bL 
[Doq +A (q), Bo] + F(q, Doq) 

bq 
bL , 
bBo = [q, Doq +A (q)] - Jcoi 
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(13.83c) 

(13.83d) 

(13.83e) 

and so the Euler--Lagrange equations following from bS = 0 consist of a dy
namical equation for q(t), 

' ' d ' ' ' 
D0 [Doq + A(q)] = -

1 
[Doq + A(q)] + [Bo. Doq + A(q)] = F(q, Doq) 

({ 

together with a constraint 

[q, Doq + A(q)] = i.oi 

( 13.83f) 

(13.83g) 

both of which are covariant under the operator gauge transformations of Eqs. 
(3.79b-e). When we rewrite the dynamics in total trace Hamiltonian form, we 
identify the canonical momentum conjugate to q as 

bL , 
p = ~ = D0 q + A(q) 

oq 

and so the constraint of Eq. (13.83g) reads 

[q,p] = Xoi 

(13.84a) 

( 13 .84b) 

and is just the standard canonical commutator with the identification 
j,o '--= n (= I in microscopic units). From this point of view, the unitary trans
formation U that we gauged in Eqs. (13.79b-d) can be interpreted as a trans
formation relating different operator realizations of the commutator of Eq. 
( 13.84b). Note that because of the real part30 in the definition of Tr, we have 
Tr I= 0, and so taking Tr of the left- and right-hand sides of Eq. ( 13.84b) 
gives, for all /.0 , an equation consistent with our assumption that we can cycli
cally permute operator arguments of Tr, 

0 = Tr [q,p] = /.0Tr I= -ioO (13.84c) 

10 We recall that the real part in Tr, which leads to th(: consistency of Eq. (13.84c) for nonzero i.0 , was 
originally included in Tr to get the cyclic property for finite dimensional quaternion matrix operators. 
Inside the standard trace or diagonal sum without the real part, Eq. (13.84b) implies that q and p cannor be 
cyclically permuted for nonzero i.0 : the formal argument for the cyclic property breaks down in this case 
because it involves a singular infinite sum. Even with the real part included, we caution that for canonical q 
and p. a structure like Tr (l[<J.p]) does not obey the qclic invariance assumption, but this structure does not 
appear in the Galilean dynamics example analyzed in the text. In other words, the Lagrangian structure 
appears to play a role in determining when the cyclic assumption can be safely applied. 



460 RELATIVISTIC QlJATF:RNI()NIC QUANTUM MECHANICS 

Carrying out the Legendre transform of Eq. (13.68b), we get 

(
6L ) H = Tr <5q q - L 

= Tr { [Doq + A(q)](Doq- [Eo, q])- ~ (Doq) 2
- (Doq)A(q) + V(q) +).olEo} 

{
I , 2 , , } = Tr l (Doq) + V(q) + (J.o!- [q, Doq + A(q)] )Eo 

= Tr G [p- A(q)] 2 + V(q) + ().0 ! ~- [q,p])E0 } ( 13.84d) 

which, in what could be termed the "Hamiltonian gauge'' 31 

Eo= 0 ( 13.84e) 

simplifies to 

H = Tr G [p- A(q)] 2 + V(q)} (13.85a) 

Taking the operator variation of Eq. (13.85a), and recalling the definition of Eq. 
(13.83c), we get 

6H = Tr { [p- A (q)][6p- 6A (q)] + 6 V(q)} 

= Tr {[p- A(q)]6p- F(q,p- A(q))6q} 

Hence the total trace Hamiltonian equations of motion are 

. 6H ( 
q= 6p =p-A q), 

. 6H , 
p = -bq = f(q,p- A(q)) 

(13.85b) 

(13.85c) 

which agree with Eqs. (13.79c), (13.83f), and (13.84a) when these are specialized 
to the gauge E0 = 0. 

We see, then, that the Heisenberg picture equations of motion and the 
canonical commutation relation for a Galilean particle both emerge from the 
operator gauge invariant, total trace Lagrangian formalism. The derivations 
just given are expressed in operator terms throughout; at no point did we 
introduce a classical Lagrangian and its "quantization." In complex quantum 
mechanics, the conventional canonical quantization route is of course still 
valid and implies that there is an operator Hamiltonian H given by the Weyl 

31 We adopt here the terminology of Faddeev and Slavnov (1980), pp. 82 -83, who discuss properties of the 
Hamiltonian gauge for Yang--Mills gauge fields. We note that independent of gauge, Eq. (13.84d) simpli
fies to Eq. (13.85a) on the constraint surface specified by Eq. (13.84b). If we keep Bo # 0 in H, then the 
total trace Hamiltonian eqmttions of motion differ from Eq. (13.85c) by the replacements 
q----+ D0 q,j;----+ Dop, and agree with the B0 f 0 form of the Euler~Lagrange equations. 
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( 1928) ordering of the corresponding classical Hamiltonian. 32 For the model 
under study, we have 

H = G [p- A(q)1
2 + V(q)} w (13.86a) 

where the Weyl ordering subscript W implies symmetrization of p with respect 
to the factors of q in each term of A (q); for example, 

I 
{pqn} W = {qnp} W = __ (qnp + q"-lpq + qn-2pq2 + ... + q2pqn-2 

r.+i 

+ qpqn-l + pqn) 

With [q,p] = i.ol, we then find that 

I 
-, [q, H] = p- A(q), 
ho 

I 
-no [p, H] = -F(q,p- A(q)) 

(13.86b) 

( 13.86c) 

since, as may be verified by some algebra, the Weyl ordering of H leads to the 
same factor ordering in the force term F as is obtained, via the cyclic property of 
the trace, from the operator variational definition ofF in Eq. (13.83c). Hence 
the equations of motion of Eq. (13.85c) are equivalent to 

p = .l.01 [IH,p] (13.86d) 

and so in the terminology of the preceding section, the dynamics is unitary. This 
permits us to transform from the Heisenberg picture to the Schrodinger picture, 
in which the operators are time independent and the cotransforming states carry 
the quantum dynamics. 

In the example just given, all operators are bosonic, and so the (-I { factor 
in the definition of Tr does not come into play. As our second example, we 
consider a single noninteracting fermion degree of freedom with mass m, 
described by the conventional operator Lagrangian 

L~ = ~ ( t/1 t ~ - ~ t t/1) _ mt/J t t/1 ( 13.87a) 

The Lagrangian of Eq. (13.87a) again does not transform simply under the 
operator transformation 

uui = utu = 1 (13.87b) 

32 In his- book, Weyl definesf(p. q), for operator p and q, by Fourier transformation as 

Developing the exponential in a power series and collecting terms with identical powers of (J and r gives the 
operator symmetrization recipe of Eq. (13.86b) and its generalization to the case {p'"q"}w· 
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but as in the bosonic example, we can achieve covariance by replacing the time 
derivative by the covariant derivative Do, 

' 8t/f 
Dot/! -at+ [Eo, t/1], (13.87c) 

With Bo transforming as in Eq. (13.79d), Dot/! transforms as 

(13.87d) 

and so the redefined Lagrangian 

( 13.87e) 

transforms covariantly, 

(13.87f) 

The corresponding total trace Lagrangian Lt/1 and action St/1, 

st/1 =I: dtLt/1 (13.87g) 

are then invariant. 
Proceeding as in our first example, we examine the dynamics following from 

a general linear combination of the actions St/1 and SBo· Writing 

( 13.88a) 

and taking general operator variations of t/1 and B0 , with bt/ft = (bt/f)t, we get 

bL = Tr {~ [bt/JtDot/J + t/ftb(Dot/1)- b(Dot/Jt)t/1- (Dot/Jt)bt/1] 

- m ( (5 t/1 t t/1 + t/1 t (5 t/1) - -io I b B o} 
= Tr ( 2(bt/J) t (/Dot/! - mt/1) -I [{t/1, t/1 t} + ),0]6B0 ) + :t Tr (ft/1 t bt/f) ( 13.88b) 

(As an alternative to treating bt/f t and bt/f as dependent, one could proceed 
from an operator analog of Lemma 3 of Sec. 12.2, which would require 
keeping bLt/1 in manifestly self-adjoint form.) We have here explicitly used 
properties (ii) and (iii) of Tr discussed in the preceding section, with the 
appearance of the anticommutator {t/1, t/Jt} a direct result of the effect of the 
( -1 {factor on the reordering of fermion factors inside Tr. The time derivative 
term in Eq. (13.88b) makes no contribution to the actionS, and so the Euler
Lagrange equations following from bS = 0 can be read off directly from Eq. 
(13.88b), 33 giving the dynamical equation for t/J 

IDot/J = mt/J ( 13.88c) 

33 We could, of course, have done the calculation of Eqs. (13.83a-g) the same way. 
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together with the constraint 

( 13.88d) 

Equation ( 13.88d) is just the standard canonical anticommutator for a fermion 
degree of freedom when we identify -).0 = n (= I in microscopic units). We 
note that this determination of .l.0 has the opposite sign from that found earlier 
in the bosonic example; we shall say more a bout this shortly. Finally, we remark 
that because the Hilbert space for a single fermion degree of freedom consists of 
one state IO) E vi:J and one state II) E ViH [cf. Eqs. (13.50a--c)], the effect of the 
(-I )F in the definition of Tr is to give 

Tr I = I - I = 0 (13.88e) 

and so taking Tr of the left- and right-hand sides of Eq. (13.88d) gives a 
consistent equation for nonzero /.0 , 

(13.88f) 

From the time-derivative term in Eq. (13.88b), we identify the momentum 
conjugate to t/J as 

bL i 
N = ---=- = lt/J 

bt/J 

Since by property (ii) of Tr we have 

Tr ( ft/J t ~) = Tr [ ~ t/1 t ~ + ( ~ t/1 t ~) t] '= Tr [ ~ ( t/1 t ~ - ~ t t/1)] 

the total trace Hamiltonian becomes 

H = Tr (It/f t ~) - L = Tr [~ ( tjJ t ~ - ~ t tjJ)] - L 

= Tr (I[{t/1, t/Jt} + /.o] Bo + m t/Jtt/1), 

which simplifies in the Hamiltonian gauge B0 = 0 to 34 

Hence, taking operator variations, we get 

and so Eq. (13.68f) becomes 

/~t = fi,;, =- ~~ = lmp,p = -Jrllj;t. 
. bH 

t/J = --.- = -Im t/J 
opJ/J 

14 The product lm is not to be confused with Tm. for imaginary part. used in Sec. 6.5. 

(13.89a) 

(13.89b) 

( 13.89c) 

(13.89d) 

(13.89e) 

( 13.89f) 
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in agreement with Eq. (13.88c) and its adjoint when Bo = 0. As in our bosonic 
example, in the fermionic case there is also an operator Hamiltonian 

which, with {if;, lj;t} = -Ao, obeys 

I . 
~. [if;, H] = -lm if;= if;, 
-lAo 

I ' t . t 
~. W, H] = lm if; = if; 
-lAo 

( 13.89g) 

(13.89h) 

Hence the dynamics of Eq. (13.89f) is unitary, again permitting an operator 
gauge transformation from the Heisenberg picture to the Schrodinger picture. 

We see, then, that the standard quantum mechanics of a single bosonic and a 
single fermionic degree of freedom, including the canonical commutator and 
anticommutator, follows from the operator gauge invariant total trace Lagran
gian formalism. In the remainder of this section, we discuss some extensions and 
generalizations of the examples just given. 

(I) Let us first examine what happens when more than one degree of freedom is 
present. Focusing only on the structure of the kinetic terms, for a set 
{ q,.}, { ij;.J of bosonic and fermionic variables, we have the conventional 
Lagrangian 

( 13.90a) 

There is now more than one way to extend Eq. (13.90a) into an operator 
gauge invariant Lagrangian, depending on whether we require invariance 
when all variables are subject to the same operator unitary transformation 
or when they arc subject to independent operator unitary transformations. 
When all variables arc subject to the same transformation, 

q,. _.. Uq,.ut, (13.90b) 

we hachieve covariance of the Lagrangian by replacing L{q, }.{1/J,} by L ~~: }.{ 1/1,}, 
Wit 

(13.90c) 

where Do acts on the bosonic and fcrmionic degrees of freedom as in Eqs. 
(13. 79c) and ( 13.87c ). The total trace Lagrangian and action 

L(I) = Tr L(I) 
{q, }.{1/J,} {q, }.{1/J,}' 

S(l) - dtL(I) !
:x; 

{q,},{I/J,}-. -X {q,}.{l/1,} (13.90d) 

are then invariant under Eq. ( 13.90b), and the constraint equation arising 



QUATERNIO:"'IC QUANTCM FIELD THEORY 465 

from the variation with respect to Bo of 

(13.90e) 

with S 80 defined as in Eqs. (13.8lb) and (13.82a), is [cf. Eqs. (13.83b) and 
( 13.88b )) 

(13.90f) 
r=l s=l 

We see that the individual canonical commutators and anticommutators 
are not determined, but only the linear combination given by the sum of 
bosonic commutators minus the sum of fermionic anticommutators. The 
constraint of Eq. (13.90f), as well as the dynamical equations of motion 
for { q,.} and {if;,}, are consistent with the imposition of the canonical 
relations 

[q,., Doq,.] = I, {if;,, if;!} = I (13.90g) 

for each rands but do not require these. 35 We note the interesting fact that 
when the numbers of bosonic and fermionic degrees of freedom are equal, as 
is the case for a supersymmetric theory, and the canonical relations of Eq. 
(13.90g) are imposed, then the constraint of Eq. (13.90f) is satisfied with 
.Ao = 0. 

An alternative possibility is to require invariance of the total trace 
Lagrangian under independent operator transformations of the canonical 
variables, 

q,. _. u,.q,. u;., 
U Ut- utu - U ut- uru - I r ,.-u,. ,-- s s- s s- (13.9la) 

To achieve this, we introduce an independent covariant derivative for each 
canonical variable, 

with B0,, r = I, ... , R and B0.,, s = I, ... , S independent anti-self-adjoint 
operator gauge potentials. We now replace the Lagrangian L{q,},{t/JJ by 

R S' 
(2) _ "" I , 2 ~ I [ t ' ' t ] 

L{q,){t/IJ- ~2(Do,.q,.) + L..,2 1/J,Do,I/J,.- (Do,if;,)lj;, 
r·~l s=l 

(13.9Jc) 

the individual terms of which transform covariandy (but now indepen
dently) under Eq. (13.9la), 

3
' In the language of the conventional theory of constrained systems, Eqs. (13.90g) are invariant relations 

that are compatible with the Lagrangian constraints and eqmttions of motion. 
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R S 
(2) "' . I ' 2 rt ~ ' I [ t A ' t ] ·t 

L{q,.}{t/1,}---> LU, 2(Do,q,.) L,+ LU·'2: 1/J.,Do,!J;,-(Do,I/JJI/Js U, 
r=I s=I 

(13.9ld) 

Equation (13.9ld) has the general form of Eq. (13.7ld), and correspond
ingly, the total trace Lagrangian and action defined by 

s12l - dt 1 (2) I
X 

{q,}.{i/1,.}-. -C)() '{q,}.{t/1,} 
(13.9le) 

are invariant under Eq. (13.91 a). For each gauge potential B0,. 5 , we can add 
an action term S 811,, formed as in Eqs. (13.8lb) and (13.82a), giving for the 
overall total trace action 

R ,'\ 

s = si!:} {1/J,}- L Xor Sso, - L lo, Sno, (13.9lf) 
r o I s.- I 

Varying with respect to each Bor .. n we get the independent constraints 

[q,, Dorq,] - /,orl = 0, 

{lj; 10 1/JD + io5 = 0, 

r = I, ... , R 

s = I, ... , S (13.9lg) 

which are closer in structure to the usual canonical commutators than the 
single constraint of Eq. (13. 90f). Of course, when we impose the require
ment of invariance under independent operator transformations as in Eq. 
(13.91 a), the interaction terms in the total trace Lagrangian are much more 
tightly restricted in form than when we impose only invariance under the 
global transformation of Eq. (13.90b). In applications, we shall see that the 
indices r. s are typically composite indices, indicating both the spatial coor
dinate value .? and the particular field component at x. In this case, we will 
find that the constraints associated with Bo have a structure intermediate in 
form between those of Eqs. (13.90f) and (13.9lg): The constraints at differ
ent values of x will be independent, but at each x they will consist of a sum 
of contributions from the various bosonic and fermionic field components 
present in the theory, evaluated at that value of x. 

(2) As a simple example of the case in which r is a composite index, let us 
generalize the bosonic part of Eq. (13.90a) to a three-dimensional scalar 
field theory. We thus replace q,.(t) by cp(x. t), with the conventional 
Lagrangian density 

(13.92a) 

where the potential V includes both mass and self-interaction terms. To 
extend Eq. (13.92a) so as to be covariant under the local (in the coordinates 
S! and t) operator gauge transformation 

cfJ(x, t) __. uuf, r)cfJ(x, t)u 1 C", t), U(,Y, t) ut (.X. t) = ut C". t) U(x. t) = 1 

(13.92b) 
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we introduce anti-self-adjoint operator gauge potential components 
E0 (S!. t). Er(S!, t), which transform under Eq. (13.92b) as 

( 
~ t au , 

Eo x.t) ___, UEoU ~at U'. (13.92c) 

As a consequence of Eg. ( 13.92c), the covariant derivatives 

' dcp 
Doc/J 7it +[Eo,¢], (13.92d) 

transform as 

(13.92e) 

and the Lagrangian density 

(13.93a) 

transforms covarian tly, 

(13.93b) 

The Lagrangian L,P is obtained by spatially integrating the Lagrangian 
density, 

(13.93c) 

and transforms as 

Equations (13.93c,d) have the general form of Eq. (13.7ld), and conse
quently even though L1, has no simple covariance properties under Eqs. 
( 13. 92b,c), the total trace Lagrangian Lq, and action S<f>, 

Lq, = Tr L<P, Sq, = I: dt Lq, (13.93e) 

are invariant under local operator gauge transformations. 
Turning our attention to Lagrangians for the gauge potential, we observe 

that since we can now form a nonvanishing field strength 

a a 
Fof =-Ef- --- Bo +[Eo. Et] Dt · ()xi: · · 

(13.94a) 

which is locally covariant under Eq. (13.92c), 
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(13.94b) 

the total trace Lagrangian and action (with g a coupling constant)36 

( 13. 94c) 

are invariant under the global gauge transformations of Eq. (13.92c). We 
have seen in our first example that we must also include action terms that 
are invariant under infinitesimal gauge transformations that vanish at in
finity. For a U differing infinitesimally from unity as in Eq. (13.8lc), the 
first-order variation in Bp is 

81JA , 
bBt = [bk Be]~ -f = ~DrbA ax ( 13.94d) 

and so when bA vanishes (or takes the same value) at x = ±oc we have 

SBI =I: dt LBI 

(13.94e) 

From the discussion of Eqs. (13.8la)-(13.82b), we also have 

(13.94f) 

Hence the most general total trace action for the gauge potential, which is 
invariant under infinitesimal local operator gauge transformations (and 
which does not involve inverse powers of masses), is 

3 

S~OT =SF~ ),oSB0 + :~:::>:e SB1 (13.94g) 
£=1 

with Ao.t constants. 
Forming now the overall total trace action 

(13.95a) 

36 An action term J d 1 x F(A), with Fan arbitrary real function of its argument A, and with A given by 

.l 

A= L[Tr(/Fot)] 2 

1- I 

is also invariant under Eq. (13.94b). It makes an additional contribution (when Bois varied) of 

.l {) IL-1 [2F'(A)Tr (!Fol)] 
1-1 ax 

to the constraint of Eq. (13.95c). However, Tr (!For) is a c-number tleld strength, which in a translation 
invariant theory must be a spatial constant, in which case the additional constraint contribution vanishes. 
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and varying ¢,Be, and B0 , we get dynamical equations for cp and Bp from 
the bcp and i3Br terms, 

(DoDo~ t D1D1) q) + v'(¢) = o 

' 1 ' 
Ur ~ [c/J,Dr¢] + 2 DoFor = 0, 

g 

while from the bBo term we get the constraint 

Noting that DrFor includes the term 

Ji = L 2, 3 (13.95b) 

(13.95c) 

(13.95d) 

and remembering that Bp is anti-self-adjoint (which accounts for the extra 
minus sign), we see that Eq. (13.95c) includes a linear combination of 
commutators with the general form of Eq. (13.90f), involving all the 
operator fields that interact at the spatial point .X. The system of equations 
of Eqs. (13.95b,c) is more general than that arising from the standard 
canonical quantization of L'q, of Eq. ( 13.92a), ref1ecting the presence of a 
full operator gauge invariance. The standard canonical quantization is. 
obtained from the operator gauge invariant equations by imposing the 
invariant relations 

together with 

[¢(.X, t), B0 (.X', t)] = o ==?Do¢= 8oc/J 
[c/JU', t), B1(x', t)] = o ==? De(/J = a,cp 

[c/J(x, t), ¢(x', t)J = o ==? [¢, D1(/Jl = o 
[cfJC?, t), 8o¢(x', t)] = It5 3 (x ~ x') =?-[¢,Do¢]= /03 (0) 

Fot = 0, .l.e = 0. 

(13.95e) 

(13.95f) 

which are compatible with both the dynamical equations of Eq. (13.95b) 
and the constraint of Eq. (13.95c). 

(3) For a self-adjoint bosonic coordinate q, the most general operator transfor
mation that keeps q self-adjoint is the unitary transformation of Eq. 
(13. 79b ). However, the fermionic coordinate t/1 used in the second example is 
not self-adjoint,37 so we can consider generalizing its operator transforma
tion rule from the unitary transformation of Eq. (13.87b) to a biunitary 
transformation with independent unitary u and U 1

, 

17 We could also introduce a non-self-adjoint bosonic: coordinate rjJ transforming as rjJ ~ UrpU'1, in 
analogy with Eq. ( 11.26a). This will be done in the quaternionic discussion of the next section. 
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uut = ut u = u' u't = u't u' = 1 (13.96a) 

To generalize the Lagrangian of Eq. (13.87e) so as to be covariant under this 
transformation, we now introduce operator gauge potentials Bo and B~ 
transforming as 

au 
B0 ---+ UB0 ut --ut. at · 

7U 1 

B' ---+ U' B 1 u't- -( ~ u't 
o o at 

and a covariant derivative Do acting on t/1 as 

(13.96b) 

( 13. 96c) 

Then by a calculation paralleling that of Eqs. (11.26a)-(11.28a), we see that 
under the transformation of Eqs. (13.96a,b), the covariant derivative Dot/! 
transforms as 

(13.96d) 

Hence the Lagrangian 

( 13. 96e) 

transforms as 

(13.96f) 

and the total trace Lagrangian and action 

(13.96g) 

are invariant. 
Under infinitesimal gauge transformations 

U =I+ bA, U' = I+ bA' (13.97a) 

there are now two total trace Lagrangians with invariant total trace actions 
constructed as in Eqs. (13.81 b) and (13.82a), 

LB0 = Tr (IB0 ), 

(13.97b) 

Hence the most general action invariant under infinitesimal biunitary 
operator gauge transformations is 

(13.97c) 
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Varying S with respect to t/J we get the dynamical equation 

!Do t/1 = mt/J (l3.97d) 

while varying with respect to B0 and B~. we get the constraints 

(13.97e) 

These can be satisfied, in the two-dimensional Hilbert space of a single 
fermion degree of freedom h [cf. Eqs. (l3.50a--c)) by taking 

t/1 = ( -lo) I/2 U(h + ht) u't 

t/lt = (-),o)I12u'(h+ht)ut 

(13.97f) 

with U and U 1 arbitrary unitary operators acting in the two-dimensional 
Hilbert space. In other words, t/J is the biunitary transform of a Majorana 
(self-adjoint) fermion degree of freedom. 

The fermion model of Eq. (l3.87e) and its biunitary extension of Eq. 
(l3.96e) can be generalized to field theories, in analogy with our discussion 
of the boson case. The fermionic degree of freedom t/1 now becomes a 
fermion field t/J(.'C, t), and the unitary operators U and U' become local 
functions of .i and t. For the field theory based on the unitary transforma
tion 

(l3.98a) 

the analysis parallels that of Eqs. (13.92a}-(l3 .95c), and the constraint of 
Eq. (l3.88d) generalizes to 

(13.98b) 

where we have followed the notation of Eq. (l3.95c). For the field theory 
based on the biunitary transformation 

t/J(.'Z, t) ___, U(.'Z, t)t/J(.'Z, t) u't (.?, t) (13.98c) 

the constraints of Eq. (l3.97e) generalize to 

(l3.98d) 

where g1
, D~, and F~f are the coupling constant, covariant derivative, and 
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field strength referring to the primed gauge potential, as defined by substi
tuting primed quantities for unprimed quantities in Eqs, (13,92d) and 
(13,94a), 

(4) We conclude this section by briefly describing operator gauge invariant 
extensions of the conventional Yang-Mills action. Let !abc be the structure 
constants of a semisimple Lie group, let h;~ be self-adjoint gauge potential 
components transforming according to the adjoint representation, and let 
1;~\' be the Yang-Mills field strength 

! 'a C) ha C) hi/ '"""' r a he hh h" 
. Ill' = Up \' - u,. I' + L . I' \' 

b.(' 

Then the conventional Yang-Mills action is given by 

(13.99a) 

(13.99b) 

The simplest way to make Eq. (13.99b) operator gauge invariant is to 
require only, in analogy with Eq. (13.90b), invariance when all gauge 
potential components h~ are subjected to the same transformation, 

ha ---> Uh" ut 
I' I' ' 

( 13. I OOa) 

Following the procedure used repeatedly earlier, we introduce an anti-self
adjoint operator gauge potential four-vector B1,, with time component B0 
and spatial components Bp that transform as 

, au . 
Bo ___, UBoU 1

-- ur. at · 
The covariant derivative 

then transforms as 

au 
Bp ___, UBrut-- ut 

axr 

DA ha ---> UDA h" u t 
I' \' I' • 

and as a consequence the total trace Lagrangian and action 

SyM = 1: dtLyM 

( 13 .I OOb) 

(13.100c) 

( 13 .I OOd) 

( 13 .I OOe) 

are operator gauge invariant. The general action term for the gauge poten
tial B1, has the structure of Eq. (13.94g), 
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s~or =sF+ IJ1SB
1
, 

SF= !DO dt j d3 x 4~ Tr (F11 vF 11 ") 
• -DO g 

F11 v = 811 B,- 8,B11 + [B11 , Bv] 

SB1, =I: dt ./ d
3 
xTr (IB11 ), 
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( 13.100f) 

with ~_I' a constant four-vector, and with the sign change in SF, as compared 
with SyM, reflecting the fact that B1, is anti-self-adjoint, whereas g:,, is self
adjoint. 

One can formulate alternative extensions of Eq. (13.99b) in which the 
gauge potential components h: are subjected to different operator gauge 
transformations for different values of the internal index a. One such model 
was proposed by Adler (1979) under the name algebraic chromodynamics, 
and gives an operator gauge invariant extension of U(n) = U(i) x SU(n) 
gauge theory, in which the original gauge potentials h:. and the operator 
gauge potentials B: associated with the independent operator gauge trans
formations, are combined into a single Yang-Mills-like structure. To 
construct this model, let )"a, a = 0, I, ... , n 2 

- I be the self-adjoint <C( I ,I) 
generator matrices for U(n), trace normalized so that 

(13.10la) 

These matrices are a complete basis for n x n matrices, and so form a closed 
set under multiplication and anticommulation as well as under commuta
tion, 

[~·a~ ·h] __ 1"" ;·ahc~ •c 
2 lc ' 2 lc -- L 2 I" 

(' 

(13.10lb) 

[We note that the SU(n) generators ;,a, a== I, ... ,n2
- I, form by them

selves a closed set under commutation, but not under multiplication or 
anticommutation.) We now let h~ be self-adjoint, operator-valued gauge 
potential components (i.e., they are not assumed to commute with one 
another) and let Bv be the anti-self-adjoint n x n matrix potential, with 
operator-valued matrix elements 

r ""aJ·a Bv=Lh,;;!c .. a 

(13.10lc) 

Correspondingly, letf;, and F11 , be the fielld .. strength components and n x n 
field-strength matrix, defined by 

FilV = L f~v~;,a = ai,B,,- DvBI, + [B/1, Bv] 
{l 

(13.10ld) 
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which by Eqs. (13.10lb,c) implies 

f a D ha a ha "'""' I abc (hb h" hhhc) ' 111' = I' \' - \' 11 + L q 11 \' - \' I' 
h.(' 

=aha- aH' + "'"'(~d"h"[hh b"]-~f"h"{hh h'}) 
I' \' \ /1 L 2 I" \' 2' I" \' 

h,c 

(13.10le) 

When the potential components h:: 
Yang-Mills theory quantization, 
familiar expression 

and h~: commute, as in the standard 
Eq. (13.10le) simplifies to the 

! ·a =a h"- 'J.h"-"'""' j'ahchbhc 
' /1\' 11 \' ( \ I' L ' I' \' (13.10lf) 

h.c 

which no longer admits the possibility of general operator-valued gauge 
transformations of the potentials. Returning to the general form of Eqs. 
(13.10ld.c), let now U(x) be ann x n unitary matrix with operator-valued 
matrix elements, 

(13.102a) 

under which B11 transforms as 

(13.102b) 

and under which F1" correspondingly transforms as [cf. Eqs. (12. l)-(12.3b)] 

( 13. I 02c) 

Under this operator transformation, the action 

I
. I 

- 3 ' ll\' L- d x-
2 

f 111,F 
. 4g 

(13. 102d) 

transforms as 

I. 3 1 ) I'~' ·r ) L--+ d x-
2 

U(x F11 ,F U (x 
' 4g 

(13.102e) 

and thus the total trace Lagrangian and action 

L = Tr L, (13.102f) 

arc invariant Consequently, the operator variational equations derived 
from Eq. ( 13. I 02f) are covariant under the operator gauge transformation 
of Eq. ( 13. I 02b ). It is straightforward (Adler, 1979) to include fermions in 
the model, by introducing an n-component column vector fermion field 
tj; (x), which transforms under Eq. (13. 1 02b) as 

( 13' 1 02g) 
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This completes our excursion into operator gauge invariant formulations of 
conventional complex quantum mechanics and quantum field theory. In the 
next section, we return to the main theme of the book and study operator gauge 
invariant quatcrnionic field equations. In concluding the discussion of the 
present section, we note that we have ~hown that all the basic field theory 
building blocks of the standard model can be embedded in operator gauge 
invariant theories. This raises the question of studying operator gauge invariant 
extensions of the full standard model, to see if useful insights (such as restric
tions on the parameters, or new calculational methods) can be obtained. 

13.7 OPERATOR GAUGE INVARIANT ClUATERNIONIC FIELD 
THEORIES 

We turn now to the construction of operator gauge invariant theories in 
quaternionic quantum mechanics, which is distinguished from the complex ca~;e 
discussed in the preceding section by the nonexistence of a left-acting I that 
commutes with all operators. Nearly all the work of constructing operator 
gauge covariant field equations and operator gauge invariant total trace 
Lagrangians has already been carried out in Sees. 12.1 and 12.2, where we 
discussed c-number quaternionic fields. To transcribe these classical Lagran
gians and equations into operator equations we make the following substitu
tions: (i) We replace quaternion conjugates (bar) by operator adjoints (dagger), 
and quatcrnion-imaginary classical fields by quatcrnion anti-self-adjoint opera
tors; (ii) we replace the quaternions of unit magnitude w and w1 by quaternion 
unitary operators U <md U'; (iii) we replace tr L ~or, for manifestly real 
Lagrangians, L) by Tr L; (iv) because of the (-I) in Tr, wherever a t/J 
precedes a tjJT in the equations of motion, as in the first line of Eq. 
(12.41 b), we add an extra minus sign; (v) since we will always work in 
Majorana representation for the Dirac matrices, we omit the subscript M, 
keeping in mind that ·ll and il are real matrices; (vi) explicit factors of i 
not associated with 1'0 arc replaced by a left-acting /, the presence of wh1ch 
restricts the gauge invariance group. 

For ease of reference, we summarize the total trace Lagrangians, the 
operator equations of motion, and the gauge properties for the various models 
obtained by these substitutions from the models of Chapters 11 and 12. We 
begin with the field theory of a quaternionic scalar field ¢, which is not 
restricted to be self-adjoint (or anti-self-adjoint), and which is subjected to the 
general local gauging 

uut = ut u == u' u'r = u'i u' = 1 (13.103a) 

in which a common space-time argument x is understood for ¢, U, and U 1
• 

Introducing anti-self-adjoint gauge potentials B11 , B~ which transform as 

B11 ----+ UB1,ut- (811 U)Ut, B~----+ U' s;,u't- (D11 U1)U'l (13.103b) 

and the covariant derivative and field strengths 

D11 cp = o11 cp + B11 rp- cpB~ 

FJlV = Of1BV- a,BI' + [BI', Bv] 

F~v = 011 B~, - DvB~ + [B;,, B~,] (13.103c) 
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which transform as 

F ' "'F' u't pr ---+ u pv (13.103d) 

the total trace Lagrangian density analogous to Eq. (12.32b) is 

£ = L,p + LB + LBI 

£,p = Tr { ~ [- ( D 11 cp) t Df1 cp - m2 cp t cp] - ~ ( cp t cp) 2 } 
(13.103e) 

LB = Tr ( 4~ 2 Fv11 F"11
), LB' = Tr ( 4 (~') 2 F:11 F'"11

) 

The total trace Lagrangian Land actionS are formed from£ by the usual recipe 

S = ./ dtL (13.103f) 

Note that an action term analogous to SB
0 

of Eq. (13.82a) is now not admis
sible, because the left-acting I needed to construct this term breaks the operator 
gauge invariance. Wh~n we V<:,lry S, through bF11 ,. and bF~, we encounter the 
covariant derivatives D11 and D~, 

b11 o = a11 o + [B11 , OJ, 

1JF11 ,. = D11 6Bv- Dvl5B11 , ( 13.1 04a) 

and in integrating by parts we use the intertwining identities of Eqs. ( 11.31 a,b) 
and (11.33b), which now read 

D11 (pr/) = (D 11 p)rlt + p(D 11 r1)t 

jj~ (p t T/) = ( D f1 p) t 17 + p t D f1 T/ 

811 Tr (pr1t) = Tr [(D11 p)17t + p(D1,r1)t] 

811 Tr (Pt17) = Tr[(D 11 p)tr!+PtD11 r1] ( 13.104b) 

with p and 17 either both bosonic or both fermionic in type. Omitting further 
computational details, which parallel those of Eqs. (12.35a,b), we get the 
operator equations of motion38 

D
11
Df1cp- (m2 + gqJcpT)cp = 0 

:fv = ![cfJ(Dvc/J)r- (Dvc/J)c/Jt] 

J~ = ![c/JtDvc/J- (Dvc/J)tc/J] (13.105) 

'"In the e-n umber case, ,p;p =¢¢,and so Eq. (12.36a) is equivalent to D1,D
1'1>- (m2 + g<j;<j;)¢ = 0. In the 

operator case, although Tr ,p,pi = Tr ,pi¢ and Tr (¢¢1) 2 ·= Tr (¢11>) 2
, we nonetheless have ¢¢1 cJ ¢ 1¢, 

and so in the equations of motion we must use the factor ordering coming from the total trace prescription, 
which gives g<j;¢1 ¢for the scalar field self-interaction. This form is gauge covariant, whereas g¢1 r/>1> would 
not be. 
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in which the v = 0 components of the gauge field equations are constraints 
rather than dynamical equations. As in Sec. 12.2, Eqs. (13.103e) and (13.105) 
can be specialized to less general gaugings of¢. For example, if we take cp to be 
gauged under 

¢ ___, u¢ut ( 13 .I 06a) 

which is the most general allowed gauging when cp is self-adjoint, the appro
priate Lagrangian density is 

L,p = Tr G [ _ ( [) 11 cp) t fJ11 cp _ m2 cp t cp] _ ~ ( cp t cp) 2} 
(13.106b) 

and the corresponding equations of motion are 

iJ,,bflcp- (m2 + gcpcpt)cp = 0 

iJ11 Fv 11 = ~G2 [¢(bv¢)1 - (bv¢)c/Jr + cpriJv¢- (Dvc/J)t¢] ( 13.106c) 

We turn next to the case of quaternionic fermion fields, starting again with 
the most general gauging, in which there are two fermions t/J ( 1), t/J (2) transform
ing as 

t/1 (2J ___, Ut/J (2J u't 

The total trace Lagrangian density analogous to Eqs. (12.38a,b) is 

with LB and £B, as in Eq. (13.103e), and with £1/1
112 

given by 
' . ) 

£.;,(12) = Tr {! [t/lh)lyf1Df1t/J(l) + (Dflt/J(I)/l·lt/1(2)- t/I~I) .. llDf1t/J(2) 

(13.107a) 

- (D11 t/J(2))
1y

0
"/t/J(i)J + m(~~rz) iy0

t/f(I)- t/J~I) iy
0

t/f(2))} (!3.107c) 

Varying the actionS [still related to£ by Eq. (13.103f)) and recalling that ~·0 y 11 

and il are, respectively, real symmetric and real skew-symmetric matrices, we 
get the operator equations of motion 

iJ'IlF' = -(G')2 qt vp ~ V' 
qt _ ,1,t .. ,o .. , ,1, ,1, t 'Yo'Y ,1, 
Jv- '1'(1)' rv'1'(2)- '1'(2) 1''1'(1) (13.108) 

with T indicating Dirac index (but not operator) transposition and with 
the change from -G2 in Eq. (12.41 b) to G2 of Eq. (13.108) the result of 
the ( -1 ( factor in Tr. Again, the v ,= 0 components of the gauge field eq ua
tions are constraints. As in the boson case, we can readily specialize the two
fermion model to the less general gauging 
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(13.109a) 

for which the appropriate Lagrangian density is 

£ = £1/1(12) + LB, 

A {t [ r o A A to t o A 

£1/1(1 21 = Tr 2 t/1(2)Y yflDilt/J(t) + (Dilt/J(t)) I "'lt/1(2)- t/l(t)Y yllDilt/1(2) 

-(Dilt/J(2J)t;0;1lt/J(t)] + m(t/Jbl i"'lt/l(t)- t/1( 1) iy
0

tjt(2))} (13.109b) 

and the corresponding equations of motion are 

("lyllDil + miy0)t/l(t) = 0, (y 0-yllDil + mi;0 )t/f(2) = 0 

Dll F _ G2 [''' T ., T .oT,1, tT ,1, T ., r, or,1, tT ,1, t ,o., ,1, ,1, t ., a, ,1, J 
'"ll- 'P(t)lvY '~'(2) -'P(2)1vY '~'(!) -'~'(I)I lv'P(2) +'~'(2)Y I','P(l) 

( 13.1 09c) 

In the remaining fermionic models discussed in Sec. 12.2, either the left or the 
right gauge invariance is restricted to be a complex gauge invariance belonging 
to the <C(l, I) subalgebra. Thus the operator transcription of Eq. (12.42b) is 

( 13.110a) 

with I 1 a space-time-independent left algebra operator, and with U1 and B 1 

restricted to be <C( I, I 1
). Similarly, the operator transcription of Eq. (12.44b) isll 

(13.110b) 

with I a space-time-independent left algebra operator, and with U and Bll 
restricted to be <C( I ,I). When Bll is so restricted, an action term SB

1
, as in Eq. 

(13.100f) can be included in the total action, and analogously forB~ in the case 
of Eq. (13.110a). 

Before proceeding to the total trace Hamiltonian form of the dynamics, we 
discuss a number of issues that can be addressed directly from the total trace 
Lagrangian and the equations of motion. 

(1) We begin by contrasting the quaternionic gauge field structure with that of a 
conventional Yang-Mills gauge field. Let i,EA,A = 1,2,3 be a space-time
independent left algebra basis, and let us use Eq. (2.lld) to expand the 
gauge potential Bll and the corresponding field strength Fllv over this basis, 

3 

Bll =Boll+ L BAilEA, 
A=l 

3 

Fllv = Follv + L FAilvEA 
A= I 

with the expansion coefficients Boll, BAll, Follv, FAilv formally real, 

(13.llla) 

(13.lllb) 
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We recall, however, from the discussion of Sec. 13.3, that in general the 
expansion coefficients Bow BAp· ... are still operators that do not commute 
with one another. Substituting Eqs. (13.111a) into the formula of Eq. 
(13.103c), which relates the gauge field strength Fw to. the gauge potential 
Bw we find that the expansion coefficients FA 111., A= 0, ... , 3 are related to 
the BA1,.A = 0, .... 3 by 

3 

FAf.'\" = a,BA\'- OrB AIL+ [BA/1" B()\·l- [BAr: Bop]+ L F.ABc{BBw Bcr} 
B.C~I 

(13.lllc) 

If BA 11 , A= 0, ... ,3 all commute with one another, Eq. (13.111c) would 
reduce to U(i) and SU(2) conventional gauge field structures, 

3 

FAf11' = af.'BA, - a,.BAp. + 2 L [;ABCBBI'Bcr 
B.C=I 

(13.111d) 

But in the general case with noncommuting formally real components BA1, 

Eqs. (13.111c) are not equivalent to Eqs. (13.1lld). 39 Equations (13.111e) 
represent only part of the complete system of equations following from the 
total trace Lagrangians of Eqs. (13.103e), (13.107b,c), and so on. It is 
straightforward to reexpress all the remaining field equations in terms of 
formally real components with respect to the left-acting algebra LEA. 

Because the BA 11 are quaternionic: operators, they can themselves be 
expanded over formally real components with respect to a second left-acting 
algebra I,£~) which commutes with 1, EA, 

3 

BA 11 = BoA 11 + L BBA11 E~) 
8=1 

[ l 
(I) 

BBAp: Ec = [BBAp: Ec ] = 0 

[E8 . £~1 J] = 0, A, B. C = 0, I, 2, 3 ( 13 .112a) 

This process can be continued to atly order, giving in nth order a multi
quaternion expansion of the form (with £ 0 = £61

) = ... = Ek') = I) 

3 3 3 

""' ""' ""' (I) (n) Bl' = ~ ~ ... ~ BA, .. A,ApEAE A, ... EA, (13.112b) 

with, for all index values, vanishing commutators 

'
0 The field strength· potential relation of Eq. (13.1ild) i' equivalent to that of the C:(2) vc"ion of 

··algebraic chromodynamics"" (Adler 1979. 1980a.b). which is based on the {:(1. i) Pauli matrix repre
sentation of the quaternion algebra. However, these papers place the fermions in the 2-dimensional ~: (I. i) 
representation of SL'(2). rather than in the 1-dimcnsional quaternionic representation. and so they are not 
true quaternionic fteld theories. For a related L'\2) theory, see Albevcrio and H0egh-Krohn (\987). 
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Note that the occurrence of left-acting multiquatcrnion algebras does not 
imply that probability amplitudes belong to a nondivision algebra. The 
algebra of right-acting scalars remains just L iJ k, with the possibility of 
multiple commuting left-acting algebras arising because these are quatcr
nionic Hilbert space operators, rather than scalars. For example, in as small 
as a four-dimensional quaternionic Hilbert space there are two mutually 
commuting left algebra bases, 

1 = 

£ (1)
I -

£ (1)-
3 -

0 

0 

0 

0 

0 

0 

-I 

0 

I 

0 

0 

0 0 

I 0 

0 I 

0 0 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

0 

I 

0 0 0 () 

-I 0 

0 0 
E(IJ- 0 0 0 I 
~2 -

-I 0 0 0 

0 0 0 -I 0 0 

0 () 

0 0 

0 I 
( 13. 112d) 

--I 0 

Properties of multiquatcrnion algebras have been studied in a series of 
papers by Razon and Horwitz, and by various authors who classified the 
U(2) case of the "color charge algebras" introduced by Adler (1978).40 The 
latter calculations indicate that large Lie algebras are readily built up from 
multiquaternion bases. 

(2) In the fermionic Lagrangians of Eqs. (13.107c) and (13.109b), the gauge 
bosons couple to vector currents only, and so there arc no chiral anomalies 
(for background, see Adler, 1970, and Jackiw. 1972) and also no Witten 
(1982b) anomalies. As we have seen in Sec. 12.2, the }'s matrix in the 
Majorana representation is imaginary, and so attempting to split Eqs. 
(13.107c) and (13.109b) into chiral components would break the operator 
gauge invariance. In other words. insisting on a maximal operator gauge 
invariance in guaternionic field theory excludes chiral fermions. 

At the same time, since the matrix i(s is real and anti-self-adjoint, when 
the mass m is zero the fermion total trace Lagrangians written earlier arc 
invariant under 

t/1(1,2) ____, ei;·sf!lf(12)• 

tj; ____, e'; sf! t/1' 

Vt' -+ ,,,r e -i;·.~fi 
(1.2) '1'(1.2) 

t/1' ____, t/Jic-1;·1[J ( 13.112e) 

4
" See Razon and Horwitz (199la.b; 1992) and Horwiu and Ra/On (1991). The color charge algebras 

d I · b /.Iii £' 1"' . 1· h h . d. A A d correspon to mu ttquatcrmon ases ~A ... ~ 11 • m w 11c t e 1n 1ces 1:.... 11 are contractc so as to 
' " leave a single free index A. See Cvitanovie. Gonsalves. and ~eville (1978); Lee (1979, 1980); and Milton, 

Palmer, and Pinsky (1982). 
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with f3 a real c-number that is independent of x. Thus when m = 0, the 
fermion models all have a chiral symmctry. 41 

(3) Let us next address the issues of the spin-statistics connection and discrete 
symmetries in quaternionic field theory. (For background, see Streater and 
Wightman, 1964.) On spin and statistics, we have little to say, beyond the 
fact that the conventional spin-statistics connection has been assumed in 
including the ( -1 )F factor in the definition of Tr. We have not made a study 
of the possibility of an abnormal spin-statistics connection in the context of 
quaternionic field theory, and it would be interesting to do so. Nontrivial 
issues could arise because the conventional spin-statistics argument is based 
on requirements of positive energy and commutativity of operators at 
spacelike separation; in quaternionic quantum mechanics positive energy its 
always achievable by a suitable choice of ray representative [cf. Eq. (2.74a)], 
and commutativity at spacelike separations fails for quatcmionic fields [cf. 
Eq. (13.39b)]. Thus if a quaternionic extension of the spin-statistics theorem 
exists, it may require refinements of the standard arguments. 

To study discrete symmetries of the Lagrangians written down earlier, we 
use the Dirac matrix apparatus already employed for this purpose in our 
investigation of c-number Lagrangians in Sec. 12.2. We begin with parity 
( P) and readily find that under the substitutions 

Bo(.'i.x0 )--> Bo(-5!.x0
). 

Br(.'i, x0
)--> -B1( -Lx0

), 

B~(l,x0 ) __, B~(-x,x0 ) 

B~(.'i.x0 ) __, -B~(-x.x0 ) 

¢(.'?. x 0
) --> r/pc/J( -x, x0) 

t/.t(i.2)(.'?. x0 )--> T}~i-ll/1(1.2)( -.X:, x0), 

with T}p, TJ~, and r1~ arbitrary real e-n umber phases, all the total trace 
Lagrangian densities of this section transform as 

(13.113b) 

and the corresponding total trace actions are invariant. Turning next to time 
reversal ( T), the relevant substitutions are now 

B'~(~ o) B1(~ o) 0 X, X --> - 0 X, -X Bo(.'i,x0 )--> -Bo(.'i, -x0
), 

B1(x, x0 ) __, B1(.X:, -x0 ), B I ( ~ 0) B I ( ~ .0) 1 X, X --> f X, -X 

cp ( .Y, x0 ) --> T/TrP (X, - x0
) 

ljt( 1J(x. x0
) __, r1; Atjt( 1l'i, -x0

) 

l/1 (2l'i, x 0
) --> -r1~ A1jt (2) (x. -x0

) 

~ 0 {r1~-Aljt(x,-x0 )J'for£1/J 
'''(x.x)--> 

0 'I' ' II (~ ) , I r17 JAljt x, -x Lor £1/1 
( 13. 114a) 

with m-. T}~, T}~ arbitrary real e-n umber phases, with A the real Dirac matrix 
denoted by AM in Eq. (12.59a), and with 1 1

• J anticommuting, respectively 

41 For discussions of chiml symmetry and references, see Cheng and Li (1984). Chapter 5. and Itzykson 
and Zuber ( 1980), Sec. 11-3-2. 
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with 11
, I. Under these substitutions all the total trace Lagrangian densities 

of this section transform as 

( 13.114b) 

and the corresponding total trace actions are again invariant. 
Turning finally to charge conjugation (C), we consider the substitutions 

B1, __, s;,, 
cp __, T/cc/J I 

I IT 
t/J(I) --> T/cllt(l)' 

t/1 --> T/~V! i T 

I tT 
t/1 (2) __, -rict/1 (2) 

( 13.115a) 

D1,cp --> r1d D11 cp) I. D 11 t/f (1. 2! --> ( +. - )r!~(D l't/1 (I 2) )'
1 7

. D 1,t/J --> r{( D1,Vt) t1 

(13.115b) 

with '7C· T/~, and 'I~ arbitrary real e-n umber phases and with the superscript 
T the Dirac index transpose. When we impose a condition of equality on the 
gauge field couplings, 

G=G' ( 13.115c) 

and use the fact that the ( -1 (factor in the definition of Tr contributes a -
sign when the fermion fields arc reordered [cf. Eq. (13.64d)], we find that all 
the total trace Lagrangian densities of this section arc invariant under the 
substitutions of Eq. ( 13.115a), 

(13.115d) 

Since the gauge potentials B11 and B~ are interchanged by the substitutions 
of Eq. (13.115a), they are not C eigenstatcs. We see, then, that when the 
requirement of C invariance is imposed, the models with independent left 
and right gaugings arc left with a single coupling constant G.42 

42 Let us examine the connection between the C, P. T transformations formulated here for quatcrnionic 
lield theor}. and the transformations studied in Sec. 12.2 for the e-n umber version of the same field equa
tions, expressed in terms of symplectic components. The tmnsformation P of' Eq. (l3.113a). when specia
li;ed to the c-number theory. becomes identical to the transformation P of Eq. (12.55a). The 
tramformation T of Eq. ( 13.114a). when speciali;ed to the e-n umber theor:,, and followed by the quater
nion automorphiwl transformation or replacing all quatcrnions p by jp/. is equivalent to the transforma
tion T of Eq. (12.58c). Finally. the transformation C of Eq. ( 13.115a), which interchanges B,, and B ;, and 
requires the restriction G c- G'. defines a second conjugation operation for the r·-number theory that is not 
in general equivalent to that of Eq. (12.56b). On the other hand. the conjugation operation of Eq. (12.56b) 
does not generalize to give a second conjugation operation in the quaternionic field case. because of 
operator ordering problems. 

The fact that for GIG' the quatcrnionic field models do not have a C and a CPT symmetry does not 
contradict the usual CPT theorem, because we do not make the locality assumption that the frclch 
commute at spacclike seporations. The analysis or Sec. 12.2 shows that when the Lagrangians of this 
section are reinterpreted as complex !leld theory Lagrangians governing the dynamics of the symplectic 
components, they have a C and a CPT symmetry. even for G fc (i 1

• 
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( 4) As briefly noted in Sec. 12.2. by using the fact that the matrix 1;· 5 is real and 
anti-self-adjoint, we can construct a model with self-adjoint Lagrangian 
using a single fermion field. without breaking the biunitary operator gauge 
invariance. The Lagrangian density for this model is 

£ 5 = Tr ~ {,,,i· ... o .. ,,'(i•· )D t''- (D ''')·r,tl.,l'(i·· )'''} 
1/1 2 'I' I I 15 /'I' /1'1' I I 15 '/' ( 13.115e) 

we do not include a mass term because, since il's antieommutes with i·'l, the 
expressiOn 

(13.115f) 

is anti-self-adjoint and vanishes inside Tr. It is easy to check that under the 
transformations 

P : t/f(s!. x0
) ·--" TJP i(0tjJ( -.\!. x0

) 

C: tj; '--" TJct/ltr 

T: t/J(x. x0
) __, r;rAt/J(x. -x0

) (13.115g) 

together with the gluon sector transformations discussed earlier, the 
Lagrangian density £~ is P odd, C odd, and T even. Although na_ivcly 
leading to conserved source currents for the gauge gluons, the model £~1 has 
ehiral anomalies in the usual complex canonical quantization, which 
suggests that it may also be inconsistent in the more general total trace 
Lagrangian dynamics. This question requires further study. 

(5) Up to this point. our entire discussion has dealt with field theories in flat 
space- time. Since the total trace Lagrangians of this section are all Lorentz 
invariant, they can be generalized to curved space-time by the standard 
prescription of replacing the Minkowski metric by a general metric g 11 ,., 

ordinary derivatives E)j by covariant derivatives vi which commute with 
gl',, and so on. When this is done, th1~ source term for the gravitational field 
equation will be a total trace energy--momentum tensor T~''', defined by 
computing the variation of the total trace action S under an infinitesimal 
metric variation gl"' '--" gl', + bgP''' according to 

S '--" S -1- bS, ( 13 .116a) 

[Here g(x) is the negative of the determinant of the metric, and our notation 
follows Weinberg, 1972, Sec. 12.2.] Standard arguments then show that T1"' 

is covariantly conserved, 

(13.116b) 

and, in the flat space-time limit, the spatial integrals of the various compo
nents ofT~"' give the total trace Poincare generators --for example, 

( 13.Jl6c) 
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We conclude that quatcrnionic field theories described by total trace actions 
can be consistently coupled to classical gravitation, but the total trace 
structure of the gravitational source term differs from that customarily 
assumed in the semiclassical theory of gravitation. 43 The implications of this 
remain to be explored. 

(6) It is interesting to ask whether the Lagrangian L of Eqs. (13.1 03f) and 
(13.1 07b,c) has fermionic symmetries, constructed in analogy with the 
fermionic symmetry of supersymmetric Yang-Mills theory (Salam and 
Strathdee, 1974; Ferrara and Zumino, 1974). This question can be investi
gated by studying the change of L under field variations parameterized by 
fermionic parameters, leading to a lengthy calculation, the results of which 
are compactly summarized as covariant divergence equations for the corre
sponding Noether currents. Let S(·1_2) be the fcrmionic currents 

(13.117a) 

which transform under operator gauge transformations as 

(J3.117b) 

Let us define the covariant derivative iJ Jc acting on a general operator a as 

f5 a = rr a + s'. a - as. I. A. 1. A (13.117c) 

so that when a gauge transforms as 

a----+ U'aut (13.117d) 

f5 ;_a transforms covariantly as 

(13.117e) 

Comparing Eq. (13.117c) with the definition of D11 m Eq. (13.103c), we 
evidently have 

(D·a)t =[)at I. I. (I3.117f) 

Forming the covariant divergence f5lS(·!.2) and using Eq. (13.117f), we get 
the identity 

(13.118a) 

41 Fo1·" review of qtwnturn and semiclassical gravitation, sec DeWitt (1979). 
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The first line of Eq. (13.118a) can be simplified by using the Dirac equations 
of Eq. (13.108), expressed in the form 

(13.118b) 

to give 

(13.118c) 

The second line of Eq. (13.118a) can be rearranged by substituting the 
identity 

( 13 .118d) 

The contribution from r;1"ix vanishes by virtue of the Bianchi identities [cf. 
Eq. (12.5c)] 

The contribution from the Kronecker delta terms is 

(13.118f) 

which can be simplified using the gauge field equations of Eq. (13.108) to 
g1ve 

[.d '71' '7'1' /,t ] ,,o., 
'P(I.2)J - J t1'(1.2) I f/1 (13.118g) 

Thus, putting everything together, we have 

+ (.d '7/1 '71/l,d ) .,o,, 
'P(I.2)J -._; '~'(1.2) i '11 (13.119a) 

and we see that even when the fermion mass m vanishes, the fermionic 
currents S(I. 2) are not covariantly conserved. Suppose, however, that there is 
either an operator gauge, or an asymptotic limit, in which the fermion fields 
VJ (1. 2) have the standard canonical anticommutators of complex fields. In 
such a situation, we see from Eq. (13.108) that we would have Jll = J'll, 
and the second line of Eq. (13.119a) would reduce to the singular commu
tator 

[,/ t '7111,,0, 
•j/(1.2)••J .1 y/1 (13.119b) 
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which vanishes in dimensional regularization. 44 This argument suggests that 
Eq. ( 13.119a), despite the presence of the gluon source current terms, may 
nonetheless have useful content. 

Let us now return to our main theme of total trace operator dynamics, and 
construct the total trace Hamiltonian form of the dynamics following from the 
scalar field Lagrangian of Eqs. ( 13.1 03e,f) and the fermion field Lagrangian of 
Eqs. (13.107b,c). From Eq. (13.103e), we get 

and so the total trace Hamiltonian density becomes 

Substituting 

¢=Do¢- Boc/J + cpB~ 
. ' 

Bt = Foe+ DeBo, B.' F' n''s' f = oe + e o 

(13.120a) 

(13.120b) 

(13.120c) 

forming the total trace Hamiltonian H and doing a spatial integration by parts, 
we get 

(13.12la) 

with 

44 For an introduction to dimensional regularization, see Brown (1992), pp. 164-167. In verifying a 
supersymmetry in complex quantum mechanics, one works with classical bosonic and Grassmann fields, 
and so commutators of the form of Eq. (13.119b) are automatically dropped. The supcrsymmetry then 
implies relations among the logarithmic divergences of the quantized theory, which appear as poles in the 
dimension n plane in dimensional regularization. 
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and with .:To, .:J~ the 0 components of the boson source currents .:Tv, .:1: given in 
Eq. ( 13.1 05). Proceeding similarly in the fermion case, from Eqs. ( 13.1 07b,c) we 
get 

bL · 
Pif;(2J = --;-:;:--- = -tj;~I) 

O'f' (2) 

and so the total trace Hamiltonian density becomes 

Substituting 

~(1.2) = Dot/1(1.2)- Bot/1(!.2) + t/J(l.2)B~ 

(13.122a) 

( 13.122b) 

( 13.122c) 

together with the second line of Eq. (13.120c), forming the total trace Hamilto
nian and doing a spatial integration by parts, we now get 

(13.123a) 

with 

HI/J(uJ = j d
3
xTr{ -~i 1:[t/Jh)c/Dgt/J(I) + (DelP(l))tc/t/;(2) 

-tj;i1//Dtt/J(2)- (Dtt/J(2))tt/t(t(l)J- m[t/Jh/lt/J(l)- tj;i1)iy
0
tj;(2)]} 

(13.123b) 

In Eq. (13.123a), HB..Jo and HB'.-..7' are still given by Eq. (13.12lb) with 
the substitution .:J~-> -.:J~, but noJl ,]0 , .:J~ are the 0 components of the 
fermion source currents .:J,., .:J~. given in Eq. (13.108). 

The total trace Hamiltonian dynamics for ¢, tj;(l)' and t/;(2) now takes the 
form of Eq. (13.68f), with no further complications. For the gauge potentials 
B11 and B~, however, we encounter the familiar problem that we are dealing 
with a constrained system, and so the canonical momenta are not inde~en
dent. Focusing henceforth on the potential B11 (the treatment of B is 
completely analogous), we have a primary constraint 

11 

( 13.124a) 

which is satisfied as an identity without use of the equations of motion. Differ
entiating Eq. (13.124a) with respect to time, we get the secondary constraint 

b 3 ' 

0 = PBo =- bB HB . .Jo ==.:fa+ L DtPBI 
0 f=l 

(13.124b) 

which is the same as the constraint arising from the Lagrangian equations of 
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motion. Further time differentiation of Eq. (13.124b) leads to no further 
secondary constraints, since the equation 

. iJ ' 
( 

3 ' 

Jo + ot 8DtPs1 ) = 0 (13.124c) 

can be shown, by using the identity of Eq. (12.8b) (now an operator equation), 
to be satisfied by virtue of the original secondary constraint of Eq. (13.124b) 
and the Lagrangian equations of motion for the gauge potential B11 and for the 
fields cp or t/J (!2). The constraint structure is thus completely analogous to that 
of a conventional Yang-Mills gauge field, for which the simplest way to realize 
a Hamiltonian dynamics is to usc axial gauge,45 in which B3 is taken to vanish, 

In this gauge we h~ve 

Fm = 8oB3 - iJ3Bo +[Eo, B3j = -o3Bo 

D3Fo3 = fhF03 + [B3, Fo3l = -iJ~Bo, 

and so the constraint 

can be directly integrated to yield B0 and F03 , giving (with XJ = z) 

Substituting Eqs. (13.124b) and (13.125b) back into H 8 ,7
11

, we get 

(13.125a) 

(13.125b) 

(13.125c) 

(13.125d) 

(13.125e) 

45 Axial gauge for the Yang·-Mills lleld was introduced by Arnowitt and Fickler (1962). Sec Hanson. 
Regge. and Teitelboim ( 1976) for a pedagogical discussion and further references. Note that in the operator 
gauge field equations following from the total trace Lagrangian L 8 , the equation 

0 - D. I' 'f D. D. F 1" - l 'D. D I L·l'' - l [f" }'I'' I - 0 
- V ,11 CX /I \ - 2 l I~' \ 1 - 2 II\ · -

which uses the operator version of Eq. (12.8b). holds as an operator identity. and so there is no analog of 
the consistency condition ofEqs. (3.21) and (5.14)-(5.16) of Arnowitt and Fickler. 
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with F03 given by Eq. (13.125d), and so only s,,B2 remain as independent 
dynamical degrees of freedom, with the corresponding independent canonical 
momenta p 81 ,p81 . It is now completely straightforward to verify that the 
operator equations of motion obtained from the total trace Hamiltonian Hs. Jo 
ofEq. (13.125e), 

(13.126) 

are identical to the operator equations of motion obtained from the total truce 
Lagrangian. So we have achieved a consistent Hamiltonian dynamics. The 
generalized Poisson bracket of Eq. ( 13.69a), in axial gauge, now contains 
variational derivatives only with respect to the gluon variables B1.2 and p81 2" 

We have not verified the Poincare generator algebra, but just as with the verifi
cation of the Hamiltonian equations of motion that we have described, this 
should be a straightforward analog of the conventional Yang-Mills axial gauge 
calculation. 

At no point in the discussion have canonical commutation relations been 
used to get the operator equations of motion. They have been replaced in total 
trace dynamics by the operator constraints 

3 

0 = .:To+ L DtPB1 , 

f=l 

3 

0 =' J::,J~ + L D~Ps; (13.127) 
f=l 

and are a quaternionic field theory generalization of the constraints of Eq. 
(13. 97e) of the preceding section (which, we recall, arose from the biunitary 
operator gauging of a single fermion degree of freedom in complex quantum 
mechanics). We conjecture that any operator realization of Eq. (13.127) gives, 
via the total trace Hamiltonian formalism of Eqs. (13.120a)-( 13.126), a consis
tent quaternionic field dynamics. 

13.8 OUATERNIONIC DETERMINANTS AND GAUSSIAN 
INTEGRALS 

When the usual complex quantum field theories are studied by Feynman path 
integral (i.e., functional integration) methods, contact with perturbation theory 
is established by using the Gaussian integration formulas [see, e.g., Itzykson and 
Zuber, 1980, Eqs. (9-56) and (9-76)] 

/'(fidz~d~")exp(-z*TAz+u*Tz+z*ru) = (det A)- 1exp(u*TA- 1u) 
. n=l 2nz 

/ (g dr,;,dr/ 11 ) exp ( -r(TAT) + CTTJ + TJ"1~) = det A exp (CTA- 1 ~) (13.128a) 

In these equations, *, as usual, denotes complex conjugation, A is a nonsingular 
N x N complex matrix (which in the bosonic case must satisfy an appropriate 
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convergence condition), z, u arc column vectors of N complex numbers: r1, ¢are 
column vectors of N complex Grassmann numbers; and T denotes the trans
pose. Although we have left it as an open issue whether the quaternionic 
quantum field theories discussed in the preceding section can be expressed in 
path integral form, the fact that the total trace actions all have kinetic terms 
based on the standard structures quadratic in the fields suggests that Gaussian 
integration formulas may be relevant in the quatcrnionic case as well. Such 
formulas were worked out by Adler ( 191'\Sa), using the Dyson (1970, l 972)
Moore ( 1922) theory of quaternionic determinants; we give here a brief account 
of the results and give the::ir derivation in Appendix B. 46 In the quaternionic 
case, analogs of Eq. (l3.128a) have been obtained for the cases in which A is 
either a quatcrnion self-adjoint or a quaternion anti-self-adjoint matrix, with the 
distinctly different forms in the two cases reflecting the familiar fact that 
quaternion anti-self-adjoint matrices cannot be converted to self-adjoint matri
ces by multiplication by a multiple of the unit matrix. 

For the case of a nonsingular quaternion self-adjoint A, the generalization of 
Eq. (13.128a) is 

./ (t~ d(p,) exp ( -¢ 7 Acp + u1 (p + cp 1 u) == ( 4n2)'v ( det A) - 2
exp (u 1 A- 1 u) 

/(rr dzn)' exp(--;( 1AX+~TX+XT¢) = (dctA) 2 KN(~TA- 1 ~) 
n=l 

-- -- J.e 
KJV(J ·c) = a,,., (J) + J htv(J), J=lil 

(13.128b) 

with the integration measures defined by47 

(13.128c) 

Here e = (cl, <'2, CJ) are the quaternion units, the bar denotes quaternion 
conjugation, A is a nonsingular N x N self-adjoint quaternion matrix (which in 
the bosonic case must be positive for convergence). det A is the Dyson-Moore 
quaternionic determinant (to be discussed later), cp, u are column vectors 
containing N quaternions, z, ¢ are column vectors containing N Grassmann 
quaternions [cf. Eq. (1.3la)], and we have used the standard !Y., fi subscripts to 

4
'' Of course. it could turn out that Eqs. ( 13.128a). and not their qua tern ionic generalizations derived in this 

section. suffice to set up perturbation expansions for quatcrnionic quantum field theories. 
47 Adler (1985a) uses a symplectic decomposition with respect to the ([' (I. k) rather than the ([' (I. i) subal
gebra. leading to an extra minus sign in the integration measure dljJ.,. For an exposition of Grassmann 
integration. 'ce l!?ykson and Zuber (1980), Sec. 9-1-3. and Brown (1992). Sec. 2.4. 
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denote symplectic components. For the case of a nonsingular quaternion antil
self-adjoint A, the generalization of Eq. (13.128a) is 

= ( 4n2)'" (det At A)-I LN( -ilT A-I u) 

~~ :f.e . 
LN(J ·e)= CN(J) +JdN(.J), J=IJ'i 

cN(J) = CLN(J) =cos J-
2
; sinJ 

( 2N) 2N dN(J) = h_y(J) = I-- :
12 

sinJ + ycosJ 

.I(!) dx n) cxp (-;?Ax+ ~TX --'/0 = det (A 1 A)cxp ( -e·A-I ~) 
(13.128d) 

with the remammg notation as before. The source term in each of Eqs. 
(13.128b,d) is constructed to have the same quaternion conjugation behavior 
(purely real, or purely imaginary) as the corresponding Gaussian term in the 
exponent; we remind the reader at this point that the product conjugation rule 
for Grassmann quaternions [Eq. (1.3lf)]

1 

differs in sign from that for ordinary 
quaternions [Eq. (1.28b)]. Also, in the first line of Eq. (13.128d), the infinitesi
mal 10 > 0 provides the convergence factor needed for an oscillatory integral. We 
note that the quaternionic formulas closely resemble their complex counterparts 
in the cases in which the Gaussian has a real exponent, while having a more 
complicated structure in the cases in which the Gaussian has a quaternion
imaginary exponent. 

The close structural similarities between Eqs. (13.128b) and (13.128d) suggest 
that they are special cases of more general formulas in which bosonic and 
fcrmionic integrations are combined. These generalizations can be constructed 
using the supermatrix formalism of van Nieuwenhuizen (1981) and De Witt 
(1984 ), giving the results 

ZR =.I(!)~~;) (!1 dxm)exp -_ (~)T Me)+ (~r e) 

+ (~) T c~~) l 

B = -Bt, (13.129a) 
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for the case of real Gaussian exponents, and 

Z1 = !,~ j (,g ~~~) (IT dz,n) 

X exp [- (t) T Me) + (~Y(~) + (t) T ( ~u) - ~:¢ T ¢ l 
= det

2
B deC

1 [(A- rxB-
1f3)t(A- rxB-

1f3)]KM-N( (~YM- 1 (~u)) 

M = (; (13.129b) 

for the case of quaternion-imaginary Gaussian exponents. In Eqs. (13.129a,b), 
A is an N x N quaternionic matrix, B is an M x M quaternionic matrix, and rx 
and f3 are, respectively, N x M and M x N quaternionic Grassmann matrices. 
The inverse matrix M-1 is related toM by 

M-1=(~ ~) 
C =(A- rxB- 1 /3)- 1

, 

'' = -A-lND I v, i 

with C, D, /', b satisfying the adjointness conditions 

cl=c 
' 

ni = -D 
' 

for theM of Eq. (13.129a), and 

ci = -c 
' 

nt = n 
' 

for theM of Eq. (13.129b). 

s:t - " o - I 

( 13 .129c) 

( 13.129d) 

( 13 .129e) 

We note that Eq. (13.129b) for Z 1 simplifies dramatically when M = N, that 
is, when the numbers of bosonic and fermionic integrations are equal. 48 In this 

4
" The case N ~ M is readily seen to have a rudimentary supersymmetry. since the quadratic form 

remaining after the diagonalization and rescaling transformations discussed in the text, and also the total 
integration measure, are invariant under the column vector transformations 

6¢=K oq;~-~x 

6x=¢i( bx=-0¢ 

with~ a fixed Grassmann quaternion. 
An attempt to set up a quatcrnionic quantum field theory directly as a functional integral, by using the 

N =· M Gaussian integral formula ofEq. (13.129b), was given in Adler (1986a). The fermions in this paper 
are assumed to obey a second-order bosonic wave equation and so do not correspond to the fermion fields 
introduced in the text (whic.:h all obey Dirac wave equations), but might c.:orrespond to "ghost" fermions. 
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case the source dependence has the simple exponential form 

K (
,; ~) q .f. e . q J." o ...; · e = cos...; + ---sm...; = e 

J 
(13.129f) 

and the integral Z 1 has the same structure as is found in ZR and in the complex 
Gaussian integrals of Eq. (13.128a). 

As an application, let us use Eq. (13.129b) to derive a formula (Adler, 1986a) 
for the quaternionic delta function 

N 

b(cp,;J =II b(c/Jno)b(c/Jnt )b(c/Jdb(¢n3lxnoXntXn2Xn3 (13.130a) 
n=l 

which for any smooth F satisfies 

N J II (dc/JndXn)b(cp, x)F[{c/Jn}, {Xn}l = F[{O}, {0}] 
n=l 

(13.130b) 

Let us consider Eq. (13.129b) with M = N,A = ai,B= h,a = f3 = 0, and with cp 
interchanged with u, X interchanged with~. for which it reads 

lim j IT (dun~~n) exp ( -auTiu- h~ Tr;- <:i1T u + ;Vu- uT cp + xT~ + ~ T x) 
r~o n=l 4n 

= (h2ja2)Nexp(a- 1¢Tic/J+h- 1xTx) (13.130c) 

We will now show that in the limit a, h -~ 0, the right-hand side of Eq. (13.130c) 
is proportional to the quaternionic delta function. We consider the integral 

(13.130e) 

and expanding Fin a Taylor series, and applying Eq. (13.129b) to the leading 
term, gives 

( l3.130f) 

Hence we conclude that 

N 

b(c/J,X) = lim /II(dund~n)(2n)-4Nexp(-ai1Tiu-h~T~-ci1Tu+¢Tu--i1Tcp 
a.b,>:~O. n=l 

+ xT~ + ~Tx) (13.Dla) 
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which with infinitesimals suppressed takes the compact form 49 

N 

b( ¢, x) = .I D ( dund~n )(2n) - 4
N exp ( ¢ T u- UT ¢ + XT ~ + ~ T x) (13.13lb) 

Before proceeding to the derivation of these quaternionic Gaussian integral 
formulas, given in Appendix B, we briefly review the theory of quaternionic 
determinants. We begin by recalling the spectral properties of quaternion self
adjoint and anti-self-adjoint matrices derived in Chapter 2. For any quaternion 
self-adjoint matrix A, one can find a unitary matrix B such that stAB= D with 
D diagonal and real, 

(13.132a) 

corresponding to the spectral representation 

(13.132b) 
n n 

Similarly, for any quaternion anti-self-adjoint matrix A, one can find a unitary 
matrix B such that stAB= iD, with D diagonal, real and positive, 

(13.132c) 

corresponding to the spectral representation 

(13.132d) 
n n 

Because of the noncomm utativity of the quaternion algebra, one cannot define 
a determinant for quaternion matrices that has all the usual properties of the 
determinant for complex matrices (Dyson, 1972). However, Moore (1922) and 

4
" Since the integration measure dud~ is invariant under the rescaling 11 __, uc. ~ __, ~c for any real c, 

rescaling by c = 1/2 gives the alternative form of Eq. (13.13lb), 

N · N 

b( c/J, X) = .I ,[!, (du,d~,) (2nr 
4
N e'p = ./ J1 (du,d~,) (2n r 4N cosh<!> 

I N - -
<I>= 2 2.)¢,u,- U,c/J., + Xn~n + ~nXn) 

n =I 

The scale invariance of the measure can also be used to show that the reexponentiation property of Eq. 
( I3.!29b) with M = N generalizes to a reproducing property for more general functions as follows: Let 
f(K) be defined by 

with 11 real, K a quaternion and p a quaternion-valued measure. Then 

Jd¢dx . 
4n2 f(K + ¢i ¢+XX) = j (K) 
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Dyson ( 1970, 1972) have shown that the usual definition of the determinant as an 
antisymmetric multilinear form constructed from the elements of a matrix has a 
natural extension for self-adjoint quaternionic matrices. We will denote this 
extension by det A, defined for A = AT. For self-adjoint A, the Dyson-Moore 
definition also coincides with an alternative construction of quaternionic deter
minants given by Dieudonne (1943). Detailed reviews of the theory of quaterni.
onic determinants can be found in Dyson ( 1972) and Mehta ( 1977); we summarize 
here those properties of det A that are needed for the subsequent analysis. 

(i) For any quaternionic matrix B, and self-adjoint A, we have 

det( B1 A B) = det( st B) det A (13.133a) 

Specializing to the case when B is unitary, this implies 

det (Bt AB) = det A, BlB =I (13.133b) 

Choosing B to be the unitary matrix that diagonalizes A, and using the fact 
that the Dyson-Moore determinant reduces to the usual one when all the 
matrix elements of A commute, we learn that 

N 

det A = det D = II d11 

IJ,~I 

(13.133c) 

Since the d11 are all real, det A is real. When A is quaternion anti-self
adjoint, by choosing Bas the unitary matrix that diagonalizes A and noting 
that AT A is self-adjoint, we similarly obtain 

N 

det(AtA) = det(BtAtssiAB) = det(DliD) =II d~ 
11=1 

(13.133d) 

(ii) If A 1 and A2 are two commuting quaternion self-adjoint matrices, then 
A 1 A2 is self-adjoint and 

(13.133e) 

(iii) To any N x N quaternionic matrix Bone can associate a 2N x 2N complex 
rna trix C( B), by substituting for the quaternion bases I, e 1, e2 , e3 the 2 x 2 
C( I, i) matrix representations 

( 
i 0 ) 

el = 0 -i ' 

( 
0 -i) e, = 

. -i 0 
( 13 .!34a) 

Let det C( B) be the usual complex determinant of C( B); then for general B 
one has (Dyson, 1972) 

det C(B) == det st B = det sst (13.134b) 
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For self-adjoint A, combining Eq. (13.134b) with Eq. (13.133e) g1vcs 
(Dyson, 1970) 

dct C(A) = (det A) 2 ( 13.134c) 

These results from the theory of quaternionic determinants arc applied, in 
Appendix B, to the derivation of the quatcrnionic Gaussian integral 
formulas given in Eqs. (13.128b-d) and (13.129a-e). 
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Outlook 

In this final chapter we turn to issues relating to the role of quaternionic 
quantum mechanics in physics and to its future development. In the first 
section, we speculate on the possibility that a new level of physical structure, in 
which quaternionic quantum field theory plays an essential role, lies near the 
Planck scale, with the observed physics of the standard model a <C( I ,I) 
asymptotic dynamics. In the second section, we discuss both experimental tests 
for residual quaternionic effects and the implications of quaternionic quantum 
mechanics for conceptual questions in quantum measurement theory. In the 
third section, we summarize a number of open questions, many already noted 
earlier in the text, that point to future directions for development of the 
theory. 

14.1 WHY OUATERNIONIC QUANTUM MECHANICS? 

We begin by addressing the questions (posed under essentially the same heading 
in Sec. I of the fundamental paper of Finkelstein, Jauch, Schiminovich, and 
Speiser, 1962) of whether and how quaternionic quantum mechanics relates to 
the observed physical world. All presently known physical phenomena appear 
to be very well described by complex quantum mechanics, as embodied in the 
SU(3) x SU(2) x U( I) standard model describing the strong and electro weak 
forces, 1 and as supplemented by classical general relativity to describe gravita
tion. The standard model is well- known, however, to be incomplete and can be 
embedded in various grand unified models that unify the strong and electro
weak forces, with a single coupling constant, at an energ~ in the range 
A~. 10 15

- 10 17 GeV (corresponding to distance scales ~ 10- 9-10- 31 em) in 

1 For reviews of the standard model, see Cheng and Li ( 1984), Leader and Predazzi ( 1982), and Donoghue, 
Golowich, and Holstein (1992). 

In the early 1960s the standard model did not yet exist, and Finkelstein, Jauch. Schiminovich. and 
Speiser ( 1962. 1963) proposed to apply quaternionie quantum mecht1nics to finding a gauge theory of the 
weak Interactions. In their 1963 paper. they in fact t'ormulated an eleetroweak gauge model in which 
charged gauge boson masses are generated by spontaneous symmetry breaking associated with a scalar 
!ield. thus anticipating both electroweak gauge models [specifically, the Georgi -Giashow ( 1972) model] 
and the Higgs mechanism' Their model is formulated in terms of standard classical Lagraugians of the type 
discussed in Sec. 12.2, and so is not a quaternionic quantum field theory as defined in this book, and when 
quantized by the standard canonical formalism in fact gives a complex quantum field theory. Unfortu
nately, the presentation of the 1963 model in quaternionic [as opposed to S0(3) gauge field] language 
prevented it from getting the attention it deserved. 

49"7 
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typical models. 2 At the still higher Planck energy of~ 10 19 GcV (corresponding 
to distance scales ~ 10-33 em), which characterizes quantum gravitation, it is 
presumed that the elementary particle forces and gravitation arc unified into a 
consistent quantum theory of a new type (for which string theories arc the 
currently popular candidate). Since the idea of grand unification has empirical 
support in the observed running of the standard model couplings, it seems very 
likely that complex quantum mechanics continues to be valid far beyond the 
regime accessible to accelerator physics. We take, as a working hypothesis for 
the following discussion, the assumption that complex quantum mechanics 
describes a regime of conventional Abelian and non-Abelian gauge fields, 
extending downward in distance scale from the cosmos to the grand unification 
scale, with the potentiality for physics with a fundamentally new kinematical 
structure arising only below the grand unification scale. This should not be 
taken to mean that a new kinematics could not in principle become dominant at 
a much lower energy scale. or larger distance scale, than that characterizing 
grand unification, but an assessment of this possibility would require a consid
erably more detailed phenomenological analysis than we are able to attempt 
here. 

We now state where we believe quatcrnionic quantum mechanics fits into this 
picture. We postulate that physical reality is in fact described. at the funda
mental level, by quantum dynamics in a quaternionic Hilbert space and that this 
dynamics is described asymptotically (where asymptopia refers to distance scales 
above the grand unification scale) by an effective complex quantum field theory 
operating on a C( I, i) subspace of quaternionic Hilbert space. Asymptotic 
conscious beings and their "high-energy physics" experiments obey, to great 
accuracy, the rules of complex quantum mechanics; the underlying quatcrnionic 
reality need be invoked only to achieve an economical, unified understanding of 
the effective field theories that summarize asymptotic empirical knowledge. We 
thus envisage (Adler, 1985b) a two-level correspondence principle, 

classical physics and fields 

r 
distance scale C(l, I) complex quantum mechanics and fields 

r 
quaternionic quantum field dynamics 

( 14.1) 

with quaternionic quantum dynamics interfacing with complex quantum theory, 
and then with complex quantum theory interfacing in the familiar manner with 
classical physics. 

We now argue that this picture is consistent with (and in some instances, is 
perhaps even hinted at by) both current empirical knowledge, on the one hand, 
and the properties of quaternionic quantum mechanics, as developed in this 
book, on the other. 

(1) The idea that quaternionic quantum physics may disguise itself asymptoti-

2 For recent reviews of grand unification, and of shortcomings of the standard model. >ee Weinberg ( 1992) 
and Wilczek ( 1993). There are phenomenologically acceptable variants of the grand unification idea in 
which partial uniticatiom can occur at a scale as low as a TeV and grand unification at 107 GeV; sec. for 
example, Frampton and Lee ( 1990). In Sec. 7.5 we used M Q to denote the quartemionic scale, here iden
tified with the g1·and unification scale/\. 
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cally as an effective complex theory is supported by the scattering theory 
calculations of Chapters 6, 8, and 9. We saw there that in nonrelativistic 
quaternionic quantum mechanics, both in concrete model calculations and 
in a model-independent formal scattering theory analysis, an appropriate 
choice of ray representatives for the asymptotic scattering states makes the 
S-matrix <C( L i). Corresponding to this, the interaction of asymptotic scat
tering states can be described by an effective complex Schrodinger equation, 
in which quaternionic effects appear through a nonlocal optical potential. rn 
Sec. 6.5 we saw that despite this nonlocality, forward scattering amplitudes 
still have the upper half plane analyticity needed to derive Kramers- Kronig 
dispersion relations, and so the effective complex theory is expected to be 
causal. We also saw, in the decaying state analysis of Sec. 7.3. that the 
<C( I, i) subspace of a quatcrnionic Hilbert space is stable under the influence 
of a weak quaternionic perturbation. These calculations all are based on a 
unitary time evolution governed by an anti-self-adjoint operator Hamil
tonian H. Hence they do not directly apply to the more general 
quantum operator dynamics formulated in Sees. 13.5-7, in which time 
evolution is governed by a total trace functional H, and in which (in 
the quaternionic field theory case) the existence of a compatible opera
tor Hamiltonian is an open question. But the calculations just cited at 
least make it a plausible conjecture that relativistic quatcrnionic field 
theories will also, at large distance scales. be asymptotically complex in 
structure. 3 

A second relevant piece of evidence is the result obtained in Sec. 12.3, 
where we analyzed the quaternionic irreducible representations of the Poin
care group and its supcrsymmetric extensions and found that, outside the 
zero energy sector, they are always reducible to complex ones. Since in a 
Poincare invariant theory one expects the asymptotic scattering states to be 
classified by the irreducible representations of the Poincare group, this result 
is supportive of, or at least consistent with. the conjecture of a complex 
asymptopia. 

(2) The suggestion that the mathematical description underlying physical reality 
should be based on a quaternionic, rather than a complex, Hilbert space is 
supported by an analysis of the spectra of the generators of space-time 
translations. In a complex Hilbert space, these are represented by the self
adjoint generators 

/=Pi (14.2a) 

which without prior physical input, but using just the abstract spectral 
theorem for complex self-adjoint operators, can have spectra taking any real 
number values, 

f 
~:xJ < p < oc (14.2b) 

3 The idea of hidden structure does not appear so radical in the light of our experience with quantum 
chromodynamics (QCD). which governs the strong interactions of hadrons. In zero temperature QCD. all 
asymptotic scattering states are color singlets. and the S-matrix is defined only on the color singlet sector. 
However, field theories formulated solely in terms of color singlet fields are nonlocal effective theories: in 
order to achieve a local gauge structure one has to employ fields that carry the hidden (or "confmcd") 
color degree of freedom. In terms of a QCD analogy, we are proposing a correspondence "quaternionic 
structure··~ '·color structure," and "complex C::(l.l)'' ,_.,·'color singlet." 
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However, when we identify p0 with the energy, observation informs us that 
it is, in fact, bounded from below, 

C < () 
- Pobservcd ( 14.2c) 

and this "stability" condition is taken as an additional postulate in complex 
quantum mechanics. In quaternionic Hilbert space, space-time translations 
are generated by the anti-self-adjoint generators (cf. Sec. 12.3) 

( 14.3a) 

the spectral properties of which are governed by the analysis of Lemma 2 of 
Sec. 3.6. According to this lemma, we can always find a basis of states on 
which lJ and fit are diagonal with eigenvalues iE and ip1, with 

E > 0. ~::x:J <PI< ex; (14.3b) 

That is, the positivity of the eigenvalues of one member of the commuting 
set of space-time translation generators is automatic. If we require manifest 
spatial isotropy in formulating our effective theories (as we always do), this 
distinguished generator must be chosen as the time translation generator. 
Thus in quaternionic quantum mechanics, the stability postulate of Eq. 
(14.2c) may not be needed: it can in principle be derived by showing that a 
C( I, I) asymptotic limit is associated with the particular ray representative 
choice in which the space--time translation generator eigenvalues obey Eq. 
(14.3b), in analogy with the argument for complexity of the S-matrix given 
in Chapters 6, 8, and 9. 

When the observed energy is defined via the matter energy-momentum 
tensor that appears as the source term in the gravitational field equations, 
an even stronger statement than Eq. (14.2c) holds. Empirically, for the 
gravitationally defined energy. which includes the vacuum energy, one finds 
that the energy lower bound obeys 

( 14.4) 

to the extraordinarily high precision of one part in ~ I 030 , a figure obtained 
by taking the measure of gravitational energy as the Planck mass 
~ 10 19 GeV, and the measure of a possible error in Eq. (14.4) as A~~~mologicai' 
with Acosmological the observed limit on the cosmological constant. The 
problem of explaining this fact is the notorious "cosmological constant 
problem" (for reviews, see Abott, 1988, and Weinberg, 1989d) and has 
proved extremely difficult within the framework of complex quantum 
mechanics. The basic problem is that, as we have seen in Sec. 2.6, the energy 
zero point in complex quantum mechanics can be freely shifted by rephasing 
the wave function. Hence to explain Eq. (14.4) an additional assumption is 
needed, and none of those tried to date has proved completely satisfactory. 
(For example, an unbroken supersymmetry in complex quantum mechanics 
can constrain the cosmological constant to be zero, but when the super
symmetry is broken, as it must be in a phenomenologically acceptable 
theory, the generic case prevails and the cosmological constant in general is 
nonzero.) In quaternionic quantum mechanics, by contrast, the energy zero 
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point is significant and cannot be freely shifted. Hence quaternionic Hilbert 
space may provide a framework in which Eq. (14.4) can receive a natural 
explanation, as part of an asymptotic limiting process in which an under
lying unified theory decouples into quantum matter and classical gravita
tional components. Stated another way, the observed vanishing of the 
cosmological constant means that Nature regards the zero point of the 
vacuum energy as significant. This can be a natural property in quaterni
onic, but apparently not in complex, quantum mechanics. 

(3) The physics of the standard model is largely based on Yang- Mills gauge 
fields. As we have seen in Sec. 12.2, the gaugings used to construct quater
nionic classical wave equations have a Yang- Mills SU(2) or SU(2) x SU(2) 
structure, while as seen in Sec. 13. 7, the gaugings used to construct quater
nionic operator wave equations correspond to operator gauge invariant 
generalizations of Yang- Mills structures. Hence, as suggested long ago in 
Yang (1957), an underlying quatcrnionic Hilbert space basis for funda-· 
mental particle physics could account for the ubiquitous appearance of 
Yang Mills gauge fields in the observed low-energy effective field theories. 

From a historical perspective, the search for unification of the laws of 
physics has been closely intertwined with the discovery of broader classes of 
symmetries of the fundamental equations. Thus the unification of electricity 
and magnetism in the Maxwell equations directly relates to both Abelian 
gauge invariance and relativistic kinematics. Similarly, the advent of the 
standard model has as its underpinning the extension of the gauge principle 
from Abelian to non-Abelian groups. From this perspective, it is natural to 
seek further unification by broadening the Yang- Mills gauge principle still 
further, from c-number to general operator-valued gauge transformatiom., 
as we have done in Sees. 13.5-7. 

(4) One of the unexplained mysteries in both the standard model and its grand 
unified ex tensions is the existence of 1 hree families of leptons and quarks 
with identical quantum numbers. In both atomic and nuclear physics, the 
existence of periodicity of properties has been an indicator that the objects 
under study arc composites of other, more fundamental objects: electrons 
and nuclei in the case of atoms, and protons and neutrons in the case of 
nuclei. This analogy has led many authors to suggest that the quarks and 
leptons of each family are composites of other, more fundamental fermions, 
often termed preons. 4 Many complex quantum field theory preon models 
have been discussed in the literature, but potentially the most economical 
scheme, in terms of the number of preons, is the set of rules proposed 
without an accompanying quantum field theory by Harari (1979) and Shupe 
(1979). In the Harari -Shupe scheme, the color degree of freedom is asso
ciated with a postulated dependence of a composite state on the ordering of 
its component internal symmetry states. The postulated order dependence 
suggests (Adler, 1980b) that a theoretical basis for the scheme should 
perhaps be sought in a noncommutativc extension of standard quantum 
mechanics, and in fact, it was the author's interest in the Harari-Shupe 
speculation that was the catalyst for the investigation of quaternionic 
quantum mechanics culminating in this book. 

4 A recent article on composite structure. with an extensive bibliography. is Rosner and Soper (1992). Sec 
also Eichtcn, Lane, Hinchcliffe. and Quigg (I n4) for further references. A suggestion of preons near the 
Planck scale. within complex quantum field theory. is made by Babu and Pati (199:1); see also Teralawa 
( 1984). 
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In their papers, Harari and Shupe postulate a fundamental doublet of 
spin-! /2 fermionic preons, 5 

r = (~) (14.5a) 

carrying electric charges 

Qr = ej3. (14.5b) 

with e the charge of the proton. The states within a single quark-lepton 
family are then associated with 3-preon composites according to the scheme 
(where the bar here denotes the charge conjugate or antiparticle state) 

u 
D 

v 

TTT 

VTT, TVT , TTV 

VVT, VTV , TVV 

vvv 

(14.5c) 

with the states p+, U, !5, v corresponding to the conventional notation for 
quarks and leptons in each of the three families as follows: 

Generic Label First Family Second Family Third Family 

t+ e_, 
J1 

,-1 

u u c 

D d s o 
v Ve VI' VT 

(14.5d) 

Antiparticle states are generated from the states shown in Eqs. (14.5c,d) by 
charge conjugating (i.e., adding a bar, with a double bar equivalent to no 
bar). Harari and Shupe proposed an unconventional counting rule for 
composite states, according to which the three orderings VTT, TVT, TTV 
are counted as independent states and are interpreted as the three color 
components of the U quark (and similarly for the jj quark). In the original 
Harari-Shupe scheme, there is no provision for generating the three families 
other than by repetition of the preons, or some unspecified internal dynam
ics. However, it was subsequently noted by Adler (1987) that if the Harari
Shupe counting rule is applied to the spin as well as to the internal symmetry 
structure of the quark-lepton composites, then the helicity I /2 (or ~ 1 /2) 
states consist of three replicas of the states enumerated in Eq. (14.5c). 6 

This attempt to generate families fails because by the rules for angular 
momentum composition, when one combines three spin-1/2 states one gets two 
spin-1/2 states and one spin-3/2 state, and so of the three sets of helicity 1/2 

5 Harari calls these '·rishons," after the Hebrew word for "first, primary,'" and Shupe calls them "quips." 
for "quark inner parts." 
6 This requires that the quark-lepton composites must be states of zero orbital angular momentum, so that 
the total helicity is obtained by adding constituent helicities. 
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replicas of Eq. (14.5c), one set in fact corresponds to the helicity 1/2 members of 
a spin-3/2 state. Hence one gets only two spim--lj2 families this way. One could 
try to speculate that somehow the angular momentum composition laws may 
change in a quaternionic theory, so that the helicity 3j2 states form a massless 
spin-3/2 state without helicity I j2 partners, but there are two arguments against 
th1s. The first is a general result of Weinberg and Witten (1980), who show that 
in all theories with a conserved Lorentz-covariant energy-momentum tensor 
operator T~"', for which J d3 x T 0

" is the energy-momentum four-vector, one 
cannot have either elementary or composite massless particles of spin greater 
than one. (See also Durand, 1962, for related no-go theorems for massless 
higher spin particles.) The second is the set of results obtained in Chapter 3 and 
Sec. 12.3, which show that angular momentum analysis, and more generally the 
analysis of irreducible representations of the Poincare group, proceeds in 
quaternionic quantum mechanics (outside the zero energy sector) exactly as it 
does in standard complex quantum mechanics. 

This is not, however, the end of the story. The paper of Adler (1987) enu
merated states by following the Harari--Shupe: rule of treating the state labels as 
distinguishable character strings, without attempting to provide an underlying 
algebraic basis for the enumeration. Recen1iy, Adler (1994b) reanalyzed the 
problem using the quasiparticle ideas developed in Sec. 10.2, together with a 
conventional angular momentum analysis. This analysis shows that one can give 
a set of rules which realize the Harari--Shupe proposal by constructing com· 
posite quarks and leptons as states of three quasiparticles corresponding to two 
fundamental preons, with both color and family structure generated dynami
cally. We begin by stating the rules and showing how they are used to enumer
ate three quasiparticle states; we then turn to a discussion of how the rules might 
be derived from a fundamental relativistic preon theory. 

Let p 11 (r) and p~(r) be ordinary fermionic annihilation and creation opera
tors for the preonic states, 

{Pm(r),p"(r')} == o, 

{Pi,(r),pt,(r')} == o, 

{ Pm (r), Ph (r')} == 6111116
3 

( r- r') 

(14.6a) 

(14.6b) 

where t and v carry charges I /3 and 0 respectively and the arrows indicate the 
spin. We have seen in Sec. 10.1 that these creation and annihilation operators 
are formally real with respect to an associated left-acting quaternion operator 
algebra 1, § 1, £ 2 , £ 3 , which using an obvious vector notation (with real number 
vectors a, h ) obeys 

( 14.6c) 

According to the analysis of Sec. 10.2, quasiparticle annihilation operators are 
formed as superpositions of ordinary annihilation operators, with quaternion
valued wave functions as coefficients. As our first rule, we assume: 

Rule I. The \t"avefunction appearing in the quasiparticle opera tors is S-wave 
(zero orbital angular momentum) and is assumed to heformally quaternion-
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imaginary, with non vanishing and linearly independent components along the 
three qua tern ion units E. The pre on binding ./(Jrces, and thus the vravefunc
tion, are assumed also to he .flavor (i.e, t, v) and spin (i.e., T. l) independent. 

Hence the annihilation operator P 11 (R) for a quasiparticle located at R has 
the form 

(14.6d) 

which can be written in abbreviated form as 

P11 =La( I)· Epn(l) ( 14.6e) 
I 

so that with p11 as in Eg. (14.6a), the four possibilities for P 11 correspond to 

r 1.1 =I.: a(!)· iru(i) 
I 

v11 =I.: a(!)· Evn(l) 
(14.6f) 

I 

We shall assume that the wave function a(r) has support only for lrl of order 
the preonic length scale, which we assume to be much smaller than length scales 
characterizing standard model physics, and that the wave function is unit 
normalized, 

( 14.6g) 

The quasiparticle operator defined by Eqs. (14.6d,e) has a number of inter
esting properties. First of all, a simple calculation shows that any quasiparticle 
state can at most be triply occupied, since the fourth power of a quasiparticle 
operator vanishes (this property, derived earlier in Sec. 10.2, holds even when 
the internal wave function has a real part), 

~ 4 
P11 (R) = 0 (14.6h) 

Also, the guasiparticles satisfy parafermionlike commutation relations (the 
connection between quaternions and parastatistics was first noted in a different 
context by Govorkov, 1987); here the assumption of a quaternion-imaginary 
internal wave function is needed, 

any Lm,n 

[P;. [P111 , Pf,]j = ~ 2brm La(l) ·£a( I)· a(2)pj,(2) 
(14.6i) 

1.2 

Equations (14.6h,i) suggest that states of three quasiparticlcs will play a special 
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role, and we identify them as composite leptons and quarks, which are formed 
and classified according to the following further rules: 

Rule 2, Composite fermion states are identified with the formally quater
nion-real components of the independent products of three quasiparticle 
operators drawn from Eq. ( 14.6f). In other words, a product C = PfPmPn 
which is already formally real is identified as a comp!!sil_! fermion operator, 
while if C has the j(nmally imaginary form C = C · E that obeys paraf
ermion-like commutation ri!lations, then the j(Jrmally real components 
cl' c2, c3 are each identified as an independent composite fermion opera
tor. 

Rule 3. When the number of composite states is tripled as a result of the 
inequivalence of dljferent orderings of t and v, the composites are identi
fied as colored quark states, corresponding to the fact that the underlying 
preonic forces can cause transitions between t and v. When the number of 
composite states is tripled as a result of the inequivalence of different 
orderings of the spin labels T and l, the composites are identified as states 
in dljferent families, corre~ponding to the fact that the underlying preonic 
forces are assumed .1pin independent, and so do not cause transitions 
betlVeen T and 1. 

The enumeration of the independent products of three quasiparticle opera
tors proceeds much as the enumeration of states in the quark model (see Faiman 
and Hendry, 1968, and Feynman, Kislingcr, and Ravndal, 1971) and is expe
dited by the use of a number of simple identities which follow from the defining 
equations. First of all, from Eq. (14.6c) we immediately get 

PrPm = L[-a( I). a(2) +a( I) >< 5(2) . E] Pf( I )Pm(2) 
1.2 

( 14.6j) 

allowing us to easily evaluate the successive products of quasiparticle operators. 
The classification of products according to their formal reality properties under 
quaternion conjugation E-+ -E (indicated as usual by a bar-) is facilitated by 
noting that for any £, m. n we have 

(14.6k) 

which follows from the facts that (i) the quaternion conjugate of a product of 
factors is the product of the conjugates of the factors in reverse order. (ii) the 
conjugate of a formally imaginary quaternion is minus itself, and (iii) reverse 
ordering the product of three fermionic annihilation operators just reverses the 
sign of the product. Finally, setting n = E in the first line of Eq. (14.6i) gives the 
repeatedly used identity, again valid for any €, m, 

(14.61) 

The most complicated enumeration is for the charge 2/3, spin- and helicity 1/2 
states, which can have the three charge structures TTV + VTT, TVT, and 
TTV- VTT, combined with the two spin structures II 1 + 1 II -2 T 1 I and 
II l - 1 II, giving six possibilities in all. One readily finds, using Eq. ( 14.6k), 
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that TTV + VTT and TVT combined with IT l - l II arc formally imaginary, as 
is TTV- VTT combined with IT 1 + 1 II -2 T 11, and these correspond to three 
families of charge 2/3 quarks with mixed symmetry internal wave functions. The 
remaining three combinations arc formally real, but only one is linearly inde
pendent after using Egs. (14.6i,l) and corresponds to a spin-1/2 lepton with 
totally antisymmetric internal wave function. For the charge one, spin and 
helicity 1/2 states, there is only one charge structure TTT, which when combined 
with the spin structure n 1 - 1 n gives one formally imaginary composite, 
corresponding to three families of charge one leptons with mixed symmetry 
wave functions; the contribution of the spin structure TT 1 + 1 TT -2 T l T 
vanishes in this case by Eq. ( 14. 61). The computations in the spin-3;'2 cases, 
which involve totally symmetric spin structures, are similar. 

The results of the calculation may be summarized as follows. One finds two 
types of composite states, (i) states with a totally antisymmetric internal wave 
function proportional to a( I) X a(2) . a(3) that are listed in Table 2 of Adler 
(1994b), and (ii) states with a mixed symmetry internal wave function that are 
listed in Table 3 of Adler ( 1994b) and are reproduced here, classified by spin, 
charge, and interaction type. The index A in the following equations takes the 
values I, 2, 3, resulting (by Rule 2) in three copies of each state. This tripling is 
interpreted (by Rule 3) as corresponding to three colors when it arises from 1. v 
reorderings, and as corresponding to three families when it arises from spin T, 1 
reordcrings. For each charge one and charge 2/3 state in the following list, there 
is a corresponding charge zero and charge 113 state obtained by the interchange 
T +--+ V, 1 <-+ v. Similarly. negative hclicity states are obtained from positive 
helicity ones by the interchange T +--+ 1. 

(1) Spin-3/2, charge 2!3, quark 
hclici ty 3/2 

r1 r1 v1 - v1r1 T7 = 2 L [a( I)· a(3)aA(2) 
I.2.3.A 

- a(2) · a(3)aA(i)] t;(l)tr(2)vt(3) EA 

helicity I /2 

T; T1 v1 + T1 T1 V1 + T1 T1 V1 - ( Vr T1 T1 + V1 T1 T1 + V1 T1 T1) 

= 2 L [n(l). a(3)aA(2)- a(2). a(3)aA(l)j[tl(l)tr(2)vr(3) 
1.2.J.A 

(2) Spin-1/2, charge 1, lepton 
hclicity 1/2 

TTTx (Til -111) = T1T1T1- TJ1T1 

= 2 L [a( I)· a(3)aA(2)- a(2) · a(3)aA(1)] t1(l)t1 (2)t1(3) EA 
I.2.3.A 

(14.7a) 

(14.7b) 



(3) Spin-1/2, charge 2/3, quark 
helicity 1/2 

(TTV + VTT) x (IT 1 - 111) 

Ol!TLOOK 

=TtT; v 1 + V1 T1 T1 - T1 T1 V1 - V~T1 T1 
=c2 L { -a(l). a(2)aA(3) 11 (l)tt(2)vr(3) 

I ,2,3,A 

+ [a( 1) · a( 3) a A ( 2) - a( 2) · a( 3) a A ( 1) ][ t T ( 1 ) IT ( 2) V l (3) 

- IT ( 1 ) t 1 ( 2) vr ( 3)]} E A 

TVT x (Til - liT) 

o=T: Vr T1- T1 V; Tr 

=2 L [a(2)- a(3)aA(1) + a(1)- a(3)aA(2) 
I,2.3.A 

(TTV-- VTT) X (TTl-+ liT --2 TlT) 
= T1 T1 V1 - V1 Tr T~ + T1 Tt V1 - V1 T1 T: - 2 T1 T1 V1 + 2 Vt TJr 

=2 L {3a(1). a(2)aA(3) tr(l)tt(2)vr(3) 
1,2,3.A 

+ [a( l ) · a( 3) a A ( 2) - a( 2) · a ( 3) a A ( 1 )][ t T ( 1 ) t T ( 2 Jvt ( 3) 

- tT(1)tl(2)v1(3)]} EA 
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(14.7c) 

Although there is no dynamics for mass generation in the model, experience 
with the quark model suggests that states with similar internal wave functions 
should have roughly similar masses, at least when viewed on a preonic energy 
scale, and that the states with mixed symmetry internal wave functions should 
be lighter than those which are totally antisymmetric. Thus, it is encouraging 
that the spin-l/2 content of the mixed symmetry states corresponds, when 
interpreted by Rule 3, with precisely the content of the fermions used in the 
standard model. (Since the composite model gives both helicities of neutrinos, 
one will have to invoke some form of the "seesaw mechanism"7 to explain the 
fact that only left-handed neutrinos participate in the observed weak interac
tions.) One striking feature of the spin-l/2 wave functions in Eq. (14.7c) is that 
all three leptons, and the first two sets of quarks, have spin structure n l - l n, 
while the third set of quarks has spin wave function n l + l n -2 T l T- Hence a 
strong mass operator dependence on spin state would result in a large mass 
splitting between the third set of quarks and the remaining quarks and leptons, 
roughly corresponding to what is experimentally observed for the quarks of the 
third family (particularly if the measure of the zeroth order quark mass of a 

7 For original references on the '·seesaw mechanism," see Gell-Mann, Ramond, and Slansky (1979), 
Yanagida (1979. 1980), and Mohapatra and Senjanovii: (1980). For a recent survey. see Weinberg (1987). 
Current phenomenological applications of the seesaw mechanism assume an intermediate symmetry 
breaking scale of order 10 11 GeV, as the large mass input that sets the scale for the light neutrino masses. 
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family is taken as a geometric or arithmetic mean of the masses of the two 
charge states in that family.) 

ln addition to giving mixed symmetry spin-1;2 states which correspond to the 
families of the standard model, the composite rules also give spin-3/2 mixed 
symmetry quark states. If these states are nearby, they may be observable in 
accelerator experiments. In all likelihood, they should be unstable against 
magnetic dipole color gluon and electromagnetic decay into spin-! /2 quarks, 
and hence should not be seen directly (through new types of mesons), but rather 
should only appear indirectly through enhanced production of standarJ model 
quarks (and mesons) in certain channels. However, there are arguments 
suggesting that these spin-3/2 states could have much higher masses than their 
spin-! /2 counterparts. First, since the spin-3/2 quarks cannot cancel chiral 
anomalies among themselves, they must have vector rather than chiral electro
weak currents. This permits them to have mass terms even in the absence of 
electrowcak spontaneous symmetry breaking, and so they could in principle 
have masses much larger than those of the standard model spin-1/2 fermions, 
which have chiral elcctrowcak currents and get their masses through the elec
troweak Higgs mechanism. Second, the arguments of Weinberg and Witten 
( 1980) may also suggest a high mass for the spin-3 /2 states. 

Let us now turn to a brief discussion of how one could try to justify the rules 
given above from a more fundamental preonic theory. As a starting point, one 
needs a candidate relativistic model; one has, in fact, emerged from the analysis of 
Sec. 13.7, where we saw that the minimal fermionic model with maximal opera
tor gauge invariance necessarily contains two Dirac fermion fields, just as 
required to realize the fields t and v which are needed to make lepton and quark 
composites. Thus we propose the total trace Lagrangian density of Eq. (13.107b), 
with the charge conjugation invariant choice of couplings G = G', as a natural 
candidate for the dynamics corresponding to the Harari-Shupe scheme. As noted 
in point (2) of the discussion in Sec. 13.7, when the fermion mass m is zero, the 
Lagrangian ofEq. (13.107b) has a global chiral invariance (although it cannot be 
decoupled into noninteracting chiral components of the fields), and so it is 
possible for the lowest lying composites formed from the preons to have zero 
mass on the preonic mass scale, as is needed in a physically realistic prcon model. 8 

In addition, the model of Eq. ( 13.1 07b) has only vector couplings of the preons to 
the gauge gluons, and has an (anti)symmetrical structure in the two preon flavors. 
The vector structure means that the forces binding the preons are spin indepen
dent, and the antisymmetric flavor structure can plausibly lead to binding forces 
which are flavor symmetric, as assumed in Rule 1. In order to give the observed 
chiral structure of the weak interactions, parity invariance will have to be broken 
spontaneously. This could occur, for example, if a quaternionic mechanism in the 
gluon sector gives rise to a left-right symmetric9 effective gauge theory acting on 
the composites, that then breaks parity invariance to give the observed low 
energy chiral electroweak theory. This is consistent with the phenomenology of 
the seesaw mechanism mentioned earlier. Since the Lagrangian density of Eg. 
(13.107b), with G = G', has P, C, and T invariances, the observed phenomen-

" For references on the role of a nearly unbroken chiral symmetry in keeping composite quarks and lepton> 
light on the scale of the prcon dynamics, see Rosner and Soper ( 1992). 
9 For references on left-right symmetric models, see Mohapatra and Senjanovi6 (1980, 1981). 
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ological CP and T violation will also have to arise as a symmetry breaking effect. 
Although there are many open questions in the generalized dynamics discus·· 

sed in Sec. 13. 7, let us suppose that there is a regime in which this dynamics is 
represented by a unitary operator dynamics in Hilbert space. We can than 
invoke the fact, proved in Chapters 8 and 9, that for a general quaternionic 
operator Hamiltonian dynamics, outside the strictly zero energy sector the 
S-matrix in quaternionic Hilbert space is complex. As discussed earlier, the 
asymptotic state dynamics correspondingly will be represented by an ejfc'ctive 
complex quantum field theory acting on the asymptotic particle states. To 
justify Rule 2, one would then have to show that the asymptotic particles 
correspond to three quasiparticle composites, with an effective anti-self-adjoint 
time development operator of the form 

if= trE[act ;at c - ct ac;at] (14.7d) 

with tr;:; denoting a trace over the operator quaternion algebra spanned by K 
Given the role of traces in the dynamics formulated in Sec. 13. 7, this form for 
the asymptotic dynamics is plausible. 

Let us next consider the binding of prcons into composites. Since the model 
of Eq. (13.107b) has a quantum chromodynamics (QCD)-like gauge structure 
[based on a quaternionic extension of an SU(2) x SU(2) gauge theory], it is not 
unreasonable to suppose that the formation of composite bound states can be 
treated much as in QCD. In QCD, although the light mesons arc actually highly 
relativistic bound states, one finds that the classification of the low-lying 
hadronic states can be successfully carried out in the nonrelativistic quark 
model, in which quark binding is treated in the shell model approximation. ln 
the shell model, which is based on the Hartree or self-consistent field approx
imation, one assumes that each particle moves independently in a potential 
centered on the center of mass of the overall system. Taken over to our quater
nionic preon model, the shell model anti-self-adjoint Hamiltonian if for the 
binding of three preons, with spin and flavor independent forces and with the 
center of mass chosen as the origin, takes the form 

3 

if = L l~(r(n)) 
(14.7e) 

- ~ ~ 2 -
h(r) ={(-I/2meff)[\1,·-· IA(r)] + U(r)} 

with meff the preon effective mass and with A and {) respectively a real vector 
potential and a quaternion-imaginary scalar potential which are both functions 
of the preon coordinate i. Since Eq. (14.7e) is the sum of identical one-body 
Hamiltonians for the three particles, it can be rewritten in Fock space by the 
methods of Sees. 10.1 and 10.2, giving (with the representation label ). of Sec. 
I 0.1 taken now as i) 

( 14.7f) 

with h(r) the one-body Hamiltonian defined in Eq. (14.7e). Now let a"(r) be a 
complete orthonormal set of one-particle energy eigenstates of the one-body 
Hamiltonian, obeying 
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( 14.7g) 

Then defining the quasiparticle operator p" and its ad joint, as in Eq. (I 0.24f ), by 

(14.7h) 

the derivation of Eqs. (I 0.24h) and (I 0.25a) shows that Hr- can be rewritten as 

(14.7i) 
K 

As we have seen in Sec. I 0.2, the energy eigenstat~s in the one particle sector are 
exactly created by the quasiparticle operators p~, but since the latter do not 
obey canonical anticommutators because of the noncommutativity of quater
nionic wave functions, they do not behave as creation operators for independent 
quasiparticles in sectors with more than one particle. 

Nevertheless, let us assume that it is reasonable to approximate the creation 
operator for the ground state in the three particle sector as a product of three 
ground state quasiparticle creation operators. We then get the product recipe 
for creating composites given in Rule 2. In general the ground state wave func
tion ao(r) is not quaternion imaginary, but we now observe that if we rewrite it 
in symplectic component form, 

ao(i) = ao(il~ + lao(r)p (14.7j) 

with the a, [1 components in the complex C( I, I) subalgebra, we can always find 
a complex phase ((/1

) which makes ((i)a0 (i) quaternion imaginary. (Simply 
take ( as I times the complex conjugate of the phase of the a symplectic 
component.) But as noted earlier following Eq. (4.32), the effect of this multi
plication is to just induce a gauge transformation on the vector potential A(i), 
and a corresponding quaternion automorphism transformation of the scalar 
potential U. Hence we can always pick a gauge for the potentials in the shell 
model Hamiltonian that makes the ground state wave function (but not simul
taneously the wave functions of higher excited states) formally quaternion 
imaginary. Working in this gauge we get the first part of Rule I, with the iden
tification 

ao(i) = -a(r) · E ( 14.7k) 

for the wave function a(i) introduced above. One further subtlety which may 
enter is that we have seen in Sees. 4.6 and 4.7 that time reversal invariance 
restricts the form of the wave function, and this has the consequence that when 
we pick a gauge to make the wave function imaginary in a time reversal invar
iant Schrodinger equation, only two of the three components of a in Eq. ( 14. 7k) 
are linearly independent. However, this restriction does not apply to a zero 
energy state, and so there will be no conflict between a time reversal invariant 
shell model Schrodinger equation and Rule I if we assume that the ground state 
in the shell model is a zero energy state, as it must be if preonic physics is 
characterized by a very high energy scale. An alternative possibility is that the 
potentials in the shell model Schrodinger equation already have the generic time 
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reversal violating form discussed in Sees. 4.6 and 6.3, because of time reversal 
violation in the fundamental preonic dynamics. (These remarks suggest the 
interesting possibility that the mechanism which supplies quark and lepton 
masses may be related to the mechanism which produces the violation of time 
reversal invariance.) Although it may seem objectionable to have to assume a 
specific gauge to formulate the model, this feature was also present in the 
original form of the Bardecn Cooper Schrieffer ( 1957) theory of super·· 
conductivity, and this analogy suggests that as in the case of superconductivity, 
gauge invariance should be restored by the proper inclusion of collective effects. 

Finally, we note that since the three quasiparticle approximation to the 
three-body ground state wave function is not exact, and since the shell model 
itself represents an approximation, there are residual forces which act on the 
composites. These residual forces can, in principle, give rise to the gauge fields 
of the standard model which act on the quarks and leptons. We have argued in 
point (1) of the discussion in Sec. 13.7 that because the left algebra structure of 
quaternionic Hilbert space can give rise to multiquaternion algebras, it is 
possible to build up larger effective gauge groups than the underlying 
SU(2) x SU(2) preonic gauge group. However, since the underlying gauge 
group is vector-like, it seems reasonable to suppose that any larger gauge 
gwups kinematically generated from it will still not couple spin T to l 
components. which is the basis for the identification of spin-associated tripling 
with family structure in Rule 3. 

(5) If a quaternionic Hilbert space underlies fundamental particle forces, then at 
the deepest level, near the Planck scale, quaternionic structures will play a 
role in unifying quantum matter and classical metric fields into more 
fundamental "pregeometric" degrees of freedom. 10 And if this is the case, 
then even before the Planck scale is reached, we should expect to see struc
tural analogies between quaternionic quantum mechanics, on the one hand, 
and classical general relativity, on the other. as first suggested by Finkel
stein, Jauch, Schiminovich, and Speiser (1963). We explore here a number of 
such connections, which are suggested and illustrated by the analysis of 
Chapters 1-13. 

First of all, we argue, there is an analogy between the flat (or Minkowski) 
space-time limit of general relativity and the complex quantum mechanics 
limit of quaternionic quantum mechanics. In a curved space-time, in an 
arbitrarily small volume one can choose coordinates so that the metric 
locally takes the Minkowski form of Eq. (II.!) (this is the equivalence 
principle). Analogously, in quaternionic quantum mechanics, given a 
c-number quaternionic scalar field 

cp(x) o= c/Jo + e· cp ( 14.8) 

one can locally define quaternion imaginary units, so that i = e· ¢11¢1-
making cp locally C( I. i). In curved space-time, the Riemann curvature 
tensor is nonzero, whereas in flat space-time it vanishes. Analogously, i,n a 
general quaternionic c-number gauge field system, the components of the 
quaternionic gauge field Fi', that do not commute with i are nonzero, 

1° For discussions of aspects or pre geometry. sec Misner. Thorne, and Wheeler (1973) and references cited 
therein. and also Adler (1982) and Terazmva (1984). 
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whereas in the complex quantum mechanics limit, Fw commutes with i. (For 
quaternionic operator gauge fields, a similar statement holds with the right
acting i replaced by a suitable left-acting !.) Given an isolated clump of 
matter interacting with the gravitational field, at large distances the space
time metric becomes asymptotically Minkowskian. Analogously, for scat
tering in quaternionic quantum mechanics by potentials of compact 
support, as discussed in detail in Chapter 6, the scattering wave functions at 
large distances become asymptotically tC( I, i). Finally, in general relativity, 
energy, momentum, and angular momentum arc not well-defined quantities 
in curved space-time, but can only be given a uniquely defined meaning in 
the flat space time limit. Similarly, as we have seen in Sees. 3.1 and 3.2, 
uniquely defined self-adjoint operators for the momentum and angular 
momentum do not exist in quaternionic quantum mechanics, but can only 
be constructed in the complex quantum mechanics limit. 

Our second point is that general relativity and relativistic quaternionic 
quantum field theory have analogous gauge field structures. In general 
relativity, the rigid Euclidean geometry of flat space--time is replaced by a 
deformable Riemaimian geometry, in which equivalent metrics are related 
by general coordinate transformations, which constitute the gauge transfor
mations of general relativity. In the generalized quantum dynamics of Sees. 
13.5-13.7, the fixed geometry of canonical operators and canonical 
commutators of complex quantum field theory is replaced by a more general 
operator geometry. in which the canonical commutators are replaced by 
operator constraints compatible with the equations of motion, and sets of 
operators are equivalent if related by operator gauge transformations. As 
discussed in Sec. 13.5, there are similarities between the problem of identi
fying invariant observables in the presence of an operator gauge invariancc, 
and the problem of identifying invariant obscrvables in the presence of the 
general coordinate in variance of general relativity. 

Our third point is that the (3. I) metric signature of the physical space
time manifold (in flat space- time, g11 = g 22 = g3 3 = I, g 00 = -I) corre
sponds precisely to the ( 3, I) signature of the q uatern ions when viewed as 
a Clifford algc bra ( ef = d = e~ = -I, e6 = L cf. footnote 9 of Chapter I). 
This could be coincidence, in which case the following remarks are irrele
vant, or it may be yet another hint that quaternionic structures play a role 
at a pregeometric level where matter and metric degrees of freedom are 
unified. To attempt to put this connection in quantitative form. let 
e A, A = 0, I. 2. 3. be the standard qua tern ion basis introduced in Chapter 
I, with c0 = I, and let r1AB = T/AB denote now the Minkowski metric. Then 
we have the relations 

where we have defined 

·A ( A ) () 8 = -tr e es 

eA -· L 'lA He B 

B 

Letting cA be the basis of conjugate quaternions, we find 

(,.4 ·- -(' -- A· 

( 14.9a) 

( 14.9b) 

( 14.9c) 
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and so Eqs. (14.9a) can also be written as 

(14.9d) 

Letting al''' denote the homogeneous Lorentz transformation introduced in 
Eq. (ll.82a), we can now extend eA into a four-vector e~ defined, in the 
frame associated with a

1
;, by 

e -"'aBo 
~ = ~ :r LB 

B 

(14.10a) 

allowing us to extend Eq. (14.9a) [but not Eq. (14.9d)] into the Lorentz 
covariant equation 

(14.10b) 

Note, however, that in a general Lorentz frame the e~ do not obey an 
algebra isomorphic to the quaternion algebra. For example, if ajl corre
sponds to a boost in the I direction parameterized by A, we have 

{eo:}= {e0r, e1r, e2r. ey} = {cosh i + i sinh)., sinh/+ icosh .l.J k} (14.10c) 

which obey Eq. (14.10b), but are not isomorphic to the quaternion algebra. 
ln fact, since 

( 14.1 Od) 

we cannot relate { e~} to { e A} even by a two-sided gauge transformation 

lwl = iw'l = I ( 14.1 Oe) 

since Eg. (14.10e) would imply 

(14.10f) 

We can also extend Eq. (14.10b) into a generally covariant equation. In a 
curved space-time with metric g11 '', let el~. be the Vierbein obeying 

(14.lla) 

Then we can define a set of contravariant quaternions e~' that carry the 
metric information, 

(14.11b) 

so that by Eq. (14.10b) we have 

(14.11c) 
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Again, we caution that in general neither the quatcrnions e1' nor their 
covariant counterparts ell, obey an algebra isomorphic to the algebra of the 
eA.

11 All our construction guarantees is that locally we can find a coordi
nate system, unique up to spatial rotations, in which the el' reduce to the eA. 

We shall now show that this feature is independent of the constructive 
procedure we have followed, as stated in the following lemma, which 
extends the usual equivalence principle so as to relate geometric and 
quaternionic structures: 

Lemma 5: Let ell be a set of covariant quatcrnions obeying 

(14.12a) 

with g11 ,. a metric that locally is continuously deformable to the Minkowski 
metric Tlw· Then we can always find a local coordinate frame, unique up to 
spatial rotations, in which the e1, reduce to a standard quaternion basis 
with e0 =I and with eA, A= L 2. 3 obeying Eq. (1.18). 

To prove the lemma, we note that application of the usual equivalence prin
ciple implies that we can always find a local coordinate frame, unique up to 
Lorentz transformation, in which g111• reduces to the Minkowski metric r111". In 
this frame, Eq. (14.12a) reduces to 

(14.12b) 

Let us now expand the quaternions el' on a standard basis e A, A = 0. I, 2, 3, 

so that by Eq. ( 14.9a), the condition of Eq. ( 14.12b) takes the form 

Defining a~, by 

3 

r1w = L e/ c/"IAB 
A,B=O 

A,J1=0.L2.3 

(14.12c) 

( 14.12d) 

(14.12e) 

11 The fact that thee, defined by Eq. (14.10a) do not obey the quaternion algebra is another expression of 
the observation. made in Sec. 12.3. that there do not 'eem to be intrinsically quaternionic representations 
of the Lorenv group. There are 2 x 2 complex matrix representations of the Lorenu group. which give rise 
to spinorial analogs of Eq. (14.1 Ob) in which the form of the basis algebra is preserved under Lorent, 
transformations. See. for example, Bergmann (1957). Sachs (1964a.b; 1967; 1968). and for a recent impor· 
tant application. Ashtekar (1986, 1987). 

For another reference discussing connections betVveen quatcrnions and general relativity. see Mann 
( 1984). Applications of Cliff"ord algebras in mathematical physics are surveyed in Chisholm and Common 
( 1986). While reading proofs for this book. I learned of a paper of Dirac ( 1945) relating quotients of 
quaternions to Lorentz tl'ansformations. 
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Eq. (14.12d) becomes 

(14.12f) 

which is identical to Eq. (11.82a) defining a homogeneous Lorentz transforma
tion. Hence acting with the Lorentz transformation inverse to the a defined by 
Eq. (14.12e), we reduce the expansion coefficients e/ to the identity transfor
mation 6A = c5 1~; that is, the quaternions e11 are reduced to standard form. 
Acting further with any spatial rotation leaves the e1, in standard form. since we 
have seen in Chapter I that the automorphisms of the quaternion algebra are 
isomorphic to the rotation group 50(3) "" SU(2). Acting with a boost, however, 
takes the basis out of standard form, as shown by Eq. (14.10d); hence the 
coordinate frame that reduces the e1, to standard form is unique up to spatial 
rotations. 

Our fourth, and final, point concerns the origin of spinors. As posed in 
Misner, Thorne, and Wheeler (1973, Box 44.3), a fundamental question in 
geometrodynamics is "What ... has any purely geometric description to offer in 
explanation of spin I /2 in general?" A possible answer is that in manifolds 
carrying quaternionic (as opposed to complex) structure, the appearance of 
spinors is automatic. The reason is that over the quaternions there are tll'O one
dimensional irreducible representations of the rotation group SU(2). The first is 
the trivial spin-0 representation with generators 

(14.13a) 

The second is the spin-1/2 representation discussed in Sees. 12.3 and 13.4, with 
generators 

J~(J)- _lk 
3 - 2 (14.13b) 

which act on a one-component quaternion basis (p. When this basis is decom
posed into C( I, i) symplectic components c/Jrx, cp /3• the induced action of the 
generators of Eq. (14.13b) on the two-component column vector 

(14.13c) 

is just given by the 2 x 2 Pauli spin matrices [as we have seen in detail in the 
calculation of Eqs. (12.50a~c)]. In other words, the converse of the reduction 
argument of Sec. 13.4 tells us that the nontrivial one-dimensional quaternionic 
irreducible representation of SU(2) induc(:S the appearance of two-component 
complex spinorial representations, and by an application of the imprimitivity 
theorem (Mackey, 1968), this argument can be extended to state that the one
dimensional quaternionic irreducible representation of SU(2) induces the two
component complex irreducible representations of the Poincare group. There
fore, the apparent structural doubling associated with complex spinors arises 
automatically in the context of manifolds carrying q uaternionic structure, rather 
than having to be postulated a priori. Since spin-! /2 fields are ubiquitous in 
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nature, this is a further argument for the relevance of quaternions at a funda
mental, pregeometric level. 

(6) We close our discussion by noting that the occurrence of the very large 
number ,..._, I 0 13 as the ratio between the grand unification and electroweak 
mass scales constitutes yet another puzzling feature of the standard model. 
Although it is conjectured that supersymmetry may play a role in resolving 
this so-called hierarchy problem [see Wilczek (1993) for a review], no defi
nitive mechanism has been proposed, and one is left with the uneasy feeling 
that complex quantum field theory may not be a rich enough structure to 
provide the solution. As the analysis of this book has made clear, quater
nionic quantum mechanics and field theory is a potentially far richer struc
ture than its complex quantum theory specialization. This encourages the 
hope that within the framework of a quantum field dynamics on quaternio
nic Hilbert space, one may find solutions to the hierarchy problem and other 
outstanding puzzles of the standard model. 

14.2 EXPERIMENTAL TESTS AND MEASUREMENT THEORY 
ISSUES 

If a quaternionic Hilbert space dynamics underlies observational physics, then it 
becomes relevant to ask whether one can make direct experimental tests for 
residual quaternionic effects, and to examine how the analysis of issues in 
quantum measurement theory may be affected by changing from complex to 
quaternionic quantum mechanics. In the first part of this section, we address 
possible experimental tests and show that the null result found in the one direct 
experimental test for quaternionic effects carried out to date is the expected 
result on the basis of the analysis of Chapters 6, 8, and 9. Some ideas are 
suggested for possible directions to explore in the quest for nonnull experi
mental signals of quaternionic effects. In the second part of this section, we 
discuss the quantum measurement ("Schrodinger's cat") paradox, and the 
possible implications for this issue of quaternionic quantum mechanics, and 
especially of quaternionic generalized quantum dynamics. 

The earliest proposal for tests of quaternionic quantum mechanics was made 
by Peres (1979), who noted that in complex quantum mechanics, scattering 
phases are complex numbers, and thus commute. Therefore, in standard 
quantum mechanics, if ope subjects a beam to two successive scatterings with 
complex phase shifts e102 and e"' 1

, qnd then. inverts the order of the scat
terers so that the phase shifts are e101 and e102

, the compound phase shifts 

(14.14a) 

are equal. On the other hand, Peres suggested, let us suppose that the scattering 
phase in quaternionic quantum mechanics is a general quaternionic phase 

lwl = 1 (14.14b) 

with b quaternion imaginary. The analog of Eq. (14.14a) would then be 

(14.14c) 
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- -
and since in general 61 and 62 do not commute, one has [cf. Eq. (4.83a)] 
w 12 =1 w 21 ; that is, the compound phase shifts depend on the order of the scat
terers. Based on this argument. Peres suggested searching for residual quater
nionic effects by passing a neutron beam through slabs of two dissimilar 
materials, and searching for a noncommutativity of the phase shifts, as 
evidenced by a change in the compound phase shift when the order of the 
slabs is reversed. 12 

This experiment has been carried out by Kaiser, George, and Werner (1984), 
using titanium and aluminum slabs inserted in one arm of a neutron inter .. 
fcrometer, with each slab thick enough to produce a phase shift of roughly 104 

degrees. They found 13 

(14.15) 

indicating that the phase shifts bAr and 6r, commute to better than one part in 
3 x 104

. More elaborate neutron scattering experiments to search for quater
nionic noncommutativity of phases have been proposed by Klein (1988), who 
also surveys the general field of neutron-optical experiments to search for 
violations of the Schrodinger equation. 

Do the Kaiser and colleagues experiment, and the elaborations on it 
proposed by Klein, actually test for residual quaternionic effects? According to 
the nonrclativistic quatcrnionic scattering theory developed in detail in Chapters 
6, 8, and 9, the answer is clearly no: since we found there that the S-matrix in 
quaternionic scattering theory is complex <[(I. i), phase shifts will be commu
tative as in Eq. (14.14a), rather than noncommutativc as in Eqs. (14.14b,c), and 
a null result is expected. Using the general one-dimensional scattering analysis 
of Sec. 6.6, we can in fact give a detailed theory for neutron beam experiments 
designed to test for quaternionic effects. We note, first of all, that Eq. (6.81d) 
implies that thefr1 part of the neutron wave function decays, as a function of the 
distance f! from a scatterer, at least as fast as 

e-2mnf (14.16a) 

with mn the neutron mass. For two scattering slabs in contact, f! cannot be 
smaller than a typical atomic rapius of about 10- 8 em, for which the factor in 
Eq. (14.16a) is of order I 0~ 3 x 10

' ~ 0. So we can always apply the formulas of 
Eqs. (6.110a~d), which describe the scattering by two one-dimensional scatterers 
located far enough apart so that each is in the asymptotic scattfring regip;n of 
the other. The ratio of the compound transmission amplitudes iL

12
) and iL

21
) is 

then given by Eq. ( 6.11 Od ), which we rcwri tc as 

(14.16b) 

For slabs of the scattering materials (I) and (2) with uniform density profiles 

12 Peres ( 1979) also suggested a second test, expressed in terms of the scattering cross sections for three 
scattercrs, taken s1ngly or coherently in pairs. This tcsl is again based mathematically on the commutativity 
of complex, as opposed to quatcrnionic, phases. 
13 The method of Kaiser, George. and Werner only determines bAr_ T; and bT, AI modulo 2n radians = 360°, 
so the quoted result of Eq. (14.15) assumes that the noncommutativity i5Ar _ r; ~ 6T;-AI is smaller than 360° 
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along their length, as used in the Kaiser and colleagues experiment, there is a 
left-right reflection symmetry of the scattering potentiaL We thus have 

and Eq, (14.16b) reduces to 

t
A(I2) - t'(2I) 
L - L 

(14,16c) 

( 14.16d) 

predicting a null result for the phase difference, as observed. As noted in foot
notes 14 and 17 of Sec. 6.6, the derivation of Eq. (14.16b) does not assume 
unitarity and so remains valid in the presence of absorption, which is nonnegli
gible for the relatively thick slabs used in the Kaiser and colleagues experiment. 

Since noncommutative phases are not expected in quaternionic scattering 
theory, one must look for other indicators of possible quaternionic effects. As 
pointed out by Davies and McKellar (1992), in one-dimensional scattering in 
complex quantum mechanics, the left and right transmission amplitudes tL and 
fR are equal in magnitude and in phase, whereas in general in quaternionic 
quantum mechanics, only the magnitudes ftL( and (tR( are equal. Hence 
measurement of a phase shift 

(14.17) 

would be an indicator of quaternionic effects. However, as shown in Sec. 6.6, 
for a quaternionic potential that satisfies the conditions for time reversal invar
iance one has tL = tR, and so a nonvanishing phase bLR is a time-reversal
violating effect, of the type discussed in Sees. 5.2, 6.3, and 7.5. Experiments to 
detect b1.R are thus equivalent to experiments to detect time reversal violation, a 
subject that has been exhaustively analyzed [see, e.g., Sachs (1987)]. Within the 
standard model, the phenomenology of time reversal violation is well under
stood, and it is described by a single phase in the Kobayashi--Maskawa mixing 
matrix [see Cheng and Li (1984), Donoghue, Golowich, and Holstein (1992), as 
well as Sachs (1987), for detailed discussions], which so far has not been 
detectable in neutron-optical experiments. 

Since single particle scattering experiments do not appear likely to provide 
tests for quaternionic quantum mechanics, it is important to look for other 
possible experimental signatures. A potentially fruitful avenue, which has not 
yet been explored, is that of multiparticle effects. To begin our examination of 
these, let us ask whether the clustering violations computed in Sees. 9.3 and 10.4 
can be made the basis of experimental tests for quaternionic effects. These 
violations appeared because, in the model studied, the individual cluster wave 
functions, if computed in isolation, are intrinsically quaternionic. In other 
words, the model analyzed in Sees. 9.3 and I 0.4 does not satisfy the "<C( I ,I) 
asymptopia" hypothesis made in Sec. 14.1. In a theory obeying this hypothesis, 
all stable particles will have <C( I. i) wave functions when isolated, and in scat
tering experiments they will behave like the complex clusters defined in Sec. 9.4. 
Asymptotic wave functions will be products (symmetrized or antisymmetrized) 
of complex individual particle wave functions, and there will be no clustering 
violations. Although the existence of an asymptotically <C( I, I) theory may seem 
to require a miracle, we note that in the analyses of Sees. 9.3 and 10.4 we 
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already found that to first order in quaternionic potentials, clustering violations 
for small subsystems of very large systems are not present, since the terms that 
could potentially cause them can be absorbed by a quat_ernion automorphism 
transformation. This suggests that in appropriate theories with a full local 
operator gauge invariance (which the model analyzed in Sees. 9.3 and lOA did 
not possess), analogous local gauge transformations may be able to remove 
quaternionic terms from asymptotic wave functions to all orders, leading to 
compliance with the C( I, I) asymptopia hypothesis. 

An alternative possibility, of course, is that the clustering violations compu
ted in Sec. lOA at second order in quaternionic potentials are an indicator that 
in quaternionic field theories the best we can expect is approximately C( I, I) 
asymptotic behavior_ In this case there will be small clustering violations, which 
could be searched for as indicators for quaternionic effects_ It would be inter
esting to work out a phenomenology for th1s, using, for example, the analysis of 
Sec. lOA, and to assess our current state of experimental knowledge about the 
validity, at a high precision level, of clustering_ 

To continue the discussion, let us assume henceforth the exact validity of the 
C( I ,I) asymptopia hypothesis. Multi particle scattering will then behave like the 
scattering of multiple complex clusters as defined in Sec_ 9.4. In close ap
proaches, such clusters interact through quaternionic potentials, but the formal 
scattering theory analysis of Sec. 9.5 shows that the multiparticle S-matrix is 
always complex C( I, i), and so multiparticle phase shifts will continue to be 
commuting complex numbers. Hence even in multiparticle systems, asymptotic 
situations do not give rise to tests for quaternionic structure. However, as is 
made clear by the calculations of Sec. 9.3, in nonasymptotic situations there can 
be potentially interesting quaternionic effects_ Since these effects may accumu
late over large systems, the best place to look for quaternionic effects may well 
be in large multiparticle systems, in which many particles are nonasymptotic 
with respect to one another_ 

How large is large enough? One possible criterion, suggested by Penrose 
(1989), is the "one quantum criterion," that the system mass should be at least 
the order of the mass scale at which quaternionic physics becomes dominant 
(which we have con?,ectured in Sec. 14.1 to be A~ 10 15

- 10 17 GeV 
~ 10~9 - 10~ 7 grams.) 4 Our analysis thus suggests similar experiments to those 
suggested, on the basis of considerations in quantum measurement theory, by 
Penrose ( 1989) and particularly by Leggett (1980). Specifically, Leggett pro
poses tests of quantum mechanics using superconducting quantum interference 
device (SQUID) rings, based on the Josephson effect, to look for tunneling 
between macroscopic quantum states that correspond to clockwise and coun
terclockwise circulating electric currents_ Interesting possibilities may also arise 
from other collective multiparticle effects in solids, and from multiquantum 
coherent effects_ To make quantitative predictions for such experiments, one 
way to proceed would be to express postulated quaternionic effects as an effec
tive Hamiltonian fi constructed from dimension-6 operators formed from fields 
of the standard model particles, using th(: second quantization methods of Sees_ 
I 0.1, 13.2, and 13.3, proceeding by analogy with the quark-lepton substructure 
phenomenology carried out by Eich!en, Hinchcliffe, Lane, and Quigg ( 1984)_ 
This procedure leads to an effective H of the form 

14 Penrose ( 1989. p. 368) actually applie> this criterion using the Planck mass lO 19 GeV ~ I 0 5 grams. 
which he remarks is larger than one might wish, since considerably smaller objects behave classically. This 
same objection may indicate that even an estimate of 10- 9 grams is simplistic. 
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- 1 ;· 3 -
H= J\"2 d xH(G) (14.18) 

with H(6) a dimension-6 local operator formed from fermion fields. The effective 
Hamiltonian of Eq. (14.18) can then be used to generate predictions for specific 
multi particle experiments based on solid-state collective effects. The advantage of 
this procedure is that it incorporates a scale mass i\ characterizing the postulated 
onset of quaternionic physics, together with the known interactions of the stan
dard model particles, which arc our probes for studying deep underlying physics. 

Let us next turn to the second main topic of this section, an analysis of the 
implications of quaternionic quantum mechanics for issues in quantum 
measurement theory. Ever since the advent of quantum mechanics, and in 
particular of the Copenhagen interpretation, in the 1920s, much attention has 
been given to apparently paradoxical features of the theory. The most serious of 
these is the "quantum measurement paradox," better known popularly as the 
"Schrodinger's cat" paradox, which we now brief1y describe. 15 Working within 
the framework of standard complex quantum mechanics, let us start with a 
microscopic system·m in a pure state If), which is a superposition ofeigenstatcs 
I h) of some observable 0, 

I f) = L I if) Cp (14.19a) 
f 

By putting the system through a suitable macroscopic measuring apparatus M 
for the observable 0, we can select a particular component of I/) with eigen
state I fL), which will appear with probability lc 1l. The outgoing system will 
then be described (up to a phase) by the wave function I f/J. The process that 
leads to the transformation I I) -> I fiJ is called reduction of the wave packet 
[denoted R by Penrose ( 1989)], and evidently cannot be described by a unitary 
evolution operation acting on the state vector If). To see this, let us write 
If)= lfL) +I fl.L), with ULif~L) = 0. Then under unitary evolution [denoted 
U by Penrose], the state If) is transformed into VII), with U some unitary 
operator, and we have 

Ulf) =If~)+ Iff~). If f)= Ul.h), lffL) Ulfa) (14.19b) 

and we readily calculate 

Ill/f) 11=111/L) II, Uflf~;1.) = 0: (14.19c) 

in other words, the magnitudes of the components of I/) in the subs paces 
containing I fL) and orthogonal to 1./L) are preserved. So R is a quite distinct 
physical process from U. According to the Copenhagen interpretation, 
measurement processes necessarily involve a macroscopic apparatus that 
behaves classically, not quantum mechanically, and so at the level where R 
operates we arc instructed not to use quantum mechanical rules of calculation, 
such as Eq. ( 14. 19b ), to determine the behavior of the microscopic system. 

15 There are a number of very good expositions dealing with "sues rn quantum measurement theory. At the 
semipopular level, sec Penrose (I 9g9). At an advanced undergraduate or lirst-year graduate quantum 
mechanics level, see Peebles (1992). Chapter IV. Leggett (1987). and Schommers (1989). The books 
containing the Leggett and Schommers essays mcludc many other interesting articles on the quantum 
measurement problem. as docs Penrose and Isham (1986). 
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On the other hand, since we believe that quantum mechanics describes the 
dynamics of the entire universe, it should certainly apply to a small corner of 
the universe, such as our measuring apparatus M. Following ideas originating 
in von Neumann ( 1932), let us give a quantum mechanical description of the 
combined system consisting of the microscopic system m together with the 
measuring apparatus M. Instead of working in a Hilbert space Vm describing 
the microscopic system m, we now work in a Hilbert space V m Q9 V M, 

describing the microscopic system and the measuring apparatus. We assume 
an ideal measurement, in which the microscopic system and measuring appa
ratus are noninteracting before and after the measurement, and in which the 
interaction between the system and the apparatus during measurement is 
sufficiently weak that the microscopic system evolves without change of 
quantum state, even though the state of the measuring apparatus is changed. 
[Since the measuring apparatus can be much larger in scale than the micro
scopic system, this condition is attainable in a limiting sense, despite the 
restrictions imposed by the Wigner (1952)-Araki ( 1961 )-Yanase ( 1961) 
theorem; for a detailed discussion, see d'Espagnat (1976), Sec. 18.2.] Let the 
initial state of the measuring apparatus be IMo), and let us suppose for the 
moment that the microscopic system is initially in an 0 eigenstate Iff). Then 
the initial product state describi11g the microscopic system together with the 
measuring apparatus is 

l.!i)IMo) (14.20a) 

Under the measurement it evolves quantum mechanically into 

Ul.fi)IMo) (14.20b) 

which by our ideal measurement assumption, for each f!, is 

I /e) IJ'v!e) (14.20c) 

with IMr) the final state of the measuring apparatus resulting from the inter
action. We assume IMt) to be macroscopically distinguishable from other states 
IMt'), f!' =If!, a condition that is much stronger than requiring simply that I Me) 
and IM£1) be orthogonal, and that is also attainable. Now suppose that the 
initial state of the microscopic system is the superposition I f) of Eq. (14.19a), 
so that the initial product state is 

I f) IMo) = )_J h) IMo)ce (14.20d) 
f 

Since the quantum mechanical evolution law U is linear, the product state of 
Eq. (14.20d) evolves, after the measurement interaction, into 

Liff)IJvle)cp (14.20e) 
p 

which is a coherent superposition of states of the microscopic system correlated 
with macroscopically different states of the measuring apparatus! [In Schro
dinger's example, the measuring apparatus is a sacrificial cat, and Eq. (14.20e) is 
a superposition of states of the system correlated with the idealized states 
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lcat alive) and !cat dead).] The only way to achieveR is now to subject the state 
of Eq. (14.20e) to a classical Copenhagen-type measurement with a yet larger 
apparatus. But this too should be treatable quantum mechanically, and so we 
get in this way an apparently infinite recursion (referred to in the literature as 
the von Neumann chain) of coherent superpositions produced by U, which 
never achieve the state vector reduction R. 

The '·measurement paradox," then, is this: We can get a consistent inter
pretation of the measurement process in terms of a nonunitary operation R 
acting at the level of the measuring apparatus, which is treated as a classical 
system. If, however, we try to treat the measuring process quantum mechani
cally, through application of U to the measuring system, we do not find that R 
emerges from the operation of U. Instead we get a coherent superposition of 
macroscopically distinguishable states; this contradicts naive expectations based 
on our everyday experience with the behavior of classical objects, which we 
observe to be in one macroscopically distinguishable state or in another, not in a 
quantum mechanical superposition of such states (although it is an open 
experimental question whether such macroscopic superpositions exist and can 
be detected in appropriate configurations, such as the SQUID rings mentioned 
earlier.) It would appear that somewhere between the microscopic scale and the 
macroscopic scale there is a change in the nature and mathematical description 
of system evolution, leading to the emergence of R. This is not accounted for, 
however, by the unitary time evolution law U of standard quantum mechanics, 
which is asserted to apply at all scales, and which thus requires the introduction 
of R in some form as an independent interpretative postulate. 

At this point we should mention that starting 30 years ago, and with parti
cular emphasis over the last decade, there has been a significant reformulation 
and generalization of the Copenhagen interpretation of quantum mechanics, 
based on the concepts of decohcrence of linear superpositions of macroscopic 
states, and of quantum histories or trajectories for describing unitary time 
evolution. The main focus of this new work has been on formulating the 
quantum mechanics of closed systems, in particular the universe as a whole; this 
scope also makes it applicable to the quantum description of smaller closed 
systems, such as the corner of the universe discussed earlier, which contains a 
macroscopic measuring apparatus and a microscopic measured system. The 
authors of this reformulation believe that it is capable of resolving the apparent 
paradoxes in standard quantum mechanics without alteration of the underlying 
theory, 16 but this view has not gained universal acceptance, and in particular, 
the new methods have not yet provided a definitive resolution of the quantum 
measurement paradox. By the same token, neither is there universal agreement 
that the quantum measurement paradox is a true paradox or inconsistency in 
quantum theory, as opposed to yet one more example of how quantum 
mechanics, which passes all experimental tests to date, fails to conform to 
certain intuitive notions of what an acceptable theory should be like. This 
debate 17 may not soon be resolved, and in the author's opinion, there may be 
truth on both sides. That is, the inability of quantum mechanics to predict 

16 Some recent references expressing this viewpoint are Omni" (1992). Geli-Mann and Hartle (1989). 
Hartle (1990. 1992). and Griffiths (199:1). The Omnes review includes an extensive bibliography. For a clear 
early paper on decoherence. see Van Kampen (1954). 
17 The attitude of most working phy;rcists toward this debate is probably stdl best summuri;.ed by the 
following lines fmm !-'cyni11<tn ( 1982. p. 471 ): '"]cannot define the real problem. therefore I suspect there·s 
no real problem. but I'm not sure there's no real problem." Sec Mennin (1985) and ()leick (1992). 
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measurement outcomes for individual systems (as opposed to probabilities for 
ensembles of systems), and the related need to introduce some form of R as an 
independent interpretive postulate, both suggest that standard quantum 
mechanics may be incomplete, and that there may be a more comprehensive 
underlying theory. Such an underlying theory, one might hope, would explain in 
an elegant and organic way the probabilistic aspect of standard quantum 
mechanics. and the emergence of the distinctive U and R operations and their 
role in the measurement process. But if a more comprehensive theory exists, one 
still expects standard quantum mechanics to emerge as a limiting form in some 
regime, and within the confines of that regime (which can be known in precise 
form only when one knows the structure of the underlying theory), standard 
quantum mechanics will be an internally c:onsistent theory. The operative ques
tion, then, becomes that of studying possible embeddings of standard quantum 
mechanics in more comprehensive structures, and their implications for the 
interpretive issues discussed earlier. With this in mind, let us now turn to 
examine how the analysis of the quantum measurement process is modified if we 
assume that the arena for the underlying dynamics is a quaternionic, rather than 
a complex. Hilbert space. 

This question must be addressed at two levels: first, at the level of quater
nionic quantum mechanics as formulated in Chapters I -12, and second, at the 
level of the generalized quantum dynamics proposed in Sees. 13.5-13.7. In the 
formulation of Chapters 1-12, dynamics is described by the time-dependent 
Schrodinger equation of Eq. (2.53), which can be formally integrated to give the 
unitary evolution operator U(t, t') of Eqs. (2.56)-(2.57). Thus the dynamics of 
Chapters 1-12 resembles complex quantum mechanics in that time development 
of systems on any scale is described by a quaternionic generalization of Penro
se's operation U, with no obvious mechanism, apart from an independent 
postulate, for producing the state reduction operation R. A difference from 
complex quantum mechanics does arise in the treatment of composite systems, 
since we have seen in Sec. 9.3 that only in the complex quantum mechanics limit 
do we have a tensor product corresponding to independent subsystems. Thus 
the conditions for an "ideal" measurement as described earlier can only be 
realized as an asymptotic limit; nonasymptotically, a system being measured 
and the measuring apparatus will interact through quaternionic cross-couplings. 
This feature of quaternionic quantum mechanics may well prevent construction 
of the infinite chain of successively larger measuring apparatuses contemplated 
in the von Neumann recursion, since systems arbitrarily high in the chain may 
never be able to attain the asymptotic regime. However, only the first step up in 
the chain sufficed to produce the conceptual difficulties illustrated in Eqs. 
(14.20a e), and for one step, there is no obvious obstacle to constructing 
experiments in which the microscopic (on a laboratory scale) system m and the 
measuring apparatus M are both asymptotic. In other words, for one step we 
can apparently realize the conditions assumed in Eqs. (14.20a--e) to arbitrarily 
high accuracy, leading to the conclusion that there still should be an apparent 
quantum measurement paradox in quatcrnionic quantum mechanics as formu
lated in Chapters I 12. 

For the generalized quantum dynamics proposed in Sees. 13.5-13.7, the 
situation may, in principle, be different. We recall that a total trace Lagrangian 
leads directly to an operator dynamics generated by a total trace Hamiltonian, 
without intervention of a unitary operator dynamics U generated by an 
operator Hamiltonian. In the complex quantum mechanics case, we conjec
tured that a unitary dynamics compatible with the generalized operator 
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dynamics always exists. In the quaternionic case, on the other hand, we noted 
that an equivalent unitary dynamics may not exist, in which case a linear time 
development law U for states can emerge only as an approximation, 18 and in 
general will be subject to nonlinear corrections. If this happens, then general
ized quantum dynamics, which contains both standard quantum mechanics 
and classical mechanics as special cases, may provide a framework that can 
unify into a single concise formalism the unitary evolution U acting on 
microscopic systems in the standard quantum mechanical description, and the 
nonunitary state reduction R that intervenes when a microscopic system is 
acted on by a macroscopic measuring apparatus. In other words, quaternionic 
generalized quantum dynamics may, when understood in full detail, provide a 
new perspective on how to resolve the apparent paradoxes in quantum 
measurement theory. 19 

The idea that standard quantum mechanics may only be a linear approx
imation to an underlying nonlinear theory is an old one (see Pearle, 1976, and 
Weinberg, 1989a,c, for early references), and the phenomenology of tests for 
possible nonlinear deviations from the nonrelativistic Schrodinger equation has 
been studied by Bialynicki-Birula and Myciclski (1976), and in great detail by 
Weinberg (1989a,b,c). The focus of the Weinberg papers, in particular, is not to 
advocate the existence of a nonlinear quantum mechanics, but rather to set up a 
consistent nonlinear quantum mechanics as a foil, against which predictions of 
the conventional linear theory can be tested in a quantitative fashion. The 
analysis of Bialynicki-Birula and Mycielski assumes that nonlinearities take the 

" If quaternionic generalized quantum field systems turn out to be unitary, there still remains the question 
of whether the operator lf is representable as a local polynomial in the fundamental fields or has a more 
complicated structure. If quaternionic generalized quantum field systems are not unitary, there are two 
possibilities for the e111ergence of a unitary system as an approximation. The first is that there is a regime 
where there is a quaternion unitary approximation described by a nontriviaily quaternionic anti-self
adjoint Hamiltonian lf. This would then give a quatcrnionic quantum mechanics as described in Chapters 
1-12. The second is that there is no quaternionic regime, but only a complex C(l,I) unitary asymptotic 
regime, the nonlinear corrections to which do not take the form, in any useful approximation, of a 
nontrivial quaternion unitary dynamics. In the second case the status of Chapters I ·12 would be demoted 
to that of an instructive model, which does not play a role as an approximation to an underlying quater
nionic field dynamics! 
19 In his discussion of nonlinear Schrodingcr equations, Weinberg (1989a, 1989c) makes the interesting 
point that in general they correspond to a chaotic dynamics, whereas solutions of the linear time-dependent 
Schrodingcr equation are quasiperiodic. The same observation should apply to the quaternionic case of 
generalized quantum dynamics, which. if not unitary, is likely to he chaotic. Chaotic behavior, in the 
presence of many degrees of freedom, could provide a mechanism for the emergence of an ensemble ex
hibiting the probabilistic element associated with the state vector reduction operation R, since in chaotic 
systems there is high sensitivity to initial conditions, and so neighboring trajectories can evolve to very 
different final states. The requirements for getting standard quantum mechanics from a chaotic. determi
nistic system of equations has been clearly stated by Pearle ( 1976, 1989): One needs a system in which the 
possible final states for trajectories are those given by standard complex quantum mechanics, with the 
probability measure fcJr attaining these states given by the squared modulus of the complex wave function. 
A possible source for the information distinguishing between neighbonng trajectories could be the 
quaternionic cross-couplings between the subsystem in question and the rest of the universe, which, 
although very small in the asymptotic regime (where they would be the remnants of a hidden. very high 
energy layer of physics). are never precisely ?cro. 

Although this would be a "hidden variables" interpretation for the probabilistic structure of quantum 
mechanics. because the operators in quatcrnionic generalized quantum dynamics do not obey local ca
nonical commutators, the locality assumption that is the basis for the Bell ( 1964) inequalities is not satis
fied. This point is essential for the viability of the scenario just outlined, because these inequalities are 
violated by standard quantum mechanics, as has been confirmed experimentally by Aspect and colleagues 
(1981. \982). For further discussiOns and references relating to the Bell inequalities, see Mermin (1985, 
1993) and Clauser and Shimony ( \978). 
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form of a potential term in the Schrodingcr equation that is logarithmic in the 
absolute value of the wave function, while Weinberg imposes the condition that 
the complex ray structure of quantum mechanics should be preserved by non
linearities, which must therefore satisfy certain homogeneity conditions as 
functions of the wave function. Although their formulations differ, both of these 
investigations parameterize a possible: nonlinear term in the Schrodinger equa
tion by a small parameter (called E; by Weinberg, h by Bialynicki-Birula and 
Myciclski) with the dimension of energy. On dimensional grounds, Weinberg 
( 1989a) estimates that if departures from standard quantum mechanics anse 
from physics at a very high energy scak A, then 0 should be of order20 

I 
D~--~A2 

L-H 
( 14.2la) 

with L a characteristic length scale for the system being investigated experi
mentally. The same estimate is obtained if we associate r- with a characteristic 
matrix clement of the effective Hamiltonian if of Eq. (14.18). A variety of 

. 21 
experiments have been performed on neutron beams and nuclear systems, 
for which one can plausibly estimate L ~ I fermi"" (0.2 GcV)- 1

• The best 
current bounds on<-, obtained from spin-3/2 nuclei, give I~:I:S 10-20 cV, which 
corresponds via Eq. (14.2la) and the Weinberg phenomenology to a lower 
bound on A of order 

(14.2lb) 

According to this estimate, a change in the form of quantum dynamics at the 
grand unification scale A~ 10 15

- 10 17 GeV could show up in Schrodinger 
equation nonlinearities on a scale e ~~ 10- 24

- 10- 28 eV, well beyond current 
experimental capabilities. Put another way, these estimates suggest that there 
may be a connection between the large ratio of scales characterizing the hier
archy problem and the very high accuracy to which conventional linear 
quantum mechanics is observed to hold. We caution, however, that before 
applying these estimates to the specific mechanism for producing nonlinearities 
implied by an underlying quaternionic generalized quantum dynamics, one 
would first have to show that this dynamics produces nonlinearities obeying the 
complex ray or homogeneity conditions assumed in the Weinberg phenomen
ological analysis, and that it is consistent with Eq. (14.2la). 

20 The original formulation of Weinberg ( \989a) involves nonlocalities, which are not present in the later 
formulations of Weinberg ( 1989b,c). Weinberg gives the estimate of Eq. ( 14.21 a) only in the context of his 
original formulation; in the later formulations, in extracting from the experimental results a quantitative 
measure of possible nonlinearities, he avoids the somewhat conjectural estimate of Eq. ( 14.2\a), in favor of 
a direct comparison of lrl to the average binding energy per nucleon (cf. footnote 21). 
21 Neutron beam experiments are surveyed by Klein ( 1988). and these as well as nuclear experiments are 
discussed by Weinberg (1989c). More recent experiments are reviewed in Bollinger, Heinzen, llano, 
Gilbert, and Wineland (1991). 

Weinberg (\989b, footnote 6) and Bollinger and colleagues (1991) compare 1"1 directly to the average 
binding energy per nucleon r 8 ~ 5 MeV. When this is converted to a characteristic nuclear momentum 
p via p = (2c: 8 mn) 112, one gets p ~ 0.1 GeV, consistent with the estimate L ~I fermi~ (0.2GcV)-- 1 

used in the text. 
A possible complication. which could affect these applications of the Weinberg phenomenology, has 

been pointed out by Po\chinski ( \991 ). 
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14.3 OPEN QUESTIONS 

The exploration undertaken in this book demonstrates that quaternionic 
quantum mechanics constitutes a coherent and well-defined branch of theo
retical physics, which so far is not at variance with any known experimental 
results. Its study has already shed light on the mathematical structure of 
quantum mechanics, and it may well provide resolutions to some of the funda
mental problems of elementary particle physics, quantum cosmology, and 
quantum measurement theory. Nonetheless, quaternionic quantum mechanics, 
and especially quaternionic quantum field theory, are still in the early stages of 
development, and many unresolved issues remain. We conclude with a listing of 
open questions for future investigation (some already noted at various points in 
the book), whose study may lead to further insights. 

A large part of this book has dealt with determining the quaternionic 
quantum mechanics generalizations of standard results of complex quantum 
mechanics. Many additional issues of this type remain to be explored. There
fore, we begin our problem list with questions involving quaternionic analogs 
of topics in complex quantum theory. 22 We also include other questions 
involving the first quantized formalism developed in Chapters 1~9 and Sees. 
I 0.3~ I 0.4: 

1. Can one show that Vp is antibinding, as suggested in footnote 7 of Sec. 6.4? 
Can one improve the analyticity domain for the forward scattering ampli
tude T(E) obtained in Sec. 6.5? Can one find a quaternionic generalization 
of the Jost function, or otherwise get partial wave analyticity properties? 
Can one use quaternionic potential scattering theory as a tool in the study of 
complex function theory, since it gives a new way of characterizing complex 
S-ma trices?23 

2. Can one find exactly integrable quaternionic quantum mechanical systems? 
Are there quaternionic analogs of the Bargmann potentials? Is there a 
quaternionic extension of inverse scattering theory? 

3. What is the significance of the E = 0 exceptional case of the quaternionic 
generalization of Wigner's theorem in Sees. 3.5 and 3 .6? Is there a connec
tion with vacuum spontaneous symmetry breaking? (Other places where we 
found E = 0 exceptions were in the classification of Poincare group repre
sentations in Sec. 12.3 and in the calculation of the transition probability per 
unit time to the /3-symplectic components in footnote 3 of Sec. 7.2.) 

4. In the decaying state analysis of Sec. 7 .3, we showed that to order V2
, there 

is vanishing transition probability per unit time to the /3-symplectic compo
nents. Can this result be extended to all orders? What is the detailed struc
ture of the [1-symplectic dressing of states in the decay problem? Can this be 
used to get experimental signatures for quaternionic effects? 

----- -~----
22 Issues of this type recently investigated by Horwitz concern the existence of a "time" operator in 
quaternionic quantum mechanics (Horwitz, 1993) and the solution of the quaternionic generalization of the 
Lee--Friedrichs model (Horwitz, 1994a,b). 
23 For instance, Khuri ( 1990) has discussed possible connections between the Riemann hypothesis and 
potential scattering in standard quantum mechanics; do these ideas extend to quatcrnionic potential scat
tering'' See also p. 285 of Berry ( 1989). who notes that a variety of evidence suggests that the Riemann 
zeros ''are eigenvalues of a quantum Hamiltonian obtained by quantizing a classical system without time
reversal symmetry whose orbits arc chaotic." Lack of time-reversal symmetry could indicate a role for 
quaternionic potential scattering. 
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5. In scattering theory (cf. Chapter 6), can one give systematic bounds on how 
fast the p-symplectic components decouple? Can these be used as the basis 
for experimental tests for quaternionic effects? 

6. Can one tighten up the argument, given in footnote 4 of Sec. 4.1, excluding 
multiccntral projective representations of the Galilean group'7 Is the multi
centrality condition of Sec. 4.3 actually weaker than centrality, or does it in 
fact imply centrality') Can the multiparticle Galilean analysis be made inde
pendent of the assumption of Eq. (9.7)? In potential scattering, how is the 
Galilean invariancc of the underlying quaternionic Schrodinger equation 
manifested in terms of the optical potential of the <C( I. i) asymptotic theory, 
which, since it is nonlocal, docs not have an obviously Galilean structure? 

7. Can one simplify or extend the WKB analysis of Sec. 5.9? What is the 
quaternionic form of the WKB connection formulas? 

8. Can the Feynman path integral derivation be pushed further than Eq. (4.80) 
( cf. the remarks in footnote 14 of Sec. 4. 5)'l 

9. What is the generalization of the quaternionic adiabatic geometric phase to 
the case of degenerate levels? In the <~(L i) case, Wilczek and Zee (1984) 
show that degenerate levels correspond to a non-Abelian geometric phase. 
In the quaternionic analysis in Sec. 5.7. we found a non-Abelian structure 
already in the E = 0 nondegenerate case, corresponding to the existence of a 
nontrivial one-dimensional quaternionic representation (cf. Sec. 12.3) of 
SU(2). Does the E > 0 quaternionic degenerate case reduce to the qL i) 
degenerate case studied by Wilczek and Zee? How does the E = 0 quater
nionic degenerate case connect with higher dimensional quaternionic irre
ducible representations of the unitary groups (cf. Sec. 13.4)? 

10. The Riccati equation made an unexpected appearance in both the analysis 
of the non-adiabatic geometric phase in Sec. 5.8 and in the quaternionic 
WKB analysis of Sec. 5.9. Can these be translated back into an analogous 
use of the Riccati equation for the study of SU(2) Yang-Mills gauge fields? 

11. Can one find applications of the gaplikc formula for energy eigenvalues in 
Eq. (5.6)? Are there any situations in condensed matter physics that behave 
like an analog of quaternionic quantum mechanics, realized through <C( I, i) 
Pauli matrix representations of the quatcrnions'l 

12. Can the time-dependent scattering theory analysis given in Sees. 8.1-8.3 and 
9.5 be made rigorous? Can one prove asymptotic completeness in the 
quatcrnionic multiparticlc case? 

13. What is the struct urc of the q uatcrnionic quantum mechanics analog of 
parastatistics and (a question posed by Y. M. Cho) of anyonic or fractional 
statistics (cf. Sees. 9.2 and 14.1)? When arc they just C(l. i) cmbcddings, and 
when arc they nontrivially quaternionic? 

14. Can one set up a phenomenology of clustering violations arising from 
quaternionic corrections to a <C( I, i) asymptopia, using the results of Sec. 
10.4'1 Arc there tests for residual quaternionic effects using condensed 
matter collective phenomena or multiquantum coherent effects (cf. Sec. 
14.2)'! 

15. Can one develop a useful perturbation theory of statistical mechanics with 
quatcrnionic potentials, around a <C( I, i) unperturbed theory (cf Sec. 10.3)? 
Is there a quaternionic extension of Umezawa's thermo field dynamics 
(reviewed in Matsumoto, 1986)? 
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16. Is there a quaternionic analog of the coherent state formalism of complex 
quantum mechanics? 

17. Can understanding the classical limit of complex quantum mechanics (see, 
for example, Berry, 1989) be simplified by using a limiting process through 
quaternionic Hilbert space operators? 

A major theme of the latter part of this book has been the development of 
quaternionic analogs of second quantization, relativistic quantum mechanics, 
and quantum field theory methods, as well as ideas for their physical applica
tion, in Sees. I 0.1 and I 0.2 and Chapters 11-14. The discussions in these 
sections suggest many further questions: 

18. As a continuation of question 17, can understanding the classical limit of 
complex quantum mechanics be aided by using the total trace Lagrangian 
formalism of Sees. 13.5-13.7? In posing this question, we note that the 
generalized Poisson bracket operation and symplectic dynamics of Sec. 13.5 
are operator extensions of the standard Poisson bracket and classical 
Hamiltonian dynamics and reduce back to the familiar classical formulas 
when the q's and p's all commute. Does this property make them a natural 
vehicle for studying the classical limit of quantum mechanics? 

19. In footnote 8 of Sec. 4.2, we saw a connection between discontinuous unit 
classical quatcrnions and Dirac monopole potentials. Turning to the classi
cal relativistic wave equations (cf. Chapters II and 12), what are the 
guaternionic analogs of't Hooft-Polyakov monopoles and instantons?24 Do 
any new features emerge? 

20. Can one elucidate the structure of the transformation from a Fock space 
based on the class C of F ock space bases [which, as defined in Sec. I 0.1, are 
related by C( I. i) one-particle transformation functions], to the analogous 
Fock space based on a class C' of Fock space bases [which are related by 
C( I, i ') one-particle transformation functions, with i' i z1? Can one more 
completely characterize quasiparticle properties than was done in Sees. 10.2 
and 14.1? Can one explicitly find a quasiparticle transformation that diag
onalizes the general anti-self-adjoint Hamiltonian if that is quadratic in the 
canonical a's and al's. as in Eq. (10.24b), but that is not particle number 

conserving, so that there arc a; ai' and c/ a1
, terms? [In the <C( I. i) case, the 

·I ·t /.1 "t 

solution of this problem is given, for example, in Blaizot and Ripka (1986, 
Chap. 3 ).] Can the C( I, i) phases that appear in conventional discussions of 
C, P, and T invariances in complex quantum field theory (see, e.g., Sachs, 
1987) be usefully interpreted as phases associated with a choice of left
acting algebra? 

21. When the Lagrangian for the c-number scalar field with independent left 
and right quatcrnionic gaugings is expressed in terms of symplectic compo
nents in Sec. 12.2, the covariant derivative V 1,iJ> defined in Eq. (12.50b) is a 
linear combination of iJ> and the complex conjugate <P*. An analogous 
structure is found in the fermion case, Eq. ( 12. 53b ). Both models have an 
S0(4) ~ SU(2) x SU(2) gauge invariance, but it appears to be realized in an 
unconventional way in terms of a single two-component internal symmetry 

24 The paper> by I.Cvay ( 1990. 1991) arc relevant to this question. 
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spinor. Can these models be written in a more conventional form? What are 
their properties as classical Lagrangians and when quantized as q I, i) 
quantum field theories? As remarked in footnote 42 of Sec. 13.7, the charge 
conjugation operation defined for the quatcrnionic field theory by Eq. 
( 13.115a) differs from that defined for the corresponding C( I, i) theory by 
Eq. (12.56b). What is the interpretation of the operation of Eq. (13.115a) 
when regarded as an operation acting on the C( I, i) theory, and how does it 
relate to the operation of Eq. (12.56b)? 

22. Although there are intrinsically guaternionic representations of compact Lie 
groups (Sec. 13.4), we have seen in Sec. 12.3 that there are no intrinsically 
quatcrnionic positive-energy representations of the Poincare group. Can one 
also prove that there are no intrinsically quaternionic representations of the 
Lorentz group? 

23. What are the conditions for a pair of quaternionic field operators 
0 1 (x), 0 2 (x) with the same Lorentz transformation properties (e.g., both 
spin-0 or both spin-1/2) to be related by a biunitary operator gauge trans
formation (cf. Sees. 13.5-13.7) 

01(x) == U(x)02(x)U't(x) 

ut(x)U(x) = U(x)Ut(x) =I, u't(x)U'(x) = U'(x)U'l(x) =I? (14.22) 

Is the fermion field operator defined by Eq. (13.46b) equivalent to that of 
Eq. (13.46a) under such a two-sided gauge transformation? What is the 
covariance group of generalized cornrnutators/anticommutators which is 
covariant under biunitary operator gauge transformations, and that for one 
gauge choice contains the canonical commutator/anticommutator? Is the 
delta function singularity of the canonical commutator/anticommutator 
invariant under this group? What is the analogous covariance group of 
generalized gauge field commutators under unitary operator gauge trans
formations? 

24. What are precise conditions that permit the cyclic permutation of operators 
under Tr? What is the class of total trace Lagrangians L for which the 
variational calculations of Sec. 13.5 involve only permitted cyclic permuta
tions of operator variables? 

25. What is the analog of the Dirac theory of constrained systems for operator 
gauge invariant systems defined by a total trace Lagrangian (cf. Sccs.l3.5, 
13. 7)? What is the analog of BRST theory25 for such systems? Of the 
Slavnov-Taylor (Ward) identities? 

26. In the C( I. I) case with many degrees of freedom ( cf. Sec. 13.6 ), what is the 
precise relationship between the operator gauge invariant total trace formu
lation of dynamics, and the corresponding conventional canonical quantiza
tion of the same Lagrangian? Do the constraints of the former give an 
equivalent physics to canonical quantization, up to a choice of an operator 
gauge, or must one impose the canonical commutators as additional invariant 
relations compatible with the constraints and equations of motion? Is the 
C( I, I) case of total trace dynamics always compatible with a unitary time 
evolution? What is its relationship to the formalism of Heslot (1985)? 

2' An exposition of Becchi-Rouet ·Stora Tyutin theory in the case oi' complex quantum field theory. and 
references. are given in Hennea ux and Teitelhoim ( 1992). 



530 RELATIVISTIC QUATF:RC\IIOC\IIC QUANTUM MECHANICS 

27. Continuing in the C( I, I) case with many degrees of freedom, what happens 
if one solves the constraints with canonical-like commutators, which have a 
different Planck's constant for each degree of freedom? Under what 
circumstances can this solution be reduced, by rescaling of variables, to the 
conventional one? What is the phenomenology of such quantum mechanical 
systems: how can they be distinguished from conventional ones? 

28. In the quaternionic case of total trace dynamics (cf. Sees. 13.5, 13.7), can 
one usefully characterize the solutions of the operator constraint equations? 
Can one impose generalized canonical commutators;anticommutators (cf. 
Question 23) as invariant relations? Is it consistent to assume that on one 
time slice such generalized commutators/anticommutators arc canonical in 
form? If consistent, does this assumption still allow nontrivial quaternionic 
structure, or does it restrict the solutions of the field equations back to the 
complex quantum field theory case? Is time development unitary in the 
quaternionic case? If time development in these theories is unitary, is the 
corresponding if a local polynomial in the quantum fields, as in standard 
complex quantum field theories? If time development is not unitary, is it 
chaotic? Can one formulate simplified one- or two-dimensional models that 
help to clarify these issues? What happens when the superposition of 
fermion half-fields of Eq. (13.46b) is used as an initial condition in the total 
trace dynamics time evolution equations? Are there exactly solvable models? 

29. Does quaternionic generalized quantum dynamics asymptote, in general or 
under well-defined conditions, such as in the presence of an operator gauge 
invariance, to a C( I, I) theory? If quaternionic generalized quantum 
dynamics is nonunitary, docs it lead to nonlinear corrections to the asymp
totic Schrodinger equation and can these resolve the quantum measurement 
paradox (cf. Sec. 14.2)? 

30. For the model discussed in axial gauge in Sec. 13.7, what form does the total 
trace Hamiltonian H take in noncanonical gauges, such as the transverse 
gauge? What is the structure of the transformation between different 
gauges? Can one explicitly verify the Poincare algebra of the total trace 
generators in axial gauge [cf. Eq. (13.74e)]. In noncanonical gauges? Math
ematically, how docs one characterize this kind of representation of the 
Poincare algebra? Can one generalize the induced representation theory 
described in Mackey (1968) to the case in which the inducing representation 
is an intrinsically quaternionic representation of a compact Lie group? 

31. What is the analog for state vectors [cf. Eqs. (2.12a- c)] of the multi
quaternion basis expansion for operators given in Eqs. ( 13.112a -c)? The 
structure here will diffcr,26 because there is only one right-acting quaternion 
algebra, even when we introduce multiple independent left-acting algebras. 
What is the SU(2) representation content of the multi-quaternion bases of 
Eq. (13.112b) in terms of actions on the gauge gluons and fermions? How do 
they relate to the Razon -Horwitz analysis of multiquatcrnion algebras? At 
the n = I level, the expansion corresponds to gauging the one-dimensional 
quaternionic irreducible representation (cf. Sec. 12.3) of SU(2). Arc there 
quaternionic field theories that specifically correspond to gauging higher 
dimensional (dimension 2: 2) intrinsically quaternionic irreducible repre
sentations of SU(2) or other compact groups (cf. Sec. 13.4)? Or does 

2
'' I am indebted to L. I'. Horwitz for this remark. 
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gauging the one-dimensional representation play a unique role, because of 
its connection with the expansion in formally real components of Eqs. 
(2.11 b-d)? 

32. Can one more completely characterize the structure of observable~ in 
operator gauge invariant theories? How close are the parallels with obser
vables in general relativity (cf. footnote 5 of Chapter 3, Sec. 13.5, Sec. 14.1)? 

33. Can one have an abnormal spin-statistics connection in quaternionic field 
theory (cf. Sec. 13.7)? If not, what goes wrong? What is the anomaly struc
ture in guaternionic field theory? Is the dynamics based on the total trace 
Lagrangian density £.~ of Eg. (13.115e) consistent, or is it inconsistent as a 
result of anomalies? What are the possibilities for dynamical violation of 
time reversal invariance? Can one give a field theory justification for the 
time reversal violation model of Sec. 7.5, which we note, was based on a 
unitary dynamics governed by an anti-self-adjoint operator Hamiltonian H. 
rather than on the quaternionic generalized quantum dynamics of Sec. 13.7? 
What are the properties of models with Gcf G' [cf. Eq. (13.115c)], which 
apparently violate CPT? 

34. We have seen that the fermionic model of Egs. (13.107b,c) admits a global 
chiral symmetry, generated by the real, anti-self-adjoint Majorana repre
sentation matrix i-,• 5. However, the model cannot be separated into 
decoupled left-handed and right-handed chiral components, because the 
self-adjoint matrix projectors (I±: rs)/2 are not real, and so do not 
commute with the gauge potentials 8 11 , 8~. Can one obtain a deeper, more 
detailed understanding of this phenomenon? What implications does it 
have for the problem of the origin of particle masses? 

35. Can one find a functional integral form of total trace dynamics, analogous 
to the Feynman path integral in compl·ex quantum field theory? Can one use 
it, and Gaussian integral formulas (cf. Sec. 13.8), to develop a perturbation 
expansion? Which type of Gaussian integrals arc involved, complex or 
quaternionic? 

36. Can one get a perturbation expansion by transforming to an "operator 
interaction picture" (cf. Sees. 7.4, 13.5) based on the Schrodinger picture for 
the kinetic energy term in the total trace Hamiltonian fi? More generally, 
what are useful calculational techniques for quaternionic field theories, 
particularly for those formulated in terms of an operator gauge invariant 
total trace Lagrangian? Is there an extension of the Hartree approximation 
to generalized quantum dynamics, and can this be used to make a systematic 
quasiparticle approximation? 

37. Is there a geometric phase analog (cf. Sees. 5.7, 5.8) in generalized quantum 
dynamics (Sec. 13.5), and if so, what are its properties? More generally, what 
is the role of phases in generalized quantum dynamics? 

38. B. Grossman has noted that the fermion charge algebra of Eq. (13.54g) has 
the projective representation form of Eq. (12.73b). Writing 

3 

[QA, QB] =- L F-,1BcQc +lAs. 
C~l 

- 3 I 
lAB = L £ABc-;; EcN(N- I) 

c~t 2 

(14.23a) 
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a simple calculation shows that 

(14.23b) 

and hence 

(14.23c) 

Therefore the multicentrality condition of Eg. ( 12.73c) is not satisfied and so 
Eqs. (13.54d-g) provide a simple example of a nonmulticcntral projective 
representation which nonetheless has a simple structure. Can one abstract 
from this a general class of nonmulticentral projective representations which 
arc amenable to analysis? Can the quantum field theory obtained by gauging 
the one dimensional irreducible representation of S U(2) be understood by 
extending conventional quantization methods to allow gauging of nonmul
ticentral projective representations of an internal symmetry group? 

39. We have seen two interesting hints of connections with supcrsymmctry. In 
the operator constraint of Eq. (13.90f), the boson commutator and fermion 
anticommutator terms enter with opposite sign. In the Gaussian integral 
formula of Eq. (13.129b), there is a dramatic simplification in form when the 
numbers of bosonic and fermionic integrations are equal. ls there any rela
tion between these two observations? How should one understand the 
simplification of the Gaussian integral source dependence when M = N [cf. 
Eqs. (13.129a -f)]? Are there statistical mechanic~ or other mathematical 
physics applications of the reproducing formula of footnote 49 of Sec. 13.8, 
which is a consequence of this simplification? 

40. In Sec. 12.3, we showed that E > 0 Poincare algebra representations can 
always be transformed to be complex, and similarly for representations of 
supersymmetric extensions of the Poincare algebra. However, we saw in Sec. 
13.7 that the total trace formalism permits the construction of Poincare 
invariant field theories that have nontrivial quaternionic structure. Can one 
find supcrsymmctric total trace Lagrangians, which correspond to quater
nionic, and not C( I, I), field theories? Is this possible in background space
time with a c-number metric, or only when the metric is an operator with 
qua ternionic structure? 

41. Can the Harari-Shupe composite scheme (cf. Sec. 14.1) be realized in 
quatcrnionic generalized quantum dynamics? More generally. can one 
achieve in this dynamics an economical preon model in which color and 
family structure are generated dynamically? Can the enumeration of 
composites in Sec. 14.1 be made in a manifestly gauge invariant way? 

42. Can one formulate quantum gravity through quaternionic generalized 
quantum dynamics ( cf. Sec. 14.1 )? Can one find in this way a satisfactory 
model for "pregcometry" or "induced gravity"? Is there a total trace 
Lagrangian L with an analog of local supcrsymmetry? Can one aesthetically 
unify in this way matter and metric degrees of freedom? Can one relate the 
vanishing of the cosmological constant ( cf. Sec. 14.1) to the special role of 
E = 0 (cf. Question 3) in the spectral analysis of quaternion anti-self-adjoint 
operators? Can the "big bang" be interpreted as a transition from an initial 
phase of the universe that has an unbroken quaternionic gauge invariance, 
and that consists of a single guaternionic cluster, to a phase in which a 
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preferred C( I. i) subalgebra is singled out, and which can contain multiple 
complex clusters (cf. the asymptotic state structure analysis of Sec. 9.4)? In 
such an interpretation, what implications would the nonlocal structure of 
the underlying quaternionic dynamics have for observed features of "big 
bang" cosmology? 

43. In theories defined by a total trace action, we have seen in Eqs. (13.116a,b) 
that a total trace energy -momentum tensor T~"" acts as the source of classi
cal gravitation. Can this be related in some approximation to the out
vacuum to in-vacuum matrix clement of an operator T 11 '". such as occurs in 
the standard semiclassical theory of gravitation? 

44. Operator gauge transformations include Bogoliubov transformations. 
Hence, do operator gauge invariant theories permit a mathematically precise 
discussion of gravitational particle production in time-dependent metrics 
without asymptotically flat regions at t = ±oc? 

45. The extended equivalence principle of Lemma 5 (cr. Sec. 14.1) singles out a 
preferred Lorentz frame. up to spatial rotations, before a trace is taken over 
the quaternionic structure. Could this be made the basis for novel physical 
effects, in a manner compatible with current experimental limits?27 

46. The total trace dynamics developed in Sec. 13.5 generalizes our notion of a 
dynamical system. Arc there corresponding generalizations of the various 
aspects of dynamical systems theory, discussed, for example, in Arnold 
( 1978), Abraham and Marsden ( 1980), Arnold (I 988), Sinai ( 1989), and 
Arnol'd and Novikov (1990)? 

Many of the problems on this list deal with technical details, although the 
answers to some will be important for the further development of the subject. 
To keep our focus, however, let us close by emphasizing that there are two basic 
questions posed by this book. Most physicists now agree that because of 
analogies between the gauge structures of the standard model and of classical 
general relativity, there must be a fundamental, dynamical machine that under
lies both. The two basic questions we pose are: Is the arena for this machine 
complex Hilbert space, as is currently assumed, or quatcrnionic Hilbert space? 
Is the fundamental dynamics governed by the standard paradigm of "quan·· 
tizing" a classical field theory, or is it a guatcrnionic generalized quantum 
dynamics that reduces to the standard paradigm in appropriate limits? We have 
proposed the quaternionic alternative in answer to both questions; the only way 
to determine whether this is correct is to pursue the details. to the point where 
we can determine whether they are congruent with our body of empirical 
knowledge about matter, forces, and the universe. 

27 For example. Milgram ( l98.1a,b,c) and Bekenstein and Milgram ( 1983) have suggested that a modifica
tion in the gravitational force law for weak gravitational fi1!lds can account for all "missing dark matter" 
observations. These speculations violate the standard equivalence principle. Are they compatible with the 
extended equivalence principle of Lemma 5") 
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APPENDIX A 

Proof of the Jctcobi Identity 
for the Generalized Poisson Bracket 

We give here two proofs of the Jacobi identity for the generalized Poisson 
bracket defined in Eq. (13.69a). 1 

Our first proof, which is basis independent, closely follows Adler, Bhanot, 
and Weckel (1994); it assumes only that operator multiplication, although not 
commutative, is associative, and that there exists a trace (technically, because 
of the ± factors contributed by ( -1/, a graded trace) permitting cyclic 
permutation of the noncommuting operator variables. For ease of exposition, 
we will use a more compact notation than was employed in Sec. 13.5. Deriva
tives with respect to q,. and p,. of a total trace functional A will be denoted by 
A,. and A,. respectively. The operation Tr will be implied by parentheses ( ); this 
rneans that we can cyclically permute the factors within parentheses, if we 
include a factor c.,. every time a q,. or p,. is moved from the front of a 
parenthesis to the back, with e,. = +I ( --1) for bosonic (fermionic) degrees of 
freedom. Thus, in our shorthand notation, (q,.O) = B,.(Oq,.), and the general
ized Poisson bracket is given by 

(A.1) 
r 

It is useful to illustrate with an example how derivatives are computed. 
Consider the case where we have two kinds of operator variables q 1,p1 and 
q2,p2. Given the total trace functional A == (qtPI q2q1p2q1 ), its derivative with 
respect to q1 is denoted by A 1 and is given by 

(A.2) 

The three terms result from the three possible q1 factors to differentiate, and the 
~:'s come from cyclically permuting the factors to bring the particular q 1 that is 
to be differentiated to the right. 

1 As discussed in detail in Adler and Wu (1994), the validity of the Jacobi identity for the generalized 
Poisson bracket implies that in important algebraic and geometric aspects, generalized quantum dynamics 
has a structure analogous to that of classical mechanics. 
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The first term on the right-hand side of Eq. (13.69e), expanded out in this 
notation, is 

{A. {B. C}} = L {A.I;,.(B,C'- C,B'i} (A.3a) 
I 

which can be expanded further to 

{A. {B.C}} = L£,r.,(A,(B,C')'-A,(C,B')'-(B,C'),A' + (C,B'),A') (A.3b) 

Cyclic permutations of A. B, and C give the other two terms in Eq. (13.69e). 
Thus the left-hand side of Eq. (13.69e) is 

r,s 

+ (B,(C,.A')'-B,(A,C')'-(C,A'),R' + (A,C'),B') (A.4) 

+ (C,(A,B')'-C,(B,A')'-(A,.B'),C' + (B,.A'},C')] 

Let us first consider how the terms in Eq. (A.4) cancel in the classical, 
c-number case. A similar cancellation mechanism will also apply in the 
more general quantum operator case. For c-numbers, the trace operation is 
trivial, derivatives of functionals commute, and one can apply the Leibnitz 
product rule to expand the terms. For instance, 

(A.5) 

Note that B,' means that the q,. derivative is applied before the p, derivative. R',. 
would mean that the same derivatives are applied in the opposite order. This 
distinction is meaningless for e-n umber fields, where derivatives commute, but it 
is crucial for noncommutative operators {q,} and {p,.}. 

Equation (A.5) implies that each summand term in Eq. (A.4) will generate 
two terms. These terms cancel in pairs in the c-number case. For example, in 
the first term in Eq. (A.4), consider the derivative with respect to p, applied 
to B,. This generates the term +A,B/C'. This cancels against the term 
-A,B',C' obtained by applying the derivative with respect to p, on B, in the 
eleventh term (the dummy indices r and s need to be interchanged for the 
terms to be the same). The other half of the eleventh term will in turn be 
canceled by a part of the eighth term, and so on. After twelve such double 
terms have been computed, we come back to the beginning and all terms have 
been canceled. 

The order in which these cancellations occur classically in the summand of 
Eq. (A.4) is as follows: 

<-------+ (A, (B,C') 1 ) <-------+ ( (A, B 1
) 1 C') <-------+ ( ( A,C'l.B 1 ) <-------+ (A, ( C 1 B"1

) 
1

) <-------+ 

( c I ( A,B') I)<-------+ ( ( CI.A I) ,B') <-------+ ( ( C,B''tA') <-------+ ( C; (B,A' )') <-------+ (A .6) 

(B, ( C,A')') <-------+ ( (B,C') ,A')<-------+ ( (B,A') I C') <-------+ ( B, (A, C')'") <-------+ 

where we have used the fact that r and s are dummy indices and have inter-
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changed them in some of the terms, and where the lower right of Eq. (A.6) links 
back to the upper left. By Eq. (A.5), each entry in Eq. (A.6) generates two terms; 
one of these cancels against a term from the entry to the immediate left in the 
chain, and the other cancels against a term from the entry to the immediate 
right. 

We will now proceed to show that in the general operator case, the cancella
tions occur in a similar way. However, the absence of both commutativity and 
the Leibnitz product rule for operators2 makes the proof a little less trivial. For 
the rest of this discussion, we focus, as in Eq. (A.6), on the summands that 
appear, summed over rands, in the Jacobi identity. Also, we will assume that 
A, B, C arc monomials in { q,.} and {p,}. The proof for the general case of 
polynomial functionals follows from expanding out the generalized Poisson 
bracket in Eq. (13.69e) in terms of monomials. 

When one computes the derivative of some monomial with respect to q,. 
(say), each particular occurrence of q, generates one term in the result. Consider 
the expression 

(B,.C')' (A.7) 

which appears in the first entry of Eq. (A.6). In this expression, there are three 
derivatives, and there is a sum over the set of choices of which occurrence of q,., 
p,., and Ps is differentiated in the appropriate factors. Each one of the set of 
choices will produce a particular monomial term in the result. If q, appears 
N(B, q,.) times in the monomial B, and p,. appears N(C,p,.) times inC, and so 
on, then the number of terms produced by Eq. (A.7) is at most 
N(B, q,)N(C,p,.)[N(B,p,) + N(C,p,)j. 

We will show that in Eq. (A.4) each such monomial term in the result, for 
fixed r, s (i.e., for a fixed choice of q,.,p,.. q, .. p_,), will cancel with its counterpart 
in the order defined by Eq. (A.6). Consider the case where the Ps derivative is 
applied to B in the first entry and the q, derivative is applied to B in the 
second entry of Eq. (A.6). For these to give nonvanishing contributions, B 
must contain at least one instance of both q, and p,. Therefore the most 
general form for B is 

(A.8) 

where a and f3 arc arbitrary monomials (and could possibly contain q,. and p,). 
The displayed q,. and p, are the particular instances of these coordinates in B 
upon which the derivatives will act. 

We have 

(A.9) 

7 Note that Eq. (I 3.69g) asserts only that the Leibnitl product rule holds for operator derivatives of the 
product of two total trace functionals A and B. It does not apply to operator derivatives of a product of 
operators; despite this. we are able to proceed because (B, C' )'involves only the operator derivative of the 
trace Tr of a product of operators. which is always weii defined. 
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and 
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((A,B')rC') = ((A,(cxq,.pp-)s),.C') 

= ( (A,'lq,P),.C') 

= I:(J(f3A,'XC/") 

= (A,:xC'P) (A.IO) 

If B is not identically zero [in which case the equality of Eqs. (A.9) and (A.IO) is 
trivial], it must have an even number of fermion factors. Therefore r.~<.ri:(J8s = I, 
and so the right-hand sides of Eqs. (A.9) and (A.IO) arc always the same. 
Finally, these same cancellations can be shown to occur for every summand 
term in Eq. (A.4) in the order indicated by Eq. (A.6), and they apply both to the 
summands with r cjc s and to those with r = s, including the parts of the 
summands with r =sin which there arc two derivatives with respect to the same 
variable q1 (or p1 ). This proves that the Jacobi identity is true for arbitrary 
bosonic and fermionic quantum field operator variables { qr} and {p1 }. 

Our second proof, which is basis dependent, follows the Appendix of Adler 
(1994a) (and was suggested by a remark by E. Witten). Let A[{qr}. {p,}] be a 
total trace functional, which by the definition of operator derivatives satisfies 

i5A = Tr L ~oq,. +~.~opr (
JA _ JA . ) 

,. oqr Opr 
(A.ll) 

Using the Hilbert space completeness relation 

(A.l2) 

with the subscripts h(f) denoting, respectively, bosonic (fermionic) states, we 
can rewrite Eq. (A. II) as 

( A.l3) 

Let us now work explicitly in a q uaternionic Hilbert space, in which for any 
operator a we have 

(A.l4a) 

with 

(niOim)A -- OnmA (A.l4b) 

a real number. 3 Then since, for a fixed basis {In)}, we have 

' In a complex Hilbert space. all formulas read the same. except that the terms with A -_- 2. 3 are no longer 
present. 
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(nlbc:Jim) == b (nlc:Jim) (A.l4c) 

Eq. (A.l3) takes the form 

(A.'I5a) 

which implies that the matrix elements of the operator derivatives of A are 
ordinary partial derivatives of A with respect to the matrix elements of the 
operators qr,p,., 

8A 

o(qr)mnr,A' 

8A 
(A.l5b) 

We can now rewrite the generalized Poisson bracket of Eq. (13.69a) by first 
inserting two complete sets of states, as in going from Eq. (A.ll) to Eq. (A.l3), 
and then substituting Eq. (A.l5b). Keeping track of the - signs coming from 
the grading factors, we get 

(A.l6) 

Each of the four lines in Eq. (A.l6) refers to an independent set of real number 
variables, and each line individually has the form of a classical Poisson bracket. 
Hence in the basis-dependent form of {A, H}, the Jacobi identity for the classical 
Poisson bracket implies the Jacobi identity for the generalized Poisson bracket. 

Finally, let us show that the proofs which we have given of the Jacobi identity 
for the generalized bracket do not extend to an octonionic Hilbert space. Let 
o1.o2,o3 be octonions and let l:.(ot,o2,o3) be the associator 

(A.l7a) 

Defining the octonio~ trace in analogy with Eq. (1.22b) as tro = ~ (o +d), and 
taking the trace of£:.£:., we get in the notation of Eq. ( 1.9c) 
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(A.l7b) 

The proofs given here would generalize to octonions if the order of multi
plications were irrelevant inside an octonion trace; however, by Eq. (A.l7b) this 
would imply N(t:.) = 0, which would then imply t:. = 0, contradicting the 
nonassociativity of the octonion algebra. We conclude that the order of multi
plications matters inside an octonion trace. Without associativity inside a trace, 
we cannot even use cyclic permutation as in Eqs. (13.66a-d) to define the 
operator derivative of a total trace functional, which is the starting point for the 
total trace dynamics construction. 
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Derivation of 
Gaussian Integral Formulas 

We derive here the quaternionie Gaussian integral formulas stated in Sec. 1.3.8, 
closely following the treatment of Adler (1985a). 

As the first step in the derivation, we show that the quaternionic integration 
measures dcp and dz defined in Eq. (13.128c) are invariant under a unitary 
transformation of integration variables 

X _ _, "' = Bx 
A "' 

(B.l a) 

Focusing on the boson case (the derivation for the Grassmann case is similar, 
except that the Jacobian computed here is replaced by its inverse), we separate B 
and cp into symplectic components, 

r~,l r~,l ·r~,l 
~'a= ~'x +.!~'(! 

for which the transformation of Eq. (B. Ia) becomes 

and implies 

cp~ = Bxc/Jx- B'pc/Jpo 

¢~* = s:¢:- s 11 ¢p, 

(B.lb) 

(B.ld) 

Hence the transformed and the original integration measures are related by 

N N N N 

IT dcp~ = II dcp~*xdc/J~*(Jdc/J~xdc/J~p = D II dtP~xdc/J~f!dc/J,xdc/Jnfi = D II dcp, 
n=l n=l n=l n=l 

B*) 12 - f! 
B* 

~ 

and our task is to prove D = I. 

(B.! e) 
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To prove this, we use the fact that the 2N x 2N complex matrix C( B) of Eqs. 
(13.134a,b) can be related to the matrix appearing in Eq. (B.le) by reordering of 
its rows and columns, giving 

( 
B~ 

det 8 (1 (B.2a) 

Hence by Eqs. (13.134b) and (B.la), we have 

(B.2b) 

An alternative argument follows from writing 

- B* )t ( B 
B*(J det B x 

X (J 

-Bfi) [( B~ s: = det -s;t 

(B.2c) 

which on carrying out the matrix multiplication and substituting the unitarity 
equation st B = 1 written in terms of symplectic components, 

(B.2d) 

grves 

(B.2e) 

Let us now apply these results to the evaluation of the quaternionic multiple 
integral 

(B.3a) 

with A quaternion self-adjoint. Making a translation of integration variables 

(B.3b) 

which leaves the integration measure I1;~I dc/Jn invariant, Eq. (B.3a) becomes 

(B.3c) 

Since 

(B.3d) 

the two terms in the exponent are both real. Hence the source dependence can 
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be factored out of the integral, giving 

Zt = exp (i/A- 1 u).! (}] dcp 11 ) exp (-eVA¢) (B.3c) 

Let us next make the change of integration variable 

(B.3f) 

with B the quaternion unitary matrix that diagonalizes A, 

sts = 1 (B.3g) 

Since this transformation leaves the integration measure invariant, Eq. (B.3e) 
reduces to 

Zt = exp (i/A- 1u) g ( 4/ dcp 110 dc/Jntdc/J, 2dcp 11 :, exp [-dn(¢~0 + rP~t + c/J~2 + ¢~3)]) 
N 2 

=exp(u7A- 1 u)!J(~;,) = (4n2)N(detAr 2 exp(u7 A- 1u) (B.3h) 

completing the derivation of the first integral in Eq. (13.128b). 
Let us consider next the q uaternionic Grassmann integral 

(BAa) 

again with A q uaternion self-adjoint. Making a translation of the Grassmann 
integration variables 

(B.4b) 

leaves the integration measure invariant and reduces Eq. (B.4a) to 

(B.4c) 

As a result of the extra minus sign in Eq. (1.3lf) for the conjugate of a product 
of Grassmann quatcrnions, we now find 

x.r Ax= -x r Ax (B.4d) 

and so the two terms in the exponent of Eq. (B.4c) are quaternion imaginary, 
and in general do not commute. As a result, we cannot factor the source 
dependence out of the integral in Eq. (B.4c). We can still simplify the integral by 
making the change of integration variable 

X--> Bx ( B.4e) 
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with B chosen as in Eg. (B.3g), giving 

(B.4f) 

Since dx 11 ex: dx110 dx 111 dx 112 dxn 3 , and since 2,A1X11 is quadratic in the guaternionic 
components of x,., the only contributions to Eq. (B.4f) come from terms in the 
power series expansion of the exponential that contain exactly two factors 
'; 11 d11 z11 for each n. Hence Eq. (B.4f) is equivalent to 

(BAg) 

that is, 

Z2 = (detA) 2Kv(J· c) 

Kv(J ·c) = j (IT dx~~)· exp (- t x"x" + J ·e)' 
II= I /1= I 

(B.4h) 

To evaluate the integral Kv we write 

.'v 

L XnXn = - V.v · C (B.5a) 
n~ I 

with V.1v, as well as J, quaternion real and bi-Grassmann valued, and hence 
belonging to the center of the Grassmann quaternion algebra. We then have 

( \' ' ~ · ~ ~ v-e 
cxp - L x."x" + :r . e) = cxp ( v. c) = cos v + v sin v 

"~ I (B.5b) 

V= lVI 

Since JSs(J ·e) must be a linear combination of I and J · c, we have (with 
J= IJI) 

~~ J·c · V·e. ~ ~ ( v ) ( ~ ~ ') 
K,rv(J ·c) - as(J) + Jh,v(J) = j JJ; dx 11 cos V + V sm V ( B.5c) 

which separates into the two equations 

a,v(J) = j (ft dx") cos V. 
. 11=1 /

.(,v )J·V 
h.v(J) =. .[~ dxn JV sin V (B.5d) 
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However, since 

a a 2 2 ~ ~ 1;2 J · v . 
--cosV=--cos(J +V +2J·VN) =--smV a:r a:r N · :rv (B.6a) 

we have 

(B.6b) 

and it suffices to evaluate aN alone. A recursion relation for these functions can 
be set up as follows: We define 

ao(J) == cosJ (B.6c) 

and write 

(B.6d) 

that is (setting XN+ 1 --> X) 

x.x=-r·c (B.6e) 

A simple calculation shows that 

r = 2(·' ., -- y X ) 2 t,}t, I ,,Q ,2 : ~'3 = 2(X1X2- XoX3) (B.7a) 

which satisfy 

(B.7b) 

Developing aN(iJ +PI) in a power series in r, only the term of order r2 survives 
in the Grassmann integral, giving 

aN,I(J) = J ~dxodX1dX2d:zd(r· ':JJ)
2
aN(J) 

~2 I d 2 d 
= -\7 3 aN(J) = ·- ] 2 dJJ dJaN(J) 

(B.7c) 

It is easy to verify that this recursion relation, and the initial condition of Eq. 
(B.6c), are satisfied by 

aN(J) =cos J + (2N / J)sin J (B.7d) 

completing the derivation of Eq. (13.128b). 
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We turn next to the bosonic integral 

(B.8a) 

with A quaternion anti-self-adjoint. [Because the integrand i1~ Eq. (B.Sa) is 
oscillatory, we have included a convergence factor exp ( -c.(pl cp ), with 1: > 0 
infinitesimal.] Making a translation of integration variables 

(B.8b) 

Eq. (B.8a) simplifies to 

(B.8c) 

Since 

the first two terms in the exponent are quaternion imaginary and do not 
commute. We proceed by making the change of integration variable 

(p __, Bcp 

with B the quaternion unitary matrix that diagonalizes A, 

where Dis positive, thereby reducing Eq. (B.8c) to the form 

Making the rescalings 

A.. d-lj2r~., 
~'nO,L2,3 -+ n ~'n0.1.2.3 

Eg. (B.9c) becomes 

Z 3 = (4n2)'\(detA1Ar 1L.v(:i·f') 

Ls(:f · f') = :~r:c\(4n2 )-v ./ (g d¢11 ) exp (-~ (~ni(/> 11 + :f · i1- uV¢) 

:f·c= -uTA- 1u 

(B.9a) 

(B.9b) 

(B.9c) 

(B.9d) 

( B.9e) 
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To evaluate LN, we introduce polar coordinates for each quaternionic inte
gration variable cp

11 
as follows [we omit the subscript n in Egs. (B. lOa-c)]. 

¢0 = R cos 01 cos ~if; 

qJ 1 = Rsin01cos ~~Jt 

¢2 = Rcos (hsin i if; 
¢3 = R sin 02sin i if; 

(B. lOa) 

The utility of this parameterization becomes clear when we compute cpcp and 
cpicp, 

(pep= R2 

(p icp = R2 [i cos if; +/sin if; sin ( 01 ·- (h) + k sin if; cos ( 01 - 02)] (B. lOb) 

Evidently the angles lj;, 01 - 02 are just the polar coordinates of the unit vector,~ 
which appears in the expression for epicp, 

F [cos if;, sinlj;sin(01- 02),sinlj;cos(81- 02)] (B.lOc) 

Hence writing s = R2
, and setting r ---> -r, we can reexpress the integral for 

LN(j ·e) as follows, 

/1.' ( ('CC ;· ) LA·(J. e) = lirn(4nrN II I d.lnS,, exp ( -r,sll) dn/1 
r.~o n~ I .fo . 

cxp [e · (f: sni'n + J)'] 
11=1 

(B.lOd) 

with d0 11 the angular measure for the unit vector r11 • Writing 

l'v' 

Ls1/n = VN, (B.lOe) 
nc~ I 

and using the fact that LN(j ·e) must be a linear combination of 1 and j · e, 
Eq. (B.lOd) becomes (with J =Iii, V = I VI), 

=lim(4n)-NIJ ds17 s17 exp(-1:s11 ) d0 11 cosV+-·-tsinV N (ix ;· ) ( V -; ) 
~:~o n--1 . o V 

(B. I Of) 
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which again separates into two equations, 

N (j·x J ) cv(J)=lim(4n)-NIT dsn.1 11 exp(-t.1 11 ) dOn cosV 
1.·-•0 0 

n~-1 

d 
d.v(J) =- dJc,(J) (B. lOg) 

A recursion relation for the functions cN(J) can now be set up as follows: 
We define 

co(J) =cos J (B.lla) 

and use Eq. (B. lOg) to write 

CN-t 1 (J) = lim( 4n)-l r"' dssexp ( -~:s) f dn CN(iJ +sri) 
~~o ~J . 

(B. lib) 

Letting 

(B.llc) 

the angular integral in Eq. (B. lib) can be rewritten as 

J ~ 2n ;·J+s 
dO CN(iJ +sri) =- ydy CN(Y) 

sJ. 1.7-11 
(B.·lld) 

glVlng 

1 ;·:)0 1.7 +.1 
CJV+t(J)=-

2 
lim dsexp(-~:s) ydycN(Y) 

J .~o o 1.7-.11 
(B. lie) 

Straightforward integrati0ns show that this recursion relation, and the initial 
condition of Eq. (B.lla), are satisfied by 

cN(J) = cos J- (2N / J)sin J (B.llf) 

completing the derivation of the first integral in Eq. (13.128d). 
We consider finally the Grassmann integral 

(B.l2a) 

with A quaternion anti-self-adjoint. Making a translation of integration vari
ables 

(B.l2b) 
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Eq. (B.l2a) reduces to 

Since 

:, TA- 1;: __ c: T(AT) -I " _ 'TA -If c; c,- c; c;-c; ~, 
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(B.l2c) 

( B.l2d) 

the two terms in the exponent arc both real, and so the source dependence can 
be factored out of the integral, giving 

(B.l3a) 

To evaluate the remaining Grassmann integral, we make the change of integra
tion variable x---> Bx, with B the quatcrnion unitary matrix of Eq. (B.9b) which 
diagonalizes A. Since the individual diagonal terms in the exponent are all real, 
the integral factors into the form 

(B.l3b) 

Let us evaluate an individual factor of the product, omitting the index n for 
notational simplicity, 

(B.l3c) 

Hence Eq. (B.l3b) reduces finally to 

N 

z4 = exp ( -~ T A-I 0 II d/ = det (At A)exp ( -~ T A- 1 ~) (B.l3d) 
n== I 

completing the derivation of Eq. ( 13.128d). 
We turn next to the derivation of the supermatrix generalizations given in 

Eqs. (13.129a,b). To prove Eq. (13.129a) we translate 

(B.l4a) 

which using the adjointness conditions on A1 implies the corresponding shift 

(B.l4b) 
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After shifting we are left with 

(B.l4c) 

and from the adjointness conditions we learn that both terms in the exponent 
are real. To evaluate the remaining integral, we change from x. to a new Grass
mann integration variable e defined by 

0 = f3cp + Sx. (B.l4d) 

The Jacobian of this transformation is not unity, but can be calculated from 
Eqs. (B.le), (B.2a). and (13.134b) to be 

D = det2 sis (B.l4e) 

Substituting Eqs. (B.l4d,e) into Eq. (B. 14c) gives 

zR = det
2
(s' s)exp [ (~r M-

1 
( ~~)] J (}] ~~;) (,g dem) 

x exp [- (j>1(A - cxs- 1 P)cp + {;Ts- 1 0] 

= det(st S)dec
2
(A- Y.S-

1 
f3)exp [ GY'M- 1 

( ~~)] (B.l4f) 

where the methods described here have been used to evaluate the remaining 
integrations. 

To prove Eq, ( 13 .129b ), we translate 

(B.l5a) 

which, using the adjointness conditions on M, implies the corresponding shift 

(B.l5b) 

and simplifies the integral to 

Z1 = !~r;a l (J] ~~;) (n dx.m) exp [- (i)T M (~) + (~Y'M- 1 ( -/) 
-~:;Vc/JJ (B.lsc) 

The adjointness conditions now imply that both term;; in the exponent are 
quaternion imaginary, and so the integral cannot be factorized. To proceed, we 
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make the change of Grassmann integration variable of Eq. (B.l4d), which gives 

(B.l5d) 

We can now use the diagonalization and rescaling arguments described earlier 
to remove the matrix structure from the exponent, reducing the integral to 

(B.l5e) 

Finally, the recursive procedure used to evaluate the integrals KN and LN 
implies that 

(B.l5f) 

completing the derivation in the case where the exponent is quaternion imagin
ary. 
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Remarks 

I. Dictionary (letter-by-letter) alphabetization has been employed. Mathematical 
expressions are indexed as they are spoken without delimiters, e.g., i2 as "i two" and 
<C(I, i) as "c one i." Where a numerical ordering of entries is natural, this takes prece
dence over alphabetical ordering, e.g., SU(2) precedes SU(3). 

2. The word representation is often abbreviated as "rep." 

3, Certain categories have multiple main entries, e.g., there are main entries for 
"Multiparticle systems," "Multiparticle systems, momentum in," and "Multiparticle 
systems, second quantization in A.-representation." 

4. The reference "see Xxx, yyy" means that the item is indexed under main entry Xxx, 
yyy or under main entry Xxx, subentry yyy. Similarly, see Xxx refers to main entry Xxx, 
and see yyy refers to subentry yyy under the current main entry. 

Abelian 
group, 90-91, 99-100 
monopole, 97n.8 

Absolute value function; see Modulus function 
Absorption; see Scattering, one·dimensional 
Action 

classical, not fundamental in quaternionic 
quantum mechanics, I I 1-12 

and Feynman path integral, 110, 353 
as integral of Lagrangian density, 375 
invariance under C, P, T, 384-87 
principle for generalized dynamics, 445-47 
real·valued, independent variations of, 375 

Adiabatic approximation, 145-49, I 95n.2 
effective expansion parameter for, 147 
for zero energy state, I 48-49 

Adiabatic switching, 229 
Adjoint 

defined for column vector, 21-22 
defined for quaternion matrix, 14 
of Grassmann quaternion, 16 
of operator, 22-23, 5 I 
of product, I 5-I 6 
relation between D" and i\, 484 
use oft as notation for, 14, 236, 323, 330 

Albert's theorem, 7 
Algebra 

563 

absolute valued, 7 
angular momentum, 65, 85, 90n.4, 395 
angular momentum, one-dimensional 

representation of, 396, 434-35, 515 
anticommutator, of Dirac matrices, 330, 335 
basis elements, 6 
"charge" for complex generator matrices, 436 
"charge" for quaternionic generator 

matrices, 434-37, 452 
Clifford, !On,9, I 14n.l6, 5!4n.J I 

of (3,1) signature and quaternions, 512 
"color charge," 480, 480n.40 
commutator, of Dirac matrices and 

ic, 331, 335 
complex, 7 
complex, automorphism of, l6n.l6, 30 
conformal, generators of, 392 
conformal, nonzero energy quaternionic 

representations transformable to 
complex form, 392 

of Dirac matrices and ic ,}c, kc, 340, 
340n. I 6--I 7 

division, 8-9 
four-vector extension of quaternion, 513, 

514n.ll 
Grassmann, I 6 
Jordan, 10-1 I 
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exceptional, I I 
infinite-dimensional, l I 
special, I I 

left-acting, 23-24, 33, 38-39, JOOn.JO; 
see also Left-acting operator algebra 

Lie 
commutator, 435-36 
generalized bracket, 437, 452 

multiquaternion, 272n.J, 479-80, 5 I 1, 530 
nonassociative, 8, 20, 49-52, 540 
noncommutative, 7-8, 1 I, 20n.3, 55, 244, 258 
over reals, 5--7 
Poincare, 361, 388-98, 429, 489, 530; see also 

Group 
Poincare, nonzero energy quaternionic 

representations transformable 
to complex form, 361--62, 388-98, 
499, 503, 526, 532 

Poincare, relation to locality, 362, 398 
quaternion, 7, 11-12, 114 

associativity of, I 2 
automorphism of, 16-I 7, 30, 5 I 5 
complex 2 x 2 matrix representation, 495 
real matrix representations, I On,9 

octonion, 7-8, I I, 49--52 
right-acting, 24--25, 34, 38-39, JOOn.JO, 275, 

399, 480, 5 I 2, 530 
simple, I In. I 2 
supersymmetry, 361 
SU(2); see Angular momentum 

"Algebraic chromodynamics," 442n,20, 473, 
479n,39 

Analyticity properties, 159, I 75 
of forward scattering amplitude, 179-83, 358, 

499, 526 
of thermal Green's functions, 29 I -93 
upper half plane, in decaying state 

theory, 202-6 
Angular momentum, 53, 64--70, 75, 85, 166 

algebra; see Algebra 
analog of left- and right-ordered Fourier 

transform, 84n. I 2 
anti-self-adjoint operator for, 64--66, 

80, I 18-19 
action in coordinate representation, 64 
action of time reversal on, I 18-19 
commutation relations, 65 
cigenstates and spectrum of, 65 
eigenstates, ray convention for, 65 
rotation group constructed with, 65 
self-adjoint squared operator, 65, 80 

complex linear operators, 66-68, 351, 
408n.4, 512 

action of time reversal on, 118-19 
ladder operators, 6&-68 
orbital, 85, 502n.6 

scalars with respect to, 85 
vectors with respect to, 85 

partial wave analysis, 166, I 75 
representation, 65--66 

left-acting algebra I, J, Kin, 65-66 
matrices, 68 
matrices, right action, 68, 80-8 I, 503 

self-adjoint operator for, 6&-68, 351, 512 
action in <C( I, i) Hilbert subspace, 

66, 166 
commutation relations, 66 

spin, 84 
algebra of, 85 
nonrotational invariance of J, 85, I 30 
operators, 85, I I 9 
rotational invariance of Jr:r2, 85, I 30 

total, 85, 90n.4 
action of time reversal on, I I 9 

Anomaly, 387, 387n.JO, 531 
chiral, 374, 399, 480, 483, 508 
Witten, 480 

Anticommutation, assumption for symplectic 
components of fermions in charge 
conjugation analysis, 384 

Anticommutator 
of annihilation and creation operators, 273, 

417,503 
canonical, in operator gauge invariant theory 

biunitary transform covariant, 529 
as constraint, 463, 5 I 2 

of Dirac matrices, 330 
in Foldy-Wouthuysen method, 325 
in Galilean analysis, 93n.7, 95 
of J il• KJ/ with H0 , I 39 
notation defined, I 6 
of quasiparticle operators, 280, 285-86 
in uncertainty principle derivation, 73 

Associator, 539--40 
Asymptotically <C( I, i), 497-98, 500, 530 

analogy with asymptotically flat, 64n. 5 
Asymptotic completeness, 265, 265n.8, 527 
Asymptotic particle spectrum, 388, 39 I, 397 
Asymptotic scattering states, 4, 66, I 28, I 88 

complex for suitable ray choice, 63-64, 
159, 160, J72n.5, 181, 198,213,512 

dynamics of, I 13, 497-99 
momentum operator definitions agree 

on, 63-64 
in quantum chromodynamics, 499n.3 
structure, in multiparticle, multichannel 

scattering, 254--62; see also 
Multiparticle systems, classification 
of asymptotic states 

Automorphism of number field, defined, 29n. 7 
Axial-vector current, 374, 53 I 

Baker-Campbell-Hausdorff formula, 90n.4, 
102,105,110---11, llln.J4, 245, 393n,l4 

Bargmann potentials, 526 
Bell inequalities, 524n,l9 
Berry's phase; see Phase, geometric 
Bessel function 

of imaginary argument, 137, l37n.3, 
249n.4, 3 I I 

spherical, I 67 
Big bang, 532-33 
Binding energies in atoms and nuclei, 208 
Birkhoff-von Neumann axioms, !O-Il 
Bogoliubov transformation, 533 
Born approximation, I 74--75 
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Boson, 238 
Bound-state-associated scattering resonances 

(resolvent singularities), 127, I 59, 
163-64, 175-79, 183, 356 

Bound states, I 59-83, 356 
disappearance from spectrum, I 63-64 
energy shift, I 77 
and potential component Vp, I 79n.7, 526 
and scattering theory, 225-27, 225n. I 
stabilized by rest mass, I 64--65, I 7 I, 

I 77-79, 208, 258 
Bracket, classical Poisson, 528, 536, 539 
Bracket, generalized or generalized Poisson, 

398-99, 447-48, 528; see also 
Generalized quantum dynamics; 
Operator-valued gauge transformation; 
Total trace functional 

algebra of total trace generators 
under, 437, 452 

antisymmetric in arguments, 447 
of general trace functional with total 

trace Hamiltonian, 447 
Jacobi identity for, 447-48 
Jacobi identity invalid in octonionic 

Hilbert space, 539-40 
Jacobi identity proved, 535-40 
Leibnitz product rule for, 448 
of two conserved functionals is 

conserved, 448 
BRST transformation, 529, 529n.25 

Causality, 182, 499; see also Dispersion 
relations, Kramers-Kronig 

Center of mass 
coordinate defined, 81, 238, 255-56 
N-pair model, 245-46 
separation of motion, 8 I, 233 

complex cluster, 255-56, 261 
quaternionic cluster, 256, 261 
three-body, 240-42 
two-body, 239-40 

Chaos, 524n.l9, 526n.23 
Charge conjugation invariance, 381-82, 

384--85,482-83 
analysis assumes symplectic components of 

fermions anticommute, 384 
C defined as behavior under sign reversal 

of imaginary terms in symplectic 
components, 384--85 

notation C in quaternionic quantum 
mechanics, and C in complex quantum 
mechanics and phenomenology, 21 7n.l4 

real phase factors in, 385, 482-83 
relationship between complex and 

quaternionic definitions, 482n.42, 529 
second, quaternionic definition for 

G = G', 385 
Charge conjugation operation, used to relate 

antiparticle to particle states, 502 
Chiral components of fermion, 387 

coupled by quaternionic gauge 
interactions, 388, 508 

Chiral projections in Majorana representation 

Classical 

do not commute with covariant 
derivative D 1, 387-88 

state, 4--5 
system, 4-5, 5 I 9n. I 4, 520 

Feynman formulation (versus 
quantum), 4-5 

Markov property of, 5n.3 
Cluster decomposition property, 233, 240, 

245-54, 293-99, 518--19, 527; see also 
Multiparticle systems 

c-number, 33, 33n.9, 374, 384, 384n.7, 399, 442, 
475, 481-82, 532, 536 

Cocycle (2-cocycle), 100, l00n.9; see also 
Group, projective representation 

Coherent state, 5, I I ln. 14, 528 
Color degree of freedom, 503, 532 
Commutativity of complex phase 

shifts, 516--17, 51 7n. I 2 
Commutator 

algebra of group generators, 434-36 
algebra of Poincare generators, 389-90, 398 
of annihilation and creation operators, 273 

in Heisenberg picture, 211-12 
in interaction picture, 2 I I 
in Schrodinger picture, 210, 411-12,416, 

422 
canonical, in operator gauge invariant 

theory 
biunitary transform covariant, 529 
as constraint, 459, 5 I 2 
nonlocal form and Bell 

inequalities, 524n.l 9 
conditions for independent particle 

behavior, 243-45 
conditions for reduction of Hamiltonian 

modulus to complex self-adjoint 
form, 125 

of conformal boost and dilatation with 
energy, 392 

of conserved observables with 
Hamiltonian, 269n. I I 

eorrections to quaternionic path 
integral, II 0-- II 

of covariant derivatives, 364--65 
with chiral projectors, 388, 53 I 

of fermionic supersymmetry generators with 
energy, 392 

in Foldy-Wouthuysen method, 325 
in Galilean in variance analysis, 90n.4 
notation defined, I 3 
parafermion-like, of quasi particles, 504 
of permutation operator with identical 

particle Hamiltonian, 238 
of quasiparticle operators, 280, 286, 424 
in Schur's Lemma derivation, 103 
of S·matrix 

with free particle Hamiltonian, 228 
with translation generator, 267 

of symmetry generators with 
Hamiltonian, 74, 238 

in uncertainty principle derivation, 73 
in vidal theorem derivation, I 08 
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Completeness relation, 26, 28, 180, 248, 538 
for energy eigenstates, applied to optical 

potential, I 28-29 
fails in octonionic Hilbert 

space, 49-50, 5ln.20 
for full scattering states and bound 

states, 226, 265 
and unitarity deficiency, 226--27, 265 
for in and out scattering states, 223-24 
for Klein-Gordon equation, 309-10 

Complete orthonormal set 
in complex inner product, 43-45, 

272n.J, 409-10 
in quaternionic inner product, 42-43, 

409-10 
in real inner product, 45 
relationship of complex to 

quaternionic, 40-44, II Jn.J4, 230, 
272n.J, 407-10,439-40 

Complex 
analyticity, I 8, I 79-83 
cluster, 255, 287, 532-33 
conjugate or conjugation, 7, 13, l6n.l6, 

43, 47n.J 9 
and Frobenius-Schur classification, 437 
notation* used for, 13, 43 
as time reversal operator, 47n.J 9, 49, 

112, 174 
form, transformation of quaternionic 

matrices to, 360-6 I, 396 
free particle wave equations, 397 
function theory, 526 
Hilbert space; see Hilbert space, <C( I, i) 

subspace of quaternionic 
number, 3n. I, 289n.8; see also Algebra 
quantum field theory; see Quantum field 

theory 
subalgebra of quaternion, 13; see also <C( I, i) 

Complex quantum mechanics, 3, 19, 20n.3, 24, 
26--27, 29-30, 33-34, 37, 4~-49, 53, 58, 
69, 75-77, 89, 98, l00n.9, 107-8, 
JI0--11, Jlln.l4, 161, 163-65, 167, 
173, 179, 183, 197, 217n.J4, 233, 238, 
255n.6, 358, 405 

bound states in, I 68 
canonical commutators in, are constraints 

in generalized quantum dynamics, 399, 
455-75, 512 

classical limit of, 528 
cluster decomposition property in, 250, 

296, 298 
conserved observables in, 269n.l I 
conversion of anti-self-adjoint to self-adjoint 

operators in, 76 
decaying state problem in, 203 
as effective dynamics for observed 

physics, 498-99 
Ehrenfest and virial theorems, 352-53 
embedding of real quantum mechanics 

in, 47-49 
existence of multilinear tensor product and 

reduction to independent one-body 
problems, 242-43, 27 I, 523 

second quantized treatment, 283-84, 
286--87 

external potential problem obtained from 
multiparticle, 233 

Feynman path integral in, I 10, 353-54, 
489, 53 I 

Foldy-Wouthuysen reduction of relativistic 
equation yields, 303, 322, 342 

Galilean invariance in, 89, 94 
generalized quantum dynamics with total 

trace Lagrangian applied to, 442, 
455-75 

harmonic oscillator in, I 23 
identical particles in, 238, 270-71 
and indefinite inner product for Klein

Gordon equation, 306 
left-acting operator I commutes with all 

operators in, 34, 456, 456n.27 
multilinear tensor product for, 243-44 
nonlinear corrections to, 442n.21, 524--25, 

530 
parameterization of, 525, 525n.20 
possible link to hierarchy problem, 525 

of one degree of freedom, 442n.21 
perturbation theory for, I 3 I 
projective representation in, I 02 
ray structure of and phenomenology of 

nonlinear quantum mechanics, 525 
reduction of quaternionic Schriidinger 

equation to, 124--31 
regime of validity, 498 
relationship to quaternionic quantum 

mechanics, 40-44, II I n.l 4, 230, 272n. I, 
407-10, 439-40 

and class- I complex representations, 
439-40 

relationship to real quantum 
mechanics, 44-45 

scattering theory in, I 74, 218, 230 
multichannel, 262, 266 

Schriidinger equation in, 46, 49 
as classical dynamical system, 442n.21 
tests for nonlinear corrections, 517, 

524--25 
Schur's Lemma in, I 04n.l 2 
shift of energy origin in, 46 
Slater determinant in, 27 I 
thermal Green's functions in, 293, 293n. I 2 
time reversal transformation in, 47n.l 9, 

I 12-13, I 16--18, 122 
uncertainty principle in, 72 
WKB approximation in, I 58, I 58n.l 3 

Composite models of leptons/quarks, 501-11, 
50 I n.4, 5 I 9-20 

Compton wavelength, 3 I 2 
Condensed matter physics, 5 I 9-20, 527 
<C( I, i) (complex subalgebra of quaternion), 34, 

59, 61, 63, 66,70-72,75-76,78,80-81, 
115, 117, 119, 122, 132, 141, 148, 
152-56, 159-60, 166--67, 171-74, 196, 
207-9, 230, 233, 242-43, 245, 247-48, 
251,253-60,262,270-72,278,287,289, 
291,296,314--15, 329n.l2, 332,334, 
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335n.l4, 340, 340n.J6, 351,359-61,369, 
373-87,390-95, 397~98,401, 404-5, 
407,409-10,478, 479n.39, 527-30 

bases used to span quaternionic Fock 
space, 271 

with i replaced by general unit 
quaternion, 93, 227, 254, 283, 322 

with i replaced by ur, I I 6, 286 
and matrix representations of symmetry 

generators, 68, 75-77, 80-81, 84, 
l4ln.6, 238 

and nonrelativistic reduction of 
Klein-Gordon equation, 321-22 

notation introduced, I 3 
and zeroth-order basis rediagonalization 

in degenerate perturbation theory, 142 
<C( 1, I) (complex subalgebra of left-acting 

algebra) 70, 85, 113,414,417,422-24, 
426-27,429,432,478,497,500 

asymptopia hypothesis, 497-98, 518-19, 530 
conjugation, 86, 279 
and independent particle picture in F ock 

space, 287 
and spin Hamiltonian, 85-86 
spin matrices, 84 
unitary products of left algebra units in 

second quantization, 278 
Conjugate or conjugation 

complex, 7, 13, l6n.l6, 112, 174 
notation * used for, I 3, 43, 86 

octonion, 8 
quaternion, 7-8, I 3-I 4, I 6, II 2 

notation - used for, I 3 
of product, 14, 16, 112,491,543 

Continuity conditions for wave 
function, 161-62 

Coordinate 
center of mass, 81, 238, 24 I, 245-46, 255-56 
relative, and Schr6dinger equation 

in, 239, 24 I, 246 
Coordinate operator, 26, 59, 76, 89, 234 

eigenstates and eigenvalues, 26, 82 
notation for, 25n.5 

Coordinate representation 
Galilean transformation operator in, 9 I, 234 
Hamiltonian, 38, 40-44, 89, 95, 98, 112; see 

also Hamiltonian 
left-acting algebra I, J, Kin, 38 
momentum space translation generator, 100 
notation for operator and 

eigenvalue, 25n.5, 275n.3 
wave function, 37-38, 40-44, 55-57, 95, 112, 

126-27,271,304,311-12 
symplectic components of, 56-57, 7 I 
time reversal restrictions on, 116, 121-22 

Copenhagen interpretation, 520, 522 
Correspondence principle, 6, 8-9 

two-level, 498 
Cosmological constant problem, 500-501, 532 

supersymmetry and, 500 
and zero energy exception, 532 

Covariant derivative, for complex reductions 
1J~, 382-83, 528 

auxiliary matrices M" and M~, 382 
charge conjugation of, 384-85 
noncommutation with chiral 

projectors, 388, 53 I 
time reversal of, 386-87 

Covariant derivative, nonrelativistic 
anti-self-adjointness of, 92 
parallel transports unit quaternion e, 92 

Covariant derivative, relativistic 
commutator identity, 364-65 
for curved space-time \7;., 483 
DP, 315,368,475-78,484 

does not obey product rule, 31 5n.4, 317 
gauge transformation of, 3 I 6 
noncommutation with chiral projectors, 

388, 508, 53 I 
1\, 484-86 

relation by adjoint to D", 484 
fj~ and iJ~, 317, 363,368-69,476-78 

applied to complex quantum 
systems, 456-60, 462 

obey product rule for derivative, 3 I 7 
intertwining identities relating, 317, 352, 

368-69, 37 I, 476 
intertwining identities, trace of, 3 I 8, 376 

CP 
in time reversal violation model, 216 
violation, phenomenological, 215- I 7, 508-9, 

531 
Kobayashi-Maskawa form, 216, 518 
magnitude of, 215-17 
milliweak, 216 
superweak, 21 6n. I 2 

CPT theorem, 216, 21 6n.l3, 53 I 
apparent violation for GIG', 482n.42, 531 
restrictions on T violation 

model, 216, 21 6n. I 2 
Cyclic property of trace, I 2, I 5, 290, 3 I 8, 376, 

443, 443n.22, 529 
requires associativity, 540 

Dagger (t) 
indicates sections not dependent on 

nonrelativistic kinematics, 87, 99n. t 
notation for adjoint, 14, 16, 94, 236 

d'Alembertian, 304, 316 
Decaying states, I 79n.8, 201-8, 213- I 7, 526; 

see also Perturbation theory, 
time-dependent 

Degenerate 
set of Hamiltonian eigenstates, 74-75, 201 
subspace or manifold, 28, 81, 201 

Density matrix, 53, 68-69, 245n.3 
and clustering in multiparticle systems, 233, 

250-52, 295-99 
defined, 68 
thermal equilibrium functional form, 288 
time evolution equation for, 69 

Derivation; see Leibnitz product rule 
D<:rivative, first variational with respect 

to operator, 445 
L<:ibnitz product rule for, 448 
related to matrix element derivatives, 539 
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second and higher not defined, 445 
Determinant, I 9 I 

quaternionic, for self-adjoint matrices, 490, 
494--96 

properties summarized, 495-96 
Dimensional regularization, 486, 486n.44 
Dirac 

bra-ket notation, 5, 19, 21-22 
delta function, 39, l98n.3, 271 

as decaying state initial value, 202 
potential model for scattering, I 59-65 
quaternionic generalization, 493-94 
singularity in canonical commutator, 529 

equation; see Dirac equation 
formulation of quantum mechanics, I 0- I I 
monopole, 97n.8, 528 

Dirac equation, 87, 303, 329-45, 348-50, 362, 
399; see also Quantum field theory 

Dirac equation, free particle case, 329-37, 
492n.48 

in Dirac, Weyl, and generic complex (C) 
representation 

ic = i, 331, 333 
spinor orthogonality and spin sums, 

428n.l3, 430n. I 6 
energy eigenstates and form of 

"anti-particle" states, 333-34,417,429, 
432 

four-component Lorentz spinor wave 
function, 329 

bar denotes quaternion conjugation, 
330, 335n.J4 

real and symplectic component form, 
329 

spinor index summation convention, 329 
in general (G) representation, 329 

charge conjugation matrix, 4 I 9n. I 0 
Dirac matrices o:~, f3c, and ic, 33 I 
Hamiltonian for, 331 
Poincare generators for, 389, 433, 

433n. I 7 
inner product, 330--3 I 

completeness relation, 33 I- 32 
properties of, 330--32 

Lorentz transformation properties, 334-37, 
389n. I I 

adjoint y" matrices and wave equation, 
335 

algebra of y" matrices and ic, 335, 390 
bilinear co variants, 33 7 
y" matrices and wave equation, 334--35 
improper (space reflection) andy~, 337 
matrix action on spinor, 336--37 
sixteen independent 4 x 4 matrices, 337 

in Majorana (M) representation, 329-30, 
419-21 

for adjoint wave function, 330 
Dirac anticommutator algebra, 330 
Dirac matrices o:~ and [3M, 330 
y5 imaginary, 387-88 
y" matrix reality and/or symmetry, 

369-70,378-79,433,477,480 
Hamiltonian for, 329 

Poincare generators, 433 
subscript M omitted, 475 
time reversal matrix AM, 386, 420 

momentum space 
four-component wave function, 332n.l3, 

333 
Hamiltonian in complex representation, 

333 
transformation from Majorana to general 

representation, 331-32 
two-component spinor wave function and 

complex inner product form of, 
329n.l2, 396n. I 7 

Dirac equation, interacting case, 338-45, 348-50 
in complex representation, 340-45 

Hamiltonian for, 341 
matrix y, 34 I -42 
for one-dimem.ional potential step, 

400-407 
general gauge principle for, 338-39, 434, 501, 

528 
covariant derivative, 338; see also 

Covariant derivative 
gauge potentials and transformation, 

316, 338 
specializations, 338-42, 348-50 

in general representation, 339-40 
algebra ofr" matrices and ic,Jc,kc, 340, 

340n.l6--I 7 
Hamiltonian for, 339 
state norm properties, 339n.l5 

in Majorana representation, 338-39, 348-50, 
369-74, 378-81 

four equivalent covariant forms, 369-370 
Hamiltonian for, 338 

inner product and properties, 338 
real currents IC, ... , 370-72 
and source term for gauge potential, 362, 

369-74 
Dirac equation, nonrelativistic reduction, 86--87, 

I 64, 342--45 
f3 component of nonrelativistic potential 

arises as spin effect, 303, 345 
Foldy-Wouthuysen method, 342-45 

conditions for validity, 344, 345 
even and odd Hamiltonian terms defined, 

343 
leading-order reduction, 344-45 

"semirelativistic" F oldy-Wouthuysen 
reduction, 348-50 

Dispersion of operator, 47n.l9, 71-74 
defined, 71 
symplectic components of, 72 

Dispersion relations, I 79; see also Analyticity 
properties; Complex, analyticity 

Kramers-Kronig, 182, 499 
partial wave, I 83n. I 2, 526 

Dot as notation for time differentiation, 89-90, 
93, 146, 153 

Dynamical systems theory, 533 
Dynamics; see also Hamiltonian; Schrodinger 

equation 
classical Hamiltonian, 528 
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of complex quantum mechanics, 44 
for decaying state problem, 201-2 
of densities and expectations, I 06--9 
fundamental, 533 
generalized quantum, 399; see also 

Generalized quantum dynamics 
of general quantum mechanics, 50--51 
methods for, I 94 
of octonionic quantum mechanics, 51-52, 

539-40 
of universe, or closed system, 521-22 

Dynamics of quaternionic quantum mechanics, 
36--41' 68-70 

finite-time transformation, 37, 68, 70, 208-9, 
228-32, 453, 523 

and Feynman path integral, 109-10 
generator and Frobenius-Schur class, 

439-40 
and quantum measurement paradox, 

523-24 

Ehrenfest theorem, I 06--8, 3 52-53 
breakdown of, 107-8 

Eikonal approximation, I 56--58; see also WKB 
approximation 

Emch line of reasoning, 34, 76 
Energy 

bounded from below, 500 
conservation in multiparticle scattering, 269 
gravitationally defined, 500--501 
peculiarities of in quaternionic quantum 

mechanics, 268, 269n. II 
scale for quaternionic physics, 213, 217, 498, 

498n.2, 525 
zero state as exception, 75n.9, 121, 131, 

142-43, 146, 148-49, 391-92, 394, 
396-97, 503, 509-10 ' 526--27 

and cosmological constant problem, 532 
in Poincare analysis, 395-97, 499, 526 
quaternionic representations allowed, 

14 I n.6 
relevance to Goldstone theorem, 396--97 

Energy eigenstates, 43n.l6, 45 
absence of in real quantum mechanics, 45, 47 
canonical or standard form for, 43, 45, 74, 

84, 218, 225, 267, 398, 407, 500 
in complex quantum mechanics, 46 

and time reversal in variance, I I 6, I 22 
consequences of time reversal for, II 5- I 7, 

120-22 
for constant quaternionic potential, I 25-26 
decay theory for, 201-8 
degenerate, 131 
dependerrt on external parameters, I 33, 

145-49 
expansion of state in terms of, 45, I 46 
exponential time dependence, 45, 97, 237 
for free Dirac equation, 333-34 
for free Klein-Gordon equation, 3 I 3-I 4 
of instantaneous Hamiltonian, 133, 145 

as expansion basis, I 46 
non degenerate, II 5, I 3 I, I 46 
for perturbed and unperturbed systems, I 3 I 

for quaternionic and related complex 
systems, 43 

for two-component semirelativistic equation, 
351 

Energy eigenvalues, 43n. I 6 
dependent on external parameters, I 33, 

145-49 
of ground state, 46n.l7 
nonnegative in quaternionic quantum 

mechanics, 45-46 
for perturbed and unperturbed systems, I 31 
for quaternionic and related complex 

systems, 43-44 
zero point significant in quaternionic 

quantum mechanics, 45-46, I 34, 196, 
50(HOI 

Entropy, 46n. I 7 
Equivalence principle, 5 I I 

extended, 514-15, 533; see also Lemma 5 
Euler-Lagrange equations 

for classical quaternionic wave equations, 
374-80 

giving operator equations of motion in 
generalized dynamics, 446 

Expectation value, 28, 47n.l9, 71-73 
expressed in terms of total trace functional, 

448 
notation for, 68 
thermal, 288 
time evolution of, 68-70, I 06-9 

Experimental signatures for quaternionic 
quantum mechanics, 174, 193,497, 
5 I 6--20, 527 

multi particle effects, 5 I 8-20 
neutron-optical experiments, 5 I 6-I 8, 525n.21 
nonasymptotic situations, 5 I 9-20 
scattering phase shifts, 5 I 6-- I 8 
and tests for nonlinearities in quantum 

mechanics, 524-25 
parameterization of, 525, 525n.20 
possible link to hierarchy problem, 525 

time reversal violating effects, 5 I 8 

Families of leptons and quarks, 501-1 I 
m Harari-Shupe proposal, 502-3, 532 

Fermion, 238 
grading operator (-I(, 442-43, 442n.21, 

443n.22, 461' 481, 535 
Feynman 

formulation of classical versus quantum 
system, 4-5 

path integral, 109-12, 527, 531 
commutator contributions to, I 10-1 I 
in complex quantum mechanics, I 10, 

353-54, 489, 531 
not expressible in terms of an action, II 2 
perturbative and Gaussian integrals, 489 

remark on quantum measurement theory, 
522n.J 7 

Fiber-bundle terminology (connection and 
curvature), 363n. I 

Field (as defined in mathematics); see Number 
field 
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First quantized case, 399; see also Relativistic 
wave equation 

Fock space, 270--74, 277, 509; see also 
Multiparticle systems 

Foldy-Wouthuysen method; see Dirac equation, 
nonrelativistic reduction; Klein
Gordon equation, nonrelativistic 
reduction 

Forced harmonic oscillator 
Heisenberg picture, 211-13,413-15 

equations of motion, 212 
interaction picture, 2 I 0-II 
Schrodinger picture, 209-I 0 

Formally real components 
of operator, 23, 38-40,98, 120, l39n.5, 414, 

417,423-26,442,530-31 
subtleties in Heisenberg picture, 425-26, 

426n. I I, 442 
of scalar potential, 98 
of state vector, 24-25, 38-39, 89n.2, 275, 530 

Formula; see Identity 
Four-current; see also Gauge potential field 

equations 
J' 318--19 
};'and :1;, 364-65, 368, 37 I 
:J,A, 369, 373 
:J;A, 372-73 

Four-derivative, 304 
Fourier expansion, 57, 202, 303, 307, 311-12, 

332-34 
left vs. right ordering in, 57, 84n.J2, 3l2n.3 
normalization factor N(p), 307, 4 II 
notation L for half space integral, 58, 307, 

366 . 
notation Lft.+ for half space sum, 4 I 2 
real sine and cosine basis, 57-58, 307, 332, 

366, 412 
of thermal Green's functions, 291-93 

Four-vector, inner product for, 304 
Frobenius-Schur classification, 75n.IO, 437 
Functional 

"energy" for Klein-Gordon equation, 307n.2 
nonlocal in quaternionic fields, as asymptotic 

Poincare generators, 398 
for variational principles, 144-45 
positive definite, 145 
stationary for Schrodinger solutions, 144-45 

Galilean in variance or transformation, 4, 
38n.J5, 64, 87-95, 100,327-28, 345, 
442n.21, 456, 460; see also Group 

Abelian group of, 90--9 I, 90n.4, 234 
projective representation, 90n.4 

action on coordinates and velocities, 90, 234 
active, 90n. 3, 98-99 

multicentrality assumption in, 90n.4, I 03, 
527 

multiparticle case, 234-37 
assumptions made, 235, 527 

passive, 90n.3 
Gauge potential B" or Bw 315, 362-74; see also 

Quantum field theory 
anti-self-adjoint operator, 441 

has operator formally real components, 
442 

axial gauge for, 488-89 
field-strength tensor, 363 

associated ray structure, 368 
Bianchi identities, 364, 485 
gauge variation of, 364-65 
homogeneous gauge transformation rule, 

363 
is quaternion imaginary, 364 
in terms of potential real components, 382 

formally real component of operator can be 
nonzero, 427 

gauge transformation of, 316, 362-63 
covariant wave equation under, 363 

gauge variation of, 364-65 
linearized approximation, 365-68 

four-component wave function, 367 
Fourier expansions, 366 
Hamiltonian, 367 
inner product time independent, 367 
Maxwellian field equations, 366 
momentum space inner product, 365 
normalization N(p) for field strengths, 

366, 366n.2 
taken quaternion imaginary, 317, 362, 364 

Gauge potential field equations, 364 
and conserved real currents IC, ... , 370-72 
source currents .J, and :J;, 364-65, 368, 371 

are quaternion imaginary, 364, 368, 371 
constructed from Klein-Gordon solution, 

368, 377 
constructed from two Dirac solutions, 

371-72, 378 
covariantly conserved, 364, 368-69, 

371-72 
gauge transformation of, 364, 368, 37 I 

source currents: specializations and 
alternatives 

constructed from Dirac solution, 372 
constructed from Klein-Gordon solution, 

369 
using covariantly constant unit e, 374n.4 
using")'~, 374 
using preferred quaternion unit i, 369, 

372-74, 374n.4 
Gauge potential Lagrangian density and 

couplings G,G', 376 
expressed in terms of real components of 

potentials, 382 
in generalized quantum dynamics, C requires 

G = G', 482, 531 
Gaussian integrals, 489-96, 53 I 

complex specialization, 489, 531 
formulas derived, 541-51 
formulas stated, 490--94 
integration measures for, 490 
simplify when numbers of bosonic and 

fermionic integrations equal, 492-94, 
532 

and supermatrix formalism, 491-93, 549-51 
unitary in variance of measure, 54 I -42 

Generalized quantum dynamics, 399, 441-89, 
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499, 533; see also Bracket, generalized; 
Operator-valued gauge transformation; 
Total trace functional 

action principle for, 445-46 
analogies with classical mechanics, 535n. I 

canonical momentum, 446 
constrained, 455, 455n.26, 487-89, 529 
Feynman path integral possible for?, 53 I 
and generalized Heisenberg picture quantum 

mechanics, 448-49 
noncommuting dynamical variables, 444 

canonical momenta, 446 
non unitary dynamics may be chaotic, 

524n. I 9, 530 
one- or two-dimensional models, 530 
operator equations of motion, 446 
perturbation expansion for, 454, 531 
and quantum measurement theory, 516, 

523-24 
role of "canonical quantization" in, 399, 489, 

529 
solvable models, 530 
unitary dynamics, 453-54, 530 

allows Schriidinger picture, 453-54 
always valid in complex case?, 454, 530 
cotransforming states in, 454 

Generalized quantum dynamics, for complex 
quantum mechanics, 399, 455--75 

biunitary operator gauging in, 469-72 
bosonic self-adjoint Galilean coordinate, 

456-61 
canonical commutator a constraint, 459, 

512 
Lagrangian for coordinate q, 456-57 
Lagrangian for gauge potential B0 , 

457-58, 458n.29, 476 
total trace dynamics, 458-6 I 
unitary dynamics, 461 
Weyl ordering and trace ordering agree, 

460-61 
free fermionic coordinate, 46 I -64 

canonical anticommutator a constraint, 
463, 512 

Lagrangian for ljJ, 46 I -62 
total trace dynamics, 462-64 
unitary dynamics, 464 

more than one coordinate, 464-69 
multiple coordinates: constraint gives sum of 

bosonic commutators minus fermionic 
anticommutators, 464-66, 469, 532 

operator gauge invariant extension of 
Yang-Mills action, 472-75 

scalar field theory, 466-69 
Generalized quantum dynamics, for 

quaternionic quantum mechanics, 
475-89 

chiral fermions excluded by biunitary gauge 
invariance, 480, 508, 531 

chiral symmetry of zero mass fermionic 
theory, 481, 508, 53 I 

classical gravitational coupling, 483-84 
discrete (C, P, T) symmetries, 481-83 

C requires G = G', 482, 508, 531 

relation to C, P, T for complex case, 
482n.42 

fermion coupled to axial current, 483, 53 I 
fermion field pair with biunitary gauging, 

477-78, 508-9 
fermionic current partial conservation, 

484-86 
total trace Hamiltonian formulation, 

486-89, 530 
fermion pair with a left or right complex 

gauging, 478 
Lagrangians and properties summarized, 

475-78, 481-83 
Majorana subscript M omitted, 475 
rules for converting classical to operator 

equations, 475 
scalar field with biunitary gauging, 475-77 

specialized to self-adjoint scalar, 477 
total trace Hamiltonian formulation, 

486-89 
General relativity, 497, 533; see also Equivalence 

principle 
analogies with quaternionic quantum 

mechanics, 64n.5, 511--16 
bitensor quantities, 453n.24 
cosmological constant; see Cosmological 

constant problem 
energy-momentum in, 64n.5, 500-501 
energy-momentum tensor, 483-84, 533 
gravitationally defined energy, 500-501 
identification of observables, 453n.24, 512, 

531 
Geometric phase; see Phase 
Geometry, noncommutative, 442n.20 
"Ghost" fermions, 492n.48 
Golden rule, for transition probability per unit 

time, I 73, I 96-98, 20 I, 205-6 
Goldstone theorem, 396-97 
Gram-Schmidt procedure, 28 
Grand unified theories, 497-98, 498n.2 

scale of, and physics with a new kinematical 
structure, 497-98, 525 

Grassmann 
elements, 15-16, 490 

use to combine noncommuting exponents, 
Jlln.J4 

integration, 490n.47 
quaternion, I 5-16, 490 

product conjugation rule of, I 6, 49 I, 543 
Gravity 

classical; see Equivalence principle; General 
relativity 

induced, 532; see also Pregeometry 
quantum, 532-33; see also Pregeometry 

semiclassical theory, 533 
Green's function, 169-70, 175-76, l83n.l2, 

218-22, 230 
advanced and retarded, 219 
boundary conditions for, 219 
formal integration of Schrodinger equation 

with, 219 
Hermiticity properties, 219 
integral equations relating full scattering 
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state to in and out states, 221-22 
Klein-Gordon equation, 311--12 
multichannel, 263-64 
thermal, 270, 289-93 

Ground state, 46n.l 7 
Group 

Abelian, 90 91, 234, 501 
compact, 75, 75n.l0 

complex generator algebra, 435- 36 
as internal symmetry, 433-34 
quaternionic generator algebra, 434--37, 

452 
compact, quaternionic irreducible 

representations of, 399,433--41, 527, 530 
and Frobenius-Schur classification, 

437-39 
one-dimensional of SU(2), 396, 399, 436, 

440-41, 515, 527,530, 532; see also 
SU(2) 

complex representations of, 75--76, 75n.JO, 
437-39 

class - I twofold reducible, 437 
reducibility over quaternions, 75n.l 0, 

437-39 
relation to embedding of dynamics, 

439-40 
conformal; see Algebra 
Frobenius-Schur classification of, 75n.JO, 437 

and complex conjugate rep., 437 
Galilean, 90--91, 90n.4, 100, 103,234 
induced representation theory of, 515, 530 
Lorentz 

generators, 389 
proper, orthochronous subgroup, 389, 

389n.ll 
reps. all complex transformable?, 395--97, 

5!4n.ll, 529 
rotation subgroup example, 395 96 
2 x 2 complex matrix reps., 514n.l I, 515 

non-Abelian, 501; see also Yang-Mills gauge 
potential and field 

noncompact, 396 
permutation; see symmetric 
Poincare, 76, 90n.4, 103, 361-62, 388-98, 

433-34 
Poincare, complex irreducible reps. 

spinorial induced by quaternionic, 515, 530 
Wigner analysis, 39 I, 394n. I 5 

Poincare, generators 
angular momentum 11 , 85, 390-91 
"boost" k~o 390--9 I, 513, 5 I 5 
commutator algebra of, 389--90, 398 
energy-momentum four-vector fi,, 389-90, 

499-500 
generalized bracket algebra of, 45 I, 489, 

530 
independence from internal symmetries, 

433-34 
spin-0, 388 -89 
spin-1/2, 388-90 
total trace, 4 51 

Poincare, nonzero energy quaternionic 
representations complex transformable, 

361-62,391,434,499,529,532 
conformal extension, 392 
implications for field theory, 398, 434 
implications for free wave equations, 397 
multicentral projective extension, 392 -94 
relation to locality, 362, 397--98 
standard basis used, 390-94 
supersymmetric extension, 361, 392, 499, 

532 
projective representation, 90n.4, 99- 106, 

100n.9, 392-93, 531-32 
central case and Schur's Lemma, 103-5, 

527 
complex case, 102 
contrasted with vector representation, 392 
generator algebra for, 393, 393n.l4 
multicentral case, 90n.4, 102- 3, 392-93, 

527 
nonmulticentral, 531-32 
operator form of phase, I 0 I- 3, 392 93 
phase space translation as example, 105, 

392 
phase spectral representation, I 0 I 
quaternion automorphism on phase, 

IOOn.lO, 101, 106 
state dependence of phase, I 00- I 02, I 06 
translation generator example, I 02 

ray representation; see projective 
representation 

representation law, 99 
rotation, 65, 75-76, 395-96 

one-dimensional representation, 396, 399, 
515 

50(3), 17, llln.l4, 434, 497n.l, 515 
SO( 4), 434, 528 
SU(2), 65, II ln.l4, 479n.39, 501, 515, 527 

half~ integer reps., 440 
integer reps., 440 

SU(2), one-dimensional quaternionic rep., 
396,434,440-41,527,530 

induces complex spinorial rep., 515 
one fermion coordinate as example, 

434--35 
and quaternionic field theory, 434, 532 

SU(2) X SU(2), 501, 509,511,528 
SU(3) x SU(2) x U(J ), 497 
SU(n), 473 
symmetric, and identical particles, 76, 233, 

237-38, 270-71 
of symmetry generators, 74, 434--37, 452 

matrix reps. <C(J, i) for nonzero energy, 
7576,238,391-92 

U(l),473 
U(2), 479n.39, 480 
U(n), 473 
unitary representation and Schur's Lemma, 

103-5 
Giirsey counterexample to octonion 

completeness, 50 

Hamilton, discovery of quaternions, 7n.5 
Hamiltonian, I 9, 36-40, 45-49, 53, 68-70, 76, 

94,113, 307n.2,431, 499-500 



INDEX 

anti-self-adjoint and inner product 
conservation, 5 I 

anti-self-adjointness conditions for, 39-4 I, 86, 
94--95, I 34, 236-37, 282, 408 

anti-self-adjoint reduced to complex 
self-adjoint form, 124--31 

classical, 528 
complex self-adjoint, 46, 76, 208, 409 
complex specializaton of quaternionic, I I 7 
coordinate representation, 37--40 

for charged scalar field, 4 I 5 
for delta function potential model, I 59 
for Dirac equation, 329, 331 
for Dirac free fermion field, 4 I 7 
for forced harmonic oscillator, 209- 10 
for Hermitian scalar field, 4 I 0 
for identical particles, 237-38 
for N-pair model, 246 
for one-dimensional potential, I 83-84 
for quaternionic harmonic oscillator, I 23 
for quaternionic scalar field, 422 
for supersymmetric quantum mechanics, 

358-59 
for three-dimensional potential, I 7 I 

dependent on external parameters, I 33, 
145-49 

effective constructed from dimension-6 
operators, 5 I 9-20, 525 

effective for three quasiparticle composites, 
509 

cigenstates; see Energy eigenstates 
Fock space, 281--87 

for one fermion coordinate, 434--35 
forced harmonic oscillator 

Heisenberg picture, 212 
interaction picture, 211 
Schriidinger picture, 2 I 0 

form invariance under change of ray 
representative, 96 

free particle, I I 3, I 37, 249 
fundamental in quaternionic quantum 

mechanics, I I 2 
gauge, 460, 460n.3l 
Heisenberg picture form, 70, 208, 211-13 
Hermitian in complex mechanics, 46, 76, 208, 

409 
interaction term, I I 3, I 94, 219 
kinetic part of, 87, 106, 108, II I, 128, 137, 

172, 196,219,255 
matrix element of, I 10 
rest mass in, 164, I 77-78, 208, 247, 255, 

258, 260 
sign reversal in fl-symplectic, I 60 

modulus 
reduction to complex self-adjoint form, 

124--26 
variational principle for, 144--45 
and virial theorem, I 08-9 

modulus and phase of, 60, 83, I I 3 
both commute with conserved operators, 

269n.ll 
first-order perturbation theory for, I 34--39 

momentum representation 

for Dirac equation, 333 
for Dirac free fermion field, 4 I 8, 432 
for Hermitian scalar field, 411 
for Klein-Gordon equation, 308, 310-11, 

313-15 
for linearized gauge field strength, 367 

iu multi particle system, 59--61, 80-81, 83; see 
also Multiparticle systems 

necessity for anti-self-adjoint form, 40, 98 
one-parameter family in first-order 

perturbation theory, 133 
p(:rturbation, I 3 I, I 94, 20 I 

anti-self-adjointness conditions, I 34, I 95 
compact notation for matrix elements, 

132, 195 
perturbed and unperturbed, I 3 I 
potential energy part of, I 08, I I I, 255 
in real quantum mechanics, 47-48 
real-valued, 239-40, 255-56 
representation-independent form, 98, I 12,410 
representation of symmetries of, 74--76 
restrictions on from translational, rotational, 

and Galilean in variance, 89--95, 234-37 
rotationally invariant, 64, 66-67, 80, 84--86, 

89--95 
self-adjoint, for two-component semi

relativistic equation, 351 
simplification by choice of ray representative, 

95--99 
simplified by omitting vector potential, 98, 

106, 109 
in single-particle system, 89-95 
spectral representation, 60, 195, 197,213 
spin, 84--86 

optical potential reduction for, 130--31 
symplectic decomposition for, 85-86 
time reversal in variance restrictions, I 20, 

286 
symmetry generators which anticommute 

with, 75n.9, 112-17,231-32 
symmetry generators which commute with, 

74--76,231,238 
system, constrained 

in generalized quantum dynamics, 455, 
487, 529 

invariant relations in, 465n.35, 469, 529 
primary and secondary constraints in, 487 
standard theory of, 455n.26 

time-dependent, 69-70 
time-independent, 68, 70, 109, 194, 196, 201, 

219 
time reversal invariant, I I 2-22. I 98n.5 
total trace, 399; see also Total trace 

functional 
translation invariant, 59-62, 80, 83, 89-95, 

237-39, 255, 267 
trial, 93, 235 
2 x 2 matrix form, 40--41, 43--44, 408 

self-adjoint, 4 I, 44, 408 
Harari-Shupe proposal, 501-1 I, 532 

candidate dynamics, 508-9 
enumeration of states, 505-8, 532 

spin-I /2 mixed symmetry states, 506-7 
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spin-3/2 mixed symmetry states, 506, 508 
families constructed in, 501-3 
naive counting rule for, 502, 502n.6 
postulated rules for three-quasi particle 

composites, 503-5 
role of residual forces, 51 I 
shell model dynamics, 509--I 1 

ground state wave function structure, 
510--11 

Harmonic oscillator, I 22~ 23 
Hartree approximation; see Mean field 

approximation 
Heaviside step function, I 70, 289 
Heisenberg picture, 53, 68-70, 89, 89n.2, 194, 

208, 234, 289, 397, 399, 413-15 
and formally real field components, 425-26, 

426n.JJ 
generalized dynamics formulation, 448-49 
H omitted as subscript for, 89 
left-acting algebra time dependent, 89n.2, 

234n. I, 425-26 
operator and state vector defined, 69-70 

time development of, 69, 89, 234 
for quaternionic forced harmonic oscillator, 

211-13 
Heisenberg uncertainty principle; see 

Uncertainty principle 
Helicity, 391, 39ln.l3 
Hidden variables, 524n. I 9 
Hierarchy problem; see Standard model 
Higgs mechanism, 497n.l, 508 
Hilbert module, I On.! 0 
Hilbert space 

closed ray orbit in, I 50-56 
column vector, 21, I 99 
complete, 20; see also Completeness relation 
complex, 10-1 I, 499, 533, 538 
four-dimensional, mutually commuting left 

algebra bases in, 480 
generalized Wigner theorem, 29-31, 112 
halving of dimensions by complex into 

quaternionic embedding, 407-10 
halving of dimensions by real into complex 

embedding, 49 
indefmite metric, 20n,3 
for multichannel scattering, 263 
norm, 20--21 

for symplectic components, 71 
octonionic, I 0, 539 
for one fermion degree of freedom, 434--35 
parameterized family of states in, I 50 
quantum mechanics 

inner product conservation in, 50-51 
requires associative multiplication, 49-52, 

539-40 
quaternionic, 10-11, 19--21,90 

bosonic and fermionic subspaces, 442-43 
complex quantum fields embedded in, 

407-21, 498; see also Quantum field 
theory 

and fundamental physics, 499-501, 533 
real, I0--11, 48 
row vector, 21 

scalars of, I 9n.l, 20, 23, 29 
right-acting, 24--25, 34, 38-39, JOOn.JO, 

275, 399, 479, 512, 530 
separable, 20 
unit (identity) operator of, 34, 73--74; see also 

Multiparticle systems, Fock space 
unit rays of, 22, 29-30 
vectors of, 20, 22, 29-30 

Hilbert space, <C(J, i) subspace of 
quaternionic, 63, 66 
as arena for standard model physics, 498--99 
stable under quaternionic perturbations, 

207-8, 499 

Identity or formula 
Anandan-Aharonov, for if( t)lf( t + dt)), 

I 50n.9 
Baker-Campbell-Hausdorff, I I O-J I 
Bianchi, for gauge field strength, 485 
for (xle'P /Zm lx"), II 0, I 37 
commutator of covariant derivatives, 364--65 
Dirac spinor orthogonality and spin sums, 

428n. I 3, 430n.l 6 
for ei.A Be~i.A, 92n.6 

for exponentiating I/ A, A > 0, I 35-36, 248 
Feynman, for 1/(ab), 138 
for y~ matrices·/~ [y~,y,], 485 
golden rule approximation, 205-6 
for .f

0
00 dse~'A(AB + BA)e~•A, 136 

for J
0

00 dse~'A(AB+ BC)e~sc, l36n.l 
for roods e~(As+Bfs) I 37 I 37n 3 

Jo ~ ' ' . 
for J·oo A e~(AscBfs) 249-50 249n 4 

0 s312 
' ' • 

Jacobi; see Jacobi identity 
for 2../'-(t) 458n 29 

rJt ' • 

principal value, for (E +is- E1(
1

, 203 
for quasiparticle operators, 504--5 

reproducing, for f <i!!f- j(K + ljJitjJ +XX), 
494n.49, 532 

Trotter product, for unitary operators, 109 
Imprimitivity theorem, 515 
Inner product (scalar product) 

associative multiplication needed for 
conservation, 50-5 I 

complex <C(J, i), 26-27, 41-45, 49, 181, 
272n. I, 408-9, 408n.4 

imaginary, 49 
invariance transformation of, 27, 41 
quaternionic, 20-22, 25-27,42-43,271-72, 

28 I, 408n.4, 409 
reality or complexity properties, 34 

real, 26-27, 44, 49 
real linear, 272n. I 
symplectic, 42, 408n.4, 408 

Instanton, 528 
Integrable systems, 526 
Integration measures, 17 I 
Interaction picture, 194, 208--l 1, 415 

dynamics of states in, 208-9 
evolution operator, 228--32, 228n.4 
expression for Moller wave operator 

and S-matrix, 229 
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and S-matrix symmetries, 231-32 
operator, for generalized quantum dynamics, 

454, 531 
for quaternionic forced harmonic oscillator, 

210--11 
state vector and operator, related to 

Schr6dinger picture, 208 
Intertwining identities; see Covariant derivative; 

Moller wave operator; S-matrix 
Inverse scattering theory, 526 
Isotropy, spatial, 500 
i2, real 2 x 2 representation of i 

adjoint introduced, 346 
defined, 47 
transformation to bases which diagonalize, 

381 

Jacobi identity 
for commutator, 70, 363 
for generalized Poisson bracket, 447-48, 

535--40; see also Bracket, generalized 
fails in octonionic Hilbert space, 539--40 

Jauch theorem counterexample, 34n.IO 
Jordan 

algebra, I 0-11; see also Algebra 
formulation of quantum mechanics, 10-11, 

448n.23 
Jost function, 183n.l2, 526 
Junction conditions for wave function, !60, 162, 

164 

Klein-Gordon equation, 87, 303-28, 362; see 
also Quantum field theory 

Klein-Gordon equation, free particle case, 
303-15 

coordinate space inner product, 305-6 
completeness relation, 309-10 
connected to charge structure, 306 
indefinite, 305-6, 306n.l, 309 
is Lorentz scalar, 305 
relation to four-current 1;, 305 
rewritten in momentum space, 310--11 
time independence, 305, 311 

energy eigenstates and form of "antiparticle" 
states, 314 

four-component wave function, 308 
Hamiltonian for, 308, 310-11 

Lorentz scalar wave function, 304 
momentum space inner product, 307-15 

completeness relation, 309 
defmite, 309 
expectation in, 309 
is Lorentz scalar, 307n.2 
rewritten in coordinate space, 310--12 
time independence, 309, 312-13 

normalization integral, 307n.2 
Poincare generators for, 389, 433 
relativistic notation, 304-5; see also Metric, 

convention for; Relativistic notation 
two-component wave function, 312-14 

Hamiltonian for, 313-15 
Klein-Gordon equation, interacting case, 

315-28 

coordinate space inner product, 318-19, 323 
real and complex projections, 319 
relation to four-current 1;, 318 

gauge covariance of, 316 
general gauge principle, 315-16, 368, 434, 

501, 528 
covariant derivative, 315; see also 

Covariant derivative 
gauge potentials and transformation, 

315-16 
Lagrangian density and coupling g, 375 
specializations, 319-21, 320n.6, 363, 369, 

434, 477-78 
and source term for gauge potential, 362 

Klein-Gordon equation, nonrelativistic 
reduction, 32!-28 

doesn't have form studied in Part II, 327 
Fo!dy-Wouthuysen method, 322-27 

auxiliary quantities for, 322 
conditions for validity, 326n.9, 345 
even and odd Hamiltonian terms defined, 

324-25 
Hamiltonian self-adjointness condition, 

323 
leading-order reduction, 327-28 
must pick out a <C( I, e) subalgebra, 32!-22 

and Galilean invariance, 327-28 
"semirelativistic" F oldy-Wouthuysen 

reduction, 345-48 
Klein paradox, 334, 399-407; see also Dirac 

equation, interacting case 
complex quantum mechanics limit, 405-7 
conclusions from, 407 
two interpretations, 405-7 

Kramers degeneracy, 217n.14 
Kronecker delta, 271, 485 

Lagrangian, 307n.2, 399, 415n.7; see also Action; 
Lagrangian density; Total trace 
functional 

Lagrangian density, 362, 374n.4, 374-88 
complex quantum field models, 381-84 

invariance under C, P, T, 384-87, 528 
for interacting Klein-Gordon equation 

general gauging, 375-77 
specialized gaugings, 377 

obtained by complex restriction of pair 
Lagrangian, 380-81 

for pair of interacting Dirac equations, 
377-78 

for single interacting Dirac equation, 379-80 
trick of replacing£ by tr£, 376, 378-80 

Lattice of propositions, 12 
Lee-Friedrichs model, 526n.22 
Left-acting operator algebra, 23-24, 38, 55-56, 

58-61, 63, 82, 85, 89n.2, 98, 101-2, 109, 
125, 134-39, 199, 248, 410-21, 441-42, 
48!-82, 5!2, 528; see also Algebra, 
left-acting 

asymptotic limiting of ft1 , 138-39, 261 
and Fock space construction, 270, 274-83, 

41D-2! 
and formally real operator components, 426 
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multiple expansions over, 478-79, 511, 530 
time dependence in Heisenberg picture, 

89n.2, 234n.l, 425-26 
trace over defined, 280 

Left-right symmetric theory, 508, 508n.9 
Legendre transformation, 446 
Leibnitz product rule, 315n.4, 536-37 

for total trace functional and generalized 
bracket, 448 

Lemma I 
applied, 84, 391 -92, 394 
stated, 76 

Lemma 2 
applied, 80-81, 83, 390, 392,401, 500 
stated, 77 

Lemma 2, Corollary I 
applied, 82 
stated, 81 

Lemma 2, Corollary 2 
applied, 83 
stated, 82-83 

Lemma 2, Corollary 3 
applied, 351 
stated, 83 

Lemma 3 
stated, 375 

Lemma4 
applied, 376 81 
stated, 395, 395n.l6 

Lemma 5 
discussed, 533 
stated, 5!4 

Levinson's theorem, !83n.l2 
Lippmann-Schwinger equation, 173 

outgoing wave scattering solution, 173. 
179-80, 180n.IO, 201 

Locality, and basis in which S-matrix and 
Poincare representations are complex, 
398 

Lorentz 
frame, preferred singled out by Lemma 5, 533 
invariance, 388 

and curved space-time generalization, 
483-84 

scalar charge integral, conditions for, 305 
scalar wave function for Klein-Gordon 

equation, 304 
transformation 

homogeneous, 336, 389n.ll, 513-15 
inhomogeneous, 305 

Many-body problem; see Multiparticle systems 
Markovian property, 5, 5n.3 
Mass 

lepton and quark, 507-8, 511 
origin of, 531 

reduced, 239 
total, 239, 241 

"Mass gap," for constant quaternionic 
potential, 126, 527 

Mass scale 
e]ectroweak, 2!4n.IO 
hadronic, 214n. I 0 

for quaternionic physics, 213, 217, 498, 
498n.2, 525 

Mass zero 
fermion theories, 374, 387-88, 508, 531 
higher spin composites, no-go theorems for, 

503 
Matrix; see also Operator; Quaternion 

auxilliary M~ and M;,, 382 
charge conjugation of, 384--S5 
time reversal of, 386 -87 

complex anti-self-adjoint and self-adjoint, 80 
complex unitary, 80, 314,437 
decay, 203- 4 
mass, 203-4 
quaternion anti-self-adjoint, 19, 29 35, 143, 

490-91, 494--9 5, 546--49 
quaternion self-adjoint, 19, 27-29, 490-9!, 

494--96, 542-45 
quaternion unitary, 29, 33, 35-36, 78,494--95, 

541-42, 546 
supermatrix generalization, applied to 

Gaussian integrals, 491-94, 549--51 
2 x 2 null and unit, 330, 386 

Mean field approximation, 296--99, 509, 531 
notation for subsystem expectations, 298 

Metric 
convention for, 53n.!, 304, 512 
curved space-time, 483, 513--15 
Minkowski, 512-14 
tensor, 304 

Microscopic units, 3n.l 
Modulus function, 5-9, 14, 52, 52n.22 
Moller wave operators, 218, 222-32, 244, 

26467 
defined, 222,224,264 
integrals for, 223 
interaction picture expression, 228-29 
intertwining action between free and full 

Hamiltonian, 224, 265 
isometric property, 224, 230 
limiting expressions for, 223, 264 
multichannel, for arrangement channel a, 

264-67 
not unitary when there are bound states, 

225-26 
range of, 265 
S-matrix defined in terms of, 228 
S-matrix symmetries and, 231-32 
unitarity deficiency action on, 226, 265 

Momentum 
anti-self-adjoint operator for, 53--64, 66, 98, 

209, 500 
action in coordinate representation, 54 
action of time reversal on, 118-19 
in multiparticle system, 59--60, 80- 81, 238, 

267 
spectral representation for, 56, 500 
translation group constructed with, 54, 

59-60, 63, 99 
canonical, 4!0 15,446,459,463,487-89 
complex linear definition of, 62-63, 351, 512 

action of time reversal on, 118--!9 
conservation in multiparticle scattering, 268 



representation, 53 
left-acting algebra I, J, Kin, 56, 413 
!eft-acting algebra I, fp, Kp in, 56 
wave function, 55-57, 271, 307, 310-11 

self-adjoint operator for, 53, 58-64, 66, 
!07-8, !26, 351, 499, 512 

INDEX 

action on asymptotic scattering states, 8], 
139 

action in <C( I, i) Hilbert subspace, 63-64 
commutator with coordinates, 61 
in complex quantum mechanics, 76 
in multiparticle systems, 59-61 
in system with constant potential, 126 
translation group constructed with, 59 

Monopole 
Dirac, 97n.8, 528 
't Hooft-Polyakov, 528 

Multiparticle, multichannel scattering; see also 
Scattering; S-matrix 

S-matrix for 
<C(l, i) with standard ray choice, 233, 

266-67, 509, 517 
definition and properties, 266-67 

time-dependent formal theory of, 233, 262-69 
arrangement channel a defined, 262 
arrangement channel Green's functions, 

263 
a-state and integral equations, 263--64 
full Hamiltonian Green's functions, 263 
Hilbert spaces for, 263 
Miiller wave operators for channel a, 

264-67 
Multiparticle systems 

center of mass separation, 233 
complex cluster, 255-56, 261 
N-pair model, 245--46 
quaternionic cluster, 256, 261 
three-body, 241-42 
two-body, 239-40 

classification of asymptotic states, 233, 
254-62, 532-33 

assumptions made, 254 
asymptotic Schrodinger equation, 254--58 
complex cluster, 255-56, 287, 5!8-19, 

532-33 
extension to positive cluster energies, 260, 

287 
notation for partitioning in clusters, 254 
null cluster, 260 
quaternionic cluster, 256, 258, 261, 532--33 
wave function structure, 256-62 

cluster decomposition property, 233, 240, 
245-54, 293-99 

breakdown, 250, 270, 299, 518-19, 527 
in finite subsystem of infinite system, 

253-54, 293-99 
mean field approximation used to study, 

270, 296--99 
optical potential used to study, 270, 

293-99 
energy, additive conservation law for, 233, 

268-69, 287 
cluster energy conditions for, 268, 

268n.IO, 287 
evolution operator factorization 

complex case, 244 
failure in quaternionic case, 245 
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and experimental signatures for quaternionic 
quantum mechanics, 518-20 

external potential problem obtained from, 
233 

Fock space, 270-74, 277; see also 
Multiparticle systems, second 
quantization in ).-representation 

class C of complex bases, 270-72, 528 
class C, 283, 528 
class R of real bases, 275n.4 
defined, 273 
dynamics, 281-82 
identity operator, 274, 277 
inner product, 271-72,281 
N-particle Hilbert space component, 273 
vacuum state, 273 

Galilean analysis, 234--37 
assumptions, 234--35, 527 
summary, 236 

general reduction for if= if11 ) + iH12), 
239--40 

Hamiltonian for, 59-61, 80-81, 83,262 
modeled as sum of one-body terms, 

242-43, 270, 283, 509 
noncommutativity and, 244, 283- 85 
quasiparticle transformation for, 270, 

283-87 
second quantized, 270 

identical particles in, 23 7- 38 
independent particle behavior in complex 

specialization, 245 
methods for, 23 3-69 
N-pair model, 245-54 

simplification in large N limit, 250-51 
permutation 

boson and fermion representations, 238, 
270--71 

operator for coordinates, 237-38 
order of P, 271 
symmetry representations complex, 238 

perturbation around <C( I, i) limit, 245-54 
zeroth-order approximation, 24 7 

quasiparticle operators, 280, 283-87, 503-11, 
528 

annihilate/create one-particle states, 270, 
284, 5!0 

factor ordering in inversion formulas, 284 
noncanonical commutator; 

anticommutator, 280, 431, 504, 510 
obey nonstandard exclusion principle, 

270, 285 
properties of, 504--5, 510 
restrictions from time reversal, 285-86 

scattering, 61n.4, 64; see also Multiparticle, 
multichannel scattering 

Schr6dinger equation 
for relative coordinate wave function, 239, 

245-46 
for three-body problem, 240--42 
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x-rep. projected from Fock space, 282 
simplification by reraying, 233, 236--37 
statistical mechanics, 287-93, 527 

dilute regime, 287 
equilibrium density matrix, 288 
thermal averages, 270 
thermal Green's functions, 270, 289-93 

symmetrization for identical particles, 233, 
237-38, 270 

tensor product, 233, 240-45 
existence of complex multilinear, 243-44 
nonexistence of quaternion multilinear, 

233,244-45,250,258,280 
translation invariant, 237-39, 267 

three-body problem, 240-42 
two-body problem, 239-40 

Multipartic!e systems, momentum in 
additive conservation law, 233, 267--68 
anti-self-adjoint operator, 59--60, 80, 238 

action on asymptotic scattering states, 261 
commutes with S-matrix, 267 
eigenstates, 61, 76, 255-56 

self-adjoint operator, 59-61 
action on asymptotic scattering states, 

261-62 
for individual particle, 61 

total, as sum of cluster momenta, 261 
Multiparticle systems, second quantization in 

A-representation, 270--87, 519; see also 
M ultiparticle systems, F ock space and 
quasiparticle operators 

annihilation/creation operators, 273, 278~79, 
503 

commutatorjanticommutator notation, 
273 

complete basis for Fock space, 273-74, 
282n.6 

Hamiltonian for, 281-82 
n-body operator terms, 282 
number conserving and nonconserving, 

281-82, 528 
!eft-acting algebra, 270, 272n.l, 274--78, 503 

and change of representation, 279 
complex conjugation', 279,419,430 
and Hamiltonian structure, 282 
properties derived, 27 5-78 
properties stated, 274--75 
quaternion conjugation -, 282 
trace over defined, 280, 431 

notation used for operator and eigenvalue, 
275n.3, 411n.6 

occupation number labels, 274 
particle number 

additive conservation law, 287-88 
in cluster p of arrangement channel a, 287 
operator, 281, 285 

transformation to 0'-representation, 277--79, 
277n.5 

Negative energy solutions 
Dirac equation, 333-34 
Klein-Gordon equation, 314 

Nernst theorem, 46n.17 

Neutron-optical experiments; see Experimental 
signatures for quaternionic quantum 
mechanics 

Noether theorem, total trace version, 450--52 
fermionic currents, 484~86 

Non-Abelian monopole, 97n.8, 528 
Nonlinear modiftcations in quantum mechanics, 

524- 25; see also Quantum mechanics 
Nonrelativistic kinematics, 87, 87n.l, 89, 164 
Norm; see Quaternion; Hilbert space 
Normalization 

for bound state, 161, !68 
box, 28 
for Fourier expansion, 307, 411 

Number field 
automorphism, 29n.7, 30 
defined, 9-10 
generalized Wigner theorem for, 29-31 
rational, 7n.6 

p-adic norm for, 7n.6 
topological characterization of, I On.9 

Observables, 27, 35, 58, !08 
conserved, conditions for, 269n.ll 
identification in operator gauge invariant 

theories, 452-53, 453n.24, 512, 531 
Octonion; see Algebra 
Octonionic quantum mechanics, 9n.8, II, 20, 

49-52, 539-40 
attempted ~chriidinger equation for, 50-51 
failure of completeness in, 49-50 
failure of cyclic trace property in, 540 
failure of unitarity in, 50-52 

One quantum criterion, 519, 519n.14 
Open questions, 497 

involving quaternionic analogs of first 
quantized complex quantum mechanics 
topics, 526--28 

involving quaternionic analogs of second 
quantization, relativistic quantum 
mechanics, and quantum field theory, 
528-33 

Operator; see also Quaternion 
adjoint, 22 
annihilation 

abstract, 270 
for harmonic oscillator, 209 

anti-Hermitian; see quaternion 
anti-self-adjoint 

antiunitary, 29-30, 112, 118~19, 214 
bosonic, 289n.9, 443 
colinear and counitary, 22, 30 
complex antilinear, 43; see also antiunitary 
complex anti-self-adjoint, spectral theory, 80 
complex linear, 22, 47n.l9, 49, 53, 6!-63, 

66--68, 118-19, 351, 408n.4 
defined in general case, 61 

complex self-adjoint, spectral theory, 80, 142, 
204 

creation 
abstract, 270 
for harmonic oscillator, 209 

dimension-6, and phenomenology of tests for 
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quaternionic and nonlinear quantum 
mechanics, 519-20, 525 

elliptic, 127, 172n.4 
fermion grading (-1/, 442-43, 442n.20, 

443n.22, 461 
fermionic, 289n.9, 443 
gauge transformation; see Operator-valued 

gauge transformation 
Hermitian; see quaternion self-adjoint 
left-acting algebra, 23-24, 33-34 

in angular momentum representation, 
65-66 

in coordinate representation, 38 
matrix elements, reality or complexity 

properties, 34 
mutually commuting set of self- and 

anti-self-adjoint 
all Hermitian, 77 
spectral theory of, 53, 76-83 

noncompact, 443n.22 
non!oca!, 83, 127 
normal, 28n.6 
product expansion, 216 
quaternion anti-self-adjoint, 19, 23, 28n.6, 

31-36, 53, 76-83, 103-4, 118--19, 
448n.23 

expectation value of, 35 
modulus (or magnitude) and phase of, 33, 

35,77 
not trivially made self-adjoint, 77, 

448n.23, 490-91 
spectral theory of, 29-36, 76-83, 91, 98, 

124, 134, 136, 494 
spin, 85 
unitary inversion operator for, 35, 139, 

286 
quaternion linear, 22-23, 27, 61, 66, 408n.4 
quaternion self-adjoint, 19, 23, 27-29, 62-63, 

69-71, 76-83, 103-4, 108, 397, 448n.23 
expectation value of, 28 
spectral theory of, 27-29, 76-83, I 03--4, 

494 
thermal expectation, 288 

quaternion unitary, 30-31,36-37,41,54,65, 
68, 70, 74, 90, 99, 101, !03-5, 109, 113, 
208-9, 228-32, 432, 440, 523 

spectral theory of, 35-36, 91 
real anti-self-adjoint, 47-48 
real lin ear, 48 
real self-adjoint, 47n.!9, 48 
real skew-symmetric, canonical form for, 47 
"time," 526n.22 
unit; see Hilbert space, unit operator of 
unitary, 29-31, 112 

Operator-valued gauge transformation, 399, 
442, 442n.20-21, 449-55, 50!; see also 
Bracket, generalized; Generalized 
quantum dynamics; Total trace 
functional 

biunitary, 431-32, 449- 50, 483, 529 
and complex quantum mechanics, 455-75 
identification of invariant observab!es under, 

452-53, 453n.24, 512, 531 

cotransforming states introduced, 453 
summarized for quaternionic field models, 

475--78, 483 
total trace Lagrangian invariant under, 

449-50, 508 
unitary, 431-32,449, 529; see also Operator, 

quaternion unitary 
Optical potential, 114-15, 127-28, 177-79, 

183n.l2, 198n.4, 218,499 
bound-state-associated resonances and 

singularities of, 175--79 
and cluster decomposition property, 293-99 
conjugate used in equation for /p, 128 
Galilean invariance, 527 
isolated singularity in, 175 
properties of, 127-28 
with spin, 130-31 
spin-0 obtained from spin-1/2, 131 
and time-dependent Schriidinger equation, 

128-30 
and time reversal violation, 114--15, 129--30, 

174-75, 215 
total V101 

applied, 200-201,203-4,215-16 
defined, 172 

Optical theorem; see S-matrix, unitarity of 

Parastatistics, 238n.2, 504-5, 527 
Parity 

invariance, 76, 381-82, 384, 481- 83 
notation P in quaternionic quantum 

mechanics and P in complex quantum 
mechanics and phenomenology, 
217n.l4 

real phase factors in, 384, 481, 483 
relationship between complex and 

quaternionic definitions, 482n.42 
Path ordering operation P;, !56, !85 
Pauli 

spin matrices, 84, Ill n.l4, 184-85, 322, 330, 
479n.39 

used to represent quaternions, 495, 527 
spinors, 40 I 

origin of, 515-16 
Permutation operator, 237-38 

square not assumed unity, 238n.2 
Perturbation theory, stationary state or 

time-independent, 124, 131-43, !68-70 
for asymptotic bound on (Iii- lif

0
)1x), 

138-39 
degenerate, 140-43 
dependence on origin of energy scale, !34 
first-order energy, 133, 177 
flrst-order Hamiltonian modulus, phase, 

134-39 
first-order !eft-acting algebra, 134-39 
first-order wave function, 132-34 
higher-order wave function, 133-34, 143 
for multiparticlc change from <C(I. i), 245-54 
nondegenerate unperturbed energies, 131-34, 

!40 
second-order energy and wave function, 

139-40 
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for zero energy states, 142 43 
Perturbation theory, time-dependent, 194--217 

in decaying state theory, 201 8, 213-17, 499, 
526 

initial condition, 20 I -2 
initial state, 201 
mass and decay matrices, 203-4 
upper half plane analyticity, 202-6 
Weisskopf-Wigncr approximation, 202n.7, 

204--6 
in scattering theory, 196-201 

basic equation for, 195, 209 
interaction picture, 208-11 
notation used for, 194n.! 

Perturbing Hamiltonian, compact notation for 
matrix elements, 132, 134, 195 

Phase 
approximation methods involving, 145 58 
of fl-symplectic potential, 114n.17, 188, 191 
dynamical (versus geometric), 148 
role in generalized quantum dynamics?, 531 
shift, in scattering, 168, 176 

compound, and experimental tests, 516 18 
Phase, geometric 

adiabatic, 145-49, 527 
analog in generalized dynamics?, 531 
complex for nonzero energy, 148 

integral over closed orbit, 148 
reraying of, 148 

nonadiabatic, 150-56 
invariant angle associated with, !52 
quaternionic distinct from complex, 

153 56 
quaternionic reraying of, !52 56 
Riccati equation and, 153-55, 527 
and time-ordered integral properties, 

151 52 
trace of closed orbit integral, !50- 52 

quaternionic for zero energy, 149 
reraying of, 149 
trace of closed orbit integral, 149, !52 

Planck scale (or mass), 497-98, 500 
Planck's constant, 530; see also Microscopic 

units 
Potential; see also Hamiltonian; Scalar 

potential; Scattering; Schriidinger 
equation; Vector potential 

anti-self-adjointness implies real part 
vanishes for single-component wave 
function, 40, 236 

delta function, !59 
left-right symmetric in one-dimensional 

scattering, 518 
local, 397 98 
optical; see Optical potential 
spherically symmetric, !65-71, 175-79 
taken as a quatcrnionic constant, 59n.3, 

113-!4, 123, 125, 137n.2 
energy eigenstatcs for, 125--26 

time-independent and time reversal operator, 
112 19 

translation invariance restrictions on, 237 
Prcgeomctry, 51! 12, 5lln.IO, 516, 532 

Preons, 501-3, 532; see also Harari-Shupe 
proposal 

chiral symmetry and, 508n.8 
fundamental doublet assumed, 502 

"rishons" or "quips," 502n.5 
Prime as notation for x differentiation, 184, 358 
Principal value P, 56, 127-28, 177, 203 
Probability 

amplitude, 5--10, 22, 227, 303 
classical, 4--6, 8--9 
conditional, 5n.3 
current, 106--7, 185-86, 189, 189n.l3, 352, 

402-5 
density, 106-7, 160, 185,352 

boundedness of, 160, 172, !83n,l2 
local conservation law, 106~ 7, 352, 403-5 

for one-dimensional transfer matrices, 
185-86, 189 

and Markovian property, 5, 5n.3 
and quantum measurement paradox, 523, 

524n.l9 
quantum mechanical, 5-6, 8- 9, 22 

in complex quantum mechanics, 42, 44, 
306 

in quaternionic quantum mechanics, 42, 
306 

in real quantum mechanics. 44 
total in fi-symplectic components, 206--7 
transition 

to fl-symplectic final state, 198, 206 7, 526 
expressed in terms of total trace, 448-49 
per unit time, 173, !96--98, 20 I 
preserved by symmetries, 29, 90, 112 

Projection operators, I 0 -II 
Projective geometry, 10-1], 29n. 7 
Projective representation; see Group, projective 

representation 

"Quantization" of a classical theory, 442n.20, 
533 

Quantum chromodynamics, 509 
suggested analogy with, 499n.3 

Quantum field theory, complex, 315, 362, 
381-88, 5!6, 529-30 

canonical commutation relations, 411, 422 
C, P, T symmetries in, 381-82, 384--87, 528 
effective, 498-500 
embedded in quaternionic Hilbert space, 

407 21; see also Quantum field theory, 
complex embedded in quaternionic 

Feynman path integral and Gaussian 
integrals, 489, 531 

generalized quantum dynamics with total 
trace Lagrangian applied to, 442, 
455-75; see also Generalized quantum 
dynamics 

group generator commutator algebra, 435·-36 
pre on models based on, 50 I, 50 I n.4 

Quantum fteld theory, complex embedded in 
quaternionic 

general conditions for embedding, 407 10 
trivial embedding, 40910, 424 

action of left-acting algebra, 411~21 
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charged scalar field, 415- 17 
Dirac free fermion field, 417 -21 
Hermitian scalar field, 410 15 
Majorana free fermion fields, 421, 471 
must choose left-acting algebra, 410- 13 
no-go results for free fermions, 419-21, 

427 
Quantum field theory, notation; see also Fourier 

expansion 
anti-self-adjoint canonical momentum n 412 
energy eigenvalue (l)p, 410-11 ' 

.fv ix for integration over box V of volume 
(2n) 3,411 

normalization factor N(p), 411 
self-adjoint canonical momentum n 410 

Quantum field theory, quaternionic, 2l 7n.14, 
399-496, 516 

absence of kinematic time reversal violation 
in, 217n.14 

conjectured asymptotic to complex, 398, 
497--98 

constructed as nontrivial embedding of 
complex, 399, 407- 10, 421-22, 432, 
439-40 

constructions valid in zero and one particle 
sectors only, 429, 432, 436 

free fields formed as superpositions of <C( I, I) 
quantum fields, 421-32 

fermion fields, 427-32, 529-30 
scalar fields, 421- 27 

functional integral approach, 492n.48 
generalized quantum dynamics with total 

trace Lagrangian applied to, 442, 475-
89, 508; see also Generalized quantum 
dynamics 

group generator Lie algebra, 434--36, 452 
minimal fermionic theory with maximal 

gauge group, 399-400, 508 
nontrivial, likely to be obtained by gauging 

one-dimensional quaternionic 
irreducible representation of SU(2), 
434, 440-41' 532 

Poincare generators not represented by a 
commutator algebra, 398, 451 

role in physics, 497-98 
unitary versus asymptotically unitary 

evolution, 524n.l8 
wave fields left-acting operators, 399 

Quantum measurement paradox 516 520-24, 
530 ' ' 

Bell inequalities, hidden variables and, 
524n.19 

dccoherence, quantum histories, and, 522 
Feynman's comment on, 522n.17 
ideal measurement and, 521, 523 
implications of generalized quantum 

dynamics for, 523-24 
implications of quaternionic quantum 

mechanics with unitary evolution 
operator for, 523 24 

and internal consistency of quantum 
mechanics, 523 

Penrose operations R and U in, 520, 522 24 

and probabilistic aspect of quantum 
mechanics, 523 

von Neumann chain or recursion in, 522, 523 
Quantum measurement theory 497 5!6 

520- 25, 520n.l5 ' ' ' 
and nonlinear corrections to complex 

quantum mechanics, 524--25 
Quantum mechanical 

in tcrf ere nee, 6, 8 
state, 5-6 
system, 5 

Feynman formulation (versus classical), 5 
Quantum mechanics 

axiomatic foundation, !O-Il 
complex; see Complex 
Dirac formulation, I 0--11 
Jordan formulation, 10-11, 448n.23 
nonlinear modifications of, 524--25, 530 

parameterization of, 525, 525n.20 
possible tie to hierarchy problem, 525 

octonionic; see Octonionic quantum 
mechanics 

real, 11- 12, 30,46-49 
embedding in complex, 47-49 
Hamiltonian in, 47-48 
Mackey analysis of, 47, 47n.l9 
no energy eigenstates in, 4 7 
relationship to complex, 44-45, 47-49, 

47n.l9, 407n.3 
Schrodinger equation in, 4 7-49 
Stuecke!berg analysis of, 47, 47n.l9 

Quark masses; see Mass, lepton and quark 
Quark model, enumeration of states in, 505 
Quasiparticle transformation, 283-87, 528; see 

also Multiparticle systems 
Quaternion or quaternionic 

algebra; see Algebra 
analyticity, 18 
anti-self-adjoint operator; see Operator 
arithmetic, 1!-18 
automorphism class, 32, 83 
automorphism transformation, 16--17, 32, 

100-!01, IOOn.lO, 254,296,299,320, 
434, 482n.42, 5!9 

cluster, 256 
cluster energies and additive energy 

conservation, 268-69 
column vector, 21 

adjoint t defined for, 21-22 
complcxified, 9, 12, 429n.l4 
complex subalgebra of, 13; see also <C( I, i) 
complex 2 x 2 matrix representation 495 
conjugate, 7 8, 13, 16, 19n.l, 512 ' 

not a time reversal operation, 112 
notation- used for, 13, 512 
of product, 14, 16, 112 

contravariant, 513 
covariant derivative; see Covariant derivative 
defined, 7, 11-12 
delta function, 493-94 
determinant, for self-adjoint matrices 400 

490, 494--96 , , 
properties summarized, 494--96 
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four-vector extension of, 513-15 
Gaussian integrals, 400, 489-96, 531; see also 

Gaussian integrals 
derived, 541-51 

Grassmann, 15-16 
harmonic oscillator, !22- 23 

coupled second-order equations for, 123 
forced, 194, 209-13 
fourth-order equation for, 123 

Hilbert space; see Hilbert space 
imaginary, 12, 14, 37, 40, 73, 148 
imaginary part of, 12, 14 
level of physical structure, 497 
matrix, 14--15; see also Matrix; Operator 

adjoint t defined for, 14 
finite versus infinite-dimensional, 15 
reps. and octonionic quantum mechanics, 

66 
trace Tr defined for, 15 
transpose T defined for, 15 

norm or modulus, 14 
nth roots of, 14n.l4 
operators, 15, 19n.], 20; see also Operator 
polar form, 14, !52 
real, 12, 73 
real part of, 12 
scalars, 19n.l, 20 
Schwartz inequality, 21, 299 
self-adjoint operator; see Operator 
symplectic representation of, 13 
(3, I) signature of, 512 
trace, !2-13 
unitary operator; see Operator 
units or unit imaginary, 11-12, 17, 32, 58, 91, 

234, 236 
automorphism transformation of, 17 

Questions; see Open questions 

R, reduction of wave packet operation, 520, 
522-24 

Radial wave eq nation, !66--71, 17 5-77 
Radius, larger r> and smaller r < defined, 170 
Rayleigh-Ritz variational principle, 145; see also 

Functional; Variational principles 
Rayleigh-Schri:ldinger perturbation theory; see 

Perturbation theory, stationary state 
Ray representative, 22, 28-30, 32-33, 35, 37, 42, 

45-46, 51n.20, 54----55, 63, 65, 68-69, 74, 
80--84,95-101, 115, 118, 120-22, !44, 
148-50, !59, 161, 174, 230, 233, 236, 
255n,6, 256, 267-68,303, 314,333, 500 

complex versus quaternionic change of 
(w versus (), 272, 320 

indicated in state label, 82, 90n.4, 100 
invariance and phenomenology of nonlinear 

quantum mechanics, 525 
standard choice of; see Energy eigens tates, 

canonical form for 
time-dependent change of, 150-56 
transformation, restricted, 153--55 

Real momentum space basis, 57-58 
Reciprocity relation, 215 

failure, 174---75 

Relativistic notation, 304---5, 320n.6 
summation convention for Greek indices, 304 

Relativistic quaternionic field theory; see 
Quantum field theory, quaternionic 

Relativistic wave equation, 58, 87, 87n, I, !64, 
217n,l4, 303-88,362-88, 399, 50!; see 
also Dirac equation; Gauge potential; 
Klein-Gordon equation; Lagrangian 
density 

limitations of, 400, 407 
Reraying; see Ray representative 
Resolvent, 127, 180-81 

spectral representation for, !80-82 
Rest masses, 159, 247, 250 

and additive energy conservation law, 268-69, 
268n. I 0, 287 

and generalized classification of asymptotic 
scattering states, 260 

and scattering problem, 164---65 
and stability of bound states, 164---65, 171, 

177-79, 208, 258 
Riccati equation, 153-55, 158, 527 
Riemann sum, !52 
Riemann zeta function zeros, 526n.23 
Rotationally invariant system; see Hamiltonian; 

Wave function 
Rotation generators and in variance; see Angular 

momentum; Group 
Rotation group S0(3), 17 

Scalar; see Hilbert space 
Scalar potential, 40, 59n,3, 94---95, 98, 

!08, 239 
Scalar product; see Inner product 
Scattering; see also Multi particle, mutichannel 

scattering; S-matrix 
amplitude, 179; see also Transition matrix 

forward, analyticity properties of, 179-83, 
499, 526 

asymptotic state space; see Asymptotic 
scattering states 

exterior region for, 160, 166 
external potential, 63, 76, 159-93, 499 

time reversal violation in, !59, 174-75,213 
formal theory of, 76, 113, 172, 499, 527 

multichannel time-dependent, 218, 
262-69, 527 

relationship to complex, 230 
single-channel time-dependent, 218-32 

free particle in and out states; see also States, 
free particle in and out 

defined, 220 
integral equations for, 221-22 

full scattering states; see States, full scattering 
fundamental question answered by S-matrix, 

228, 266 
incident or incoming wave, 162, 173, 177n.6, 

!80n.!O, 186, 197,400,403 
matrix; see S-matrix 
Moller wave operators for; see Moller wave 

operators 
multichannel, 6!n.4, 64, 218, 262-69 
outgoing wave, 162, 177n.6, 180, 403-4 
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Lippmann-Schwinger solution, 173, 
179-80, 180n.IO, 201 

phase shift, !68, 176 
three-dimensional, 164-75, 357-58 

general, 170--75 
spherically symmetric, 165-7], 17 5--79 

time-dependent perturbation theory for, 
196-201 

Scattering, one-dimensional 
with absorption, 190n.l4, 193n.17, 518 
compound barrier, 188, 189n.13, 192, 517-18 
delta function potential, 159-65, 174, 354-57 

analyticity properties, 182-83, !82n,ll, 
355, 358 

Dirac equation with step, 400-407 
general, 163, 183-93, 517-18 
!eft-right reflection symmetric, 5!8 
multiple reflection sum, 192-93 
reflected and transmitted waves, 162 
reflection and transmission coefficients, 163, 

182, !86-88, 190-93, 402-4 
relations between left and right, !88-92 
unitarity sum rule for, 163, 187-88, 190, 

192n. 15, 403-5 
square well, !88, 40 I n.l 

Schriidinger equation, for quaternionic 
quantum mechanics 
asymptotic, in multiparticle scattering, 

254-55 
Feynman path integral as alternative, 109 
generic case not time reversal invariant, 114, 

510-11 
one-dimensional 

and delta function potential model, 159-65 
and WKB approximation, 156-58, 527 

radial; see Radial wave equation 
relative coordinate, in multiparticle system, 

239, 242, 245 
simplification by choice of ray representative, 

95-99, 303 
for three-body problem, 240-42 
time-dependent, 36, 38,40-41,44-49, 68, 99, 

106, !46, 218, 281--82, 325,409 
canonical form for, 96-99, 233, 237 
for cotransforming states, 454 
for Fock space, 281-82 
optical potential used in, 128-30, 172, 499 
perturbation theory for, 194-96 
residual ray rep. freedom, 97 
and time reversal, 112-13, 129-30, 174, 

510-11 
time-independent, 43, 123, 239, 255-56 

bound states in fl-symplectic component, 
161,334 

canonical form for, 96-99, 145, 159-60, 
194-95, 237 

optical potential for, 127-28, 130-31, 
181-82,294-95,499 

reduction to complex, 126-28, 130--31, 160 
two-component complex form, 40-41, 

272n.l, 407-9 
Schr6dinger picture, 69, 208, 210, 289, 399, 413 

for Fock space construction, 271 

for forced harmonic oscillator, 209-10 
state vector and operators related to 

interaction picture, 208 
for unitary case of generaJized quantum 

dynamics, 454 
Schrodinger's cat; see Quantum 

measurement paradox; Quantum 
measurement theory 

Schur's Lemma, 99, 103-5 
Schwartz inequality, 21, 73, 137 
Second quantization, 270-83, 519; see also 

Multiparticle systems 
Seesaw mechanism, 507-8, 507n.7 
Semirelativistic wave equation; see Wave 

equation, two-component 
semirelativistic 

Shell model, 509 
Simultaneous diagonalization; see Operator, 

mutually commuting set 
Slavnov-Taylor identities, 529 
S-matrix, 4, 34, 113, !59, 175, 192, 227-30; see 

also Multiparticle, multichannel 
scattering; Scattering 

always complex in quaternionic quantum 
mechanics, 4, !59, 171-74, 198, 208, 

218, 230, 233, 262, 356, 398, 499-500, 
509, 517 

multichannel generalization, 266-67 
channel, for multichannel scattering, 266--67 
commutes with free particle Hamiltonian, 228 
defined via Miiller wave operators, 228 
element defined, 230, 267 
factorization in complex case, 244 
interaction picture expression, 229 
intertwining property in multichannel case, 

266-67 
produces only energy-conserving transitions, 

230, 267 
in quantum chromodynamics, 499n,3 
related to transition matrix, 173 
symmetries of, 218, 231-32 

unitary anticommuting with if, 23!-32 
unitary commuting with if, 231 

time reversal symmetry of, 113, 117, 192 
time reversal violating, 174-75 
unitarity of, 163, 174-75, 192n, 15, 204-7, 

228, 266 
Solid-state physics; see Condensed matter 

physics 
Source current; see Dirac equation; 

Four-current; Gauge potential; 
Klein-Gordon equation; 

Space-time translation 
generators, 499-501 
in variance, 3 88 

Space translation generator; see Momentum 
Special relativity, 53n.l; see also Relativistic 

notation; Relativistic wave equation 
Spherical functions (Bessel, Neumann, and 

Hankel), 167 
Spherical harmonics, 65, 80 
Spin, 53, 58, 84-86, 119-22; see also Angular 

momentum 
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Hamiltonian, 53, 84-86, llln.l4. 345 
optical potential for, 130 31 
time reversal restrictions, 120 -22. 

Spin-O relativistic wave equation; 1·ee 
Klein-Gordon equation 

Spin-! /2 relativistic wave equation; see Dirac 
equation 

Spin-! relativistic wave equation; see Gauge 
potential 

SPIRES keywords, 7n.5 
SQUID (superconducting quantum interference 

device), 519, 522 
Stability of atoms and nuclei; see Rest masses, 

and stability of bound states 
Standard model, 3, 213-14,216 17,475,497, 

497n.l, 498n.2, 50 I, 504, 516, 520, 533 
as an asymptotic dynamics, 497 
hierarchy problem of, 516, 525 
running couplings of, 498 
time reversal violation phenomenology, 

216--17, 518 
States (in Hilbert space), 61,118; see also Energy 

cigenstates 
bound and unitarity deficiency, 226 
correspond to unit rays, 29 
density matrix for, 68 
described by vectors, 20-22 
dispersion of operator in, 71 
energy eigenstate expansion of, 45, 195 
energy eigenstates introduced, 43 
expectation defined in terms of, 68, 7ln.8 
free particle in and out 

completeness, 223 -24 
defined, 220 
normalization, 225 
related to full scattering state, 221 -22 

full scattering, 218 
normalization, 225 26 
not complete when bound states, 225 -27, 

225n.l 
initial system in decay, 201 
stationary; see also Energy eigenstates 

methods for approximating, !24-45, 
!94 

time development of, 36--37 
wave function defined from, 38 

Stationary state perturbation theory; see 
Perturbation theory 

Statistical mechanics, 287-93, 527, 532; see also 
Multiparticle systems 

Statistics 
Bose, 238 
Fermi, 238 
fractional, 238n.2, 527 
para-, 238n.2, 527 
spin connection with, 481, 53! 

Stone's theorem, 31 
String theory, 3, 498 
Sturm-Liouville system boundary conditions, 

!68, !68n.2 
Subasymptotic states 

momentum not well defined on, 64 
Subsystem density matrix, 252-53 

cluster decomposition property, 253--54, 
295-99 

abbreviated notations used in, 295n.13, 
296 

Superconductivity, BCS theory of, 51! 
Supermatrix formalism, applied to quaternionic 

Gaussian integrals, 491--94, 549-51 
Superposition, 5, 8 10, 521 
Supersymmetric ur supersymmetry 

case of Gaussian integral formulas, 492-94 
extensions of Poincare algebra, 361, 499, 532 
and fermionic current in quaternionic field 

theory, 484-S6 
hints of in operator constraints and 

Gaussian integrals, 465, 492-93, 
492n.48, 532 

quantum mechanics (Witten model), 358 -59; 
see also Wave equation, 
two-component semirelativistic 

total trace Lagrangian theories?, 532 
Symmetry transformation o•· generators, 29-31, 

34, 36. 53-70, 74-76, 99, 112, 238, 388, 
397 

and anti-self-adjoint generators, 29-31, 
53- 68, 388, 433-34 

complex classification applies in quaternionic 
case, 433 -34 

in complex quantum mechanics, 76. 433 
l>oincare and internal symmetry, 433 

of complex versions of relativistic wave 
equations, 362, 384 -87 

in generalized quantum dynamics, 451- 52 
generators which anticommute with 

Hamiltonian, 75n.9 
most general composition law for, I 00; see 

also Group, projective rep. 
Wigner analysis of group representations, 53, 

74--76 
leads to complex representations, 75-76, 

141n.6, !66, 238 
Symplectic component representation, 18-19, 

26 27,40 42,56-57,71-73,85-86, 
93-94, 93n.7, 114n.17, !23, !26, !32, 
140-41, 143, 146--48, 153-73, 184, 
201-7,218,244, 255n.5, 259-60, 272n.l, 
329, 333-34, 341-45, 354-58, 391, 395, 
482n.42, 491, 541-42 

f3 component perturbations, 246, 248, 270, 
295-96 

bound states in f3 components, 161, 334 
coupled complex equations for, 126, 160, 166, 

196 
defined and notation introduced, 13 
and embedded fermion fields, 427--31 
exponential decay of f3 component, !60, 

!64--65, 167, 178, 188, 192n.!6, 517 
positive and negative energy states in, 314 
and running wave solutions, 160, 171-72,218 
sign reversal for kinetic energy of f3 

component, !60 
use in complex Lagrangians, 38!-84 
use in Foldy-Wouthuysen method, 325-27 

Symplectic group, 13n.l3 
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Tensor 
product problem, 240-45, 250, 271 
three-index antisymmetric, 11-12 

Thermo field dynamics, 527 
Three-body problem, 240-42 
Time development or evolution; see Dynamics 
Time-ordering operators T1, T, 

applied, 70, 149,151-52,209,229, 23!-32, 353 
defined, 37 

Time reversal 
bosonic states with eigenvalues I and -I 

related, 215n.ll 
notation Tin quaternionic quantum 
mechanics and Tin complex quantum 
mechanics and phenomenology, 

214--17, 217n.l4 
relationship between complex and 

quaternionic definitions, 482n.42 
symmetry transformation or invariance, 29, 

35, 75n.9 
in complex Lagrangian field models, 

381 82, 385-87 
implemented by complex conjugation, 

47n.l9, 49, 112,214,386, 386n.9 
not implementable by conjugation, 112 
in quaternionic field theories, 48!-83 
of quaternionic harmonic oscillator, 

122-23 
real phase factors in, 386, 481, 483 
in spin zero systems, 112-19, 122, 510-11 
in systems with spin, 119 22, 510-11 

unitary operator U 1 for in variance, 112-18 
action on energy eigenstates, 115-17, 

12!-22 
action on momentumjangular momentum, 

114, 118-19 
action on operators, 116-17 
action on S-matrix, 113, 117, 192, 

231 32 
and complex antiunitary operator T, 

118-19 
and constant phase of Hp, 114n.17, !88, 

191 
dependent on structure of Hamiltonian, 

114--15 
extended for systems with spin, 119 
in generalized quantum dynamics, 481-83 
and linear dependence of v2 and v3, 

114-15, 191 
necessary condition for, 112-13 
not universal, 113-14 
and right algebra element ur, !14 
sufficient conditions for, 113 -15, 120 

Time reversal violation, 4, !59, 174--75, 531 
conditions for vanishing, 114- 15, 174, 191, 

215 
in elementary particle physics, 194, 213-17, 

387, 518; see also CP, violation 
and tests for quaternionic effects, 518 

Time translation generator; see Hamiltonian 
T-matrix; see Transition matrix 
Total trace dynamics; see Generalized quantum 

dynamics 

Total trace functional or Trace functional, 
398-99, 442-89, 499; see also Bracket, 
generalized; Generalized quantum 
dynamics; Operator-valued gauge 
transformation 

action principle for, 444-46 
energy-momentum tensor, 483-84, 533 
expectation and transition probabilities 

expressed in terms of, 448-49 
Hamiltonian, 399, 446, 499, 523 

constrained, 455, 529 
non unitary dynamics may be chaotic, 

524n.l9 
operator equations of motion, 446 
transformation to Schriidinger picture, 

454 
unitary dynamics a special case, 453 -54, 

524, 524n.l8 
Lagrangian, 399, 444, 523, 528-29 

and complex quantum mechanics, 455-75 
and constrained systems, 455, 455n.26, 529 
gauge-fixing conditions, 455 
operator equations of motion, 446 
operator-valued gauge invariance of, 

449-50 
for quaternionic field models, 475-78, 483 

Noether theorem generalized to, 450-52 
and generator algebra closure, 452 
for linear transformations, 45!-52 
Poincare generators, 451 

operator derivative and, 445 
higher derivatives not defined, 445 
Leibnitz product rule for, 448 
relation to matrix element derivatives, 539 

operator Euler-Lagrange equations for, 446 
as operator constraints, 455 
operator gauge covariant, 450 

Trace operation 
tr defined for octonion, 51 n.20 
tr defined for quaternion, 12 

cyclic property, 12, 318, 376 
over left-acting algebra, 280, 431 

Tr defined for quaternion operators, 15 
cyclic property, 15, 290, 443 

Tr defined for quaternion operators, 443 
properties of, 443-44, 443n.22, 459, 

459n.30, 463, 529 
and Witten index, 443n.22 

Transformation function; see Probability, 
amplitude; Wave function 

Transition matrix, 173, 196-201; see also 
Golden rule; Scattering, amplitude 

coupled equations for, 197 
operator form for, 200 
and outgoing wave function, 201 
related to S-matrix, 173 

Translation group; see Momentum 
Translation invariant multiparticle system; see 

Hamiltonian, in multiparticle system 
Translation invariant system; see Hamiltonian 
Transpose 

of column vector, 21 
defined for quaternion matrix, 15 
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of product, 15 
use ofT as notation for, 15, 39, 41, 191, 309, 

323, 330, 367, 408n.4, 477, 490 
Trotter product formula, I 09 
Two-body problem, 239-40 

U, unitary evolution operation, 520, 522-24 
Uncertainty principle, 47n.19, 53, 70-74 
Unification of forces, 3 
Unitarity 

deficiency and M61ler wave operators, 226, 
265 

failure in octonionic Hilbert space quantum 
mechanics, 51-52, 52n.22 

of S-matrix, 228 
sum rule, 163, 174, 204-7 

Unitary operator; see Operator, quaternion 
unitary 

Vacuum spontaneous symmetry breaking, 
75n.9, 387, 387n.IO, 396 97, 508, 526 

Vacuum state, 273 
doublet, 429n.l4 

Variational principles, 144--45 
for mean field approximation, 297 
for smallest eigenvalue of Hamiltonian 

modulus, 145 
Rayleigh-Ritz analog, 145 

Vector-like theory, 508, 511 
Vector potential, 93-98, 239-40 

quaternion imaginary, 94 
"string," for monopole, 97n.8 

Vectors in coordinate space 
conventions for three-vectors and 

four-vectors, 53n.l, 320n.6 
Vectors in Hilbert space; see Hilbert space, 

vectors of 
Velocity operator, 93, 235 
Vierbein, 513 
Virial theorem, 108-9, 352-53 

Wave equation, effective; see Optical potential; 
Quantum field theory, complex 

relativistic, 303-88, 397; see also Dirac 
equation; Gauge potential; 
Klein-Gordon equation; Lagrangian 
density 

two-component semirelativistic, 58, 66n.6, 
87n.l, llln.l4, 165n.l, 179n.8, 348, 
350--61, 429n.l4 

Ehrenfest and virial theorems, 352-53 
energy eigenstates, 351 
Feynman path integral, 353-54 
probability current conservation, 352 
scattering theory and bound states, 354-58 
self-adjoint generators, 351 
and supersymmetric quantum mechanics, 

35859 
transformation to complex form, 360--61, 

441 
and Witten model, 358-59 

Wave function, 19--20, 26; see also Coordinate 
representation; Momentum, 

representation 
asymptotic scattering; see Asymptotic 

scattering states 
boundedness, 160, 172, !83n.12, 186 
bound state normalization, 161, !68 
complex, related to real, 49 
continuity conditions for, 161-62, 400, 403 
eikonal form for, !56 
for energy eigenstate (giving 

time-independent Schrodinger 
equation), 97 

four-component quaternionic, 184, 308, 367 
spinor, 329, 332n.l3 

free particle, 180, 219-21 
for identical particles, 238, 270--71 
junction conditions, !60, 162, 164, 355 
n-component, 39 
phase, methods based on, 145-58 
relative coordinate, in multiparticle system, 

239, 241' 245 
rotational invariance analysis for, 68, 80, 179 
single-component, 40, 58, 64, 84, 87, 91n.5, 

98, 240 
two-component complex, 40, 272n.l, 358, 

382, 407-9, 528 
two-component quaternionic, 84, 312-14 

spinor. 329n.!2 
two-component semirelativistic, 58; see also 

Wave equation 
Wave packet, 227, 227n.2, 266-67, 405-7 

group velocity for, 406 
Weisskopf-Wigner approximation, 202n.7, 

204-6 
Weyl ordering, 460-61 
Wigner analysis of symmetries of Hamiltonian, 

53 
Wigner theorem for unit ray mappings, 29-31, 

36, 112 
Witten index, 443n.22 
Witten model for supersymmetric quantum 

mechanics, 358-59; see also Wave 
equation, two-component 
semi relativistic 

WKB approximation, 156-58, 527 
connection formulas not known in 

quaternionic case, !58n.l3, 527 
equations for real components of eikonal 

integrand, 157-58 
Riccati equation and, 158, 527 

algebraic equation in complex limit, !58 
slow variation assumption, !56 

Wronskian, 169-70, !83n.l2 

Yang-Mills gauge potential and field, 363, 442, 
460n.31, 488, 488n.45, 527 

identification of observables for, 453n.24 
path-ordered integrals used, 453n.24 

operator gauge-invariant extension, 472-75 
supersymmetric, 484 
ubiquitous appearance in standard model 

physics, 50 I 
Zero energy states; see Energy, zero state as 

exception 


